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Abstract

Rényi Differential Privacy (RDP) is a popular and practical
relaxation of pure Differential Privacy (DP) studied in dis-
tributed and deep learning settings. In this paper, we study
algorithms to ensure Rényi DP in different bandit problems.
Bandits serve as a theoretical foundation of sequential learning,
and also as an algorithmic foundation of modern recommender
systems. As recommenders often involve the private data of
users, it motivates the study of private bandits. Specifically, we
study three settings, i.e. finite-armed bandits, linear bandits,
and linear contextual bandits, where we render the sequence of
observed rewards Rényi DP with a centralised decision-maker.
For each of these settings, we propose a Rényi DP bandit al-
gorithm sharing similar algorithmic ingredients, namely the
Gaussian mechanism and adaptive episodes. Further, we anal-
yse the regret of the three algorithms. Our analysis shows that
the prices of imposing Rényi DP in all of these settings are
negligible in comparison with the regrets incurred oblivious to
privacy. Specifically, for a horizon T and RDP budget (α, ϵ),
the regret due to RDP is Õ(

√
α
ϵ
log(T )), while the regret

independent of privacy is Õ(
√
T ).

1 Introduction
Multi-armed bandit (in brief, bandits) (Lattimore and
Szepesvári 2018) is the archetypal setting of reinforcement
learning consisting of K actions and an unknown underlying
state. Here, each action a ∈ [K] corresponds to a distribution
over rewards r ∈ R with mean reward µa. A bandit policy
π must choose, at each time-step t, an action (or arm) at and
receives a reward rt from the reward distribution correspond-
ing to at. The goal of the policy is to maximize the cumula-
tive reward

∑T
t=1 rt. This is the simplest setting of sequential

decision-making that encounters the exploration–exploitation
dilemma. The policy has to choose between exploring arms
about which it knows little, and exploiting the arms that cur-
rently appears to have maximal mean reward. Bandits are
widely used to address a wide range of sequential decision-
making tasks under uncertainty, such as recommender sys-
tems (Silva et al. 2022), strategic pricing (Bergemann and
Välimäki 1996) or clinical trials (Thompson 1933) to name
a few. These applications often involve individuals’ sensi-
tive data, such as health conditions, personal preferences,
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Algorithm 1: Interaction Protocol in Bandits

1: Input: A policy π and Users u1, . . . , uT
2: Output: Actions satisfying (α,ϵ)-global RDP
3: for t = 1, . . . , T do
4: ut sends context ct to π (if available)
5: π recommends action at
6: ut sends the sensitive reward rt to π
7: end for

financial situation, and thus, naturally invoke data privacy
concerns.
Example 1. As a motivating example, we consider the prob-
lem of vaccine recommendation. Each day, a new patient ut
arrives, to whom a vaccine at is recommended. While recom-
mending a vaccine at, the bandit policy might either consider
the specific medical conditions (or context) ct corresponding
to ut, or ignore it. Then, a reaction to the vaccine is observed.
If the vaccine works, the observed reward rt = 1, otherwise
rt = 0. This reward information can reveal sensitive informa-
tion about the health condition of patient ut. Thus, the goal
of the bandit policy is to recommend a sequence of vaccines
(actions) that cures the maximum number of patients while
protecting the privacy of these patients.

In this paper, we adhere to Differential Privacy (DP) frame-
work to ensure data privacy of users. DP (Dwork, Roth et al.
2014) is the gold standard of privacy-preserving data analysis
in both academia and industry, requiring that an algorithm’s
output have a limited dependency on the presence of any sin-
gle user. Rényi DP (Mironov 2017) is a popularly deployed
relaxation of DP that shares similar properties as those of DP
while allowing tighter analysis of composite mechanisms.

Related Works. Privacy issues have been studied for
bandits under different settings, such as stochastic ban-
dits (Mishra and Thakurta 2015; Tossou and Dimitrakakis
2016; Sajed and Sheffet 2019; Azize and Basu 2022; Hu and
Hegde 2022), adversarial bandits (Tossou and Dimitrakakis
2017), and linear contextual bandits (Shariff and Sheffet
2018; Neel and Roth 2018; Hanna et al. 2022). Also, multi-
ple formulations of DP, namely local and global, are extended
to bandits (Basu, Dimitrakakis, and Tossou 2019). Local DP
aims to preserve the privacy of a sequence of observed re-
wards by sending noisy rewards to the bandit policy (Duchi,



Jordan, and Wainwright 2013). Though local DP provides
stronger privacy as the data curator has no access to the orig-
inal reward stream, it injects more noise leading to higher
regret. Also, the fundamental hardness of ensuring local DP
in bandits in terms of regret lower bound and also the cor-
responding optimal algorithms are well-understood (Zheng
et al. 2020). Global DP allows the bandit policy to access
rewards without noise. In global DP, one aims to keep the
sequence of observed rewards private while the sequence of
actions taken by the policy is publicly revealed (Basu, Dimi-
trakakis, and Tossou 2019). Here, we focus on the global DP
setting.

The existing works on private bandits consider either pure
ϵ-DP or (ϵ, δ)-DP as the privacy framework. Only (Chowd-
hury and Zhou 2022) studies Rényi Differential Privacy in a
distributed bandit setting by adding a Skellam noise. In this
paper, we investigate even more fundamental bandit settings
and aim to ensure (α, ϵ)-global RDP. The main question that
we aim to address is:

What is the additional cost in the regret due to imposing
Rényi Differential Privacy in (α, ϵ)-global RDP bandits?

Our Contributions. First, we formally define (α, ϵ)-global
RDP bandits. Following that, we study the cost of RDP in
terms of regret for three different settings, namely stochastic
bandits with finitely many actions (Section 4), stochastic
linear bandits with (fixed) finitely many actions (Section 5)
and linear contextual bandits with context-dependent feasible
actions (Section 6).

For each setting, we propose an algorithm that achieves
(α, ϵ)-global RDP, almost for free. These three algorithms
share the same blueprint. First, they add a calibrated Gaussian
noise to the reward statistics each time they interact with
the private reward sequence. Second, they run in adaptive
episodes, with the number of episodes logarithmic in T . This
means that the algorithm only accesses the private reward
sequence in log(T ) time-steps, rather than accessing it at
each step. A lower number of interactions leads to a less
sensitive estimate of reward statistics, and thus lower addition
of Gaussian noise.

We further show that imposing (α, ϵ)-global RDP is almost
free in terms of regret of the bandit algorithms. Specifically,
the cost of (α, ϵ)-global RDP in the regret of these algo-
rithms is shown to be Õ(

√
α
ϵ log(T )), which is significantly

lower than the regret oblivious to privacy, i.e. Õ(
√
T ). In Ta-

ble 1, we summarise the corresponding regret upper-bounds.
Another interesting consequence of our analysis is that the
gap-dependent regret of AdaR-UCB incurs an additive term
O
(√

α
ϵ log(T )

)
in regret due to (α, ϵ)-global RDP. In con-

trast, the price of ϵ-global DP for the same algorithms is
Ω
(

log(T )
ϵ

)
. This result indicates a fundamental difference

between ϵ-global DP and (α, ϵ)-global RDP that we aim to
understand in this work.

2 Background: Rényi Differential Privacy
Differential Privacy (DP) renders an individual correspond-
ing to a datapoint indistinguishable by constraining the output

of an algorithm to remain almost the same under a change in
one input datapoint.
Definition 1 ((ϵ, δ)-DP (Dwork, Roth et al. 2014) and
(α, ϵ)-RDP (Mironov 2017)). A mechanismM, that assigns
to each dataset d a probability distribution Md on some
measurable space (X,F), is
• (ϵ, δ)-DP for a given δ ∈ [0, 1) if

sup
A∈F,d∼d′

Md(A)− eϵMd′(A) ≤ δ. (1)

• (α, ϵ)-RDP for a given α > 1, if

sup
d∼d′

Dα(Md∥Md′) ≤ ϵ. (2)

Here, two datasets d and d′ are said to be neighbouring
(denoted by d ∼ d′) if their Hamming distance is one.

Dα(P∥Q) ≜ 1
α−1 logEQ

[(
dP
dQ

)α]
denotes the Rényi di-

vergence of order α between P and Q.
Rényi DP (RDP) was initiated by (Abadi et al. 2016) in the

moments’ accountant method for the Gaussian mechanism,
and then extensively studied in (Mironov 2017; Dwork and
Rothblum 2016; Bun and Steinke 2016; Bun et al. 2018).

The Gaussian mechanism (Dwork, Roth et al. 2014;
Mironov 2017) ensures (α,ϵ)-RDP by injecting a random
noise to the output of the algorithm that is sampled from a
calibrated Gaussian distribution (as specified in Theorem 2).
Theorem 2 ((α,ϵ)-RDP of The Gaussian Mechanism (Corol-
lary 3, (Mironov 2017))). Let f be a mechanism in Rd with
L2 sensitivity s(f) ≜ max

d∼d′
∥f(d) − f(d′)∥2. Then f + Z

is (α, ϵ)-RDP where Z ∼ N (0, αs(f)
2

2ϵ Id). We use N (µ,Σ)
to denote the Gaussian distribution with mean µ and co-
variance matrix Σ, and ∥ · ∥2 to denote the L2 norm on Rd.

Gaussian mechanism ensures RDP when the input
database is static. In a sequential setting like bandits, a mech-
anism must update the published statistics as new data ar-
rives (Dwork et al. 2010a; Basu, Dimitrakakis, and Tossou
2019), and thus, we extend the RDP definitions accordingly.

3 Bandits with (α, ϵ)-Global RDP
A bandit algorithm (or policy) interacts with an environ-
ment ν consisting of K arms with reward distributions
{νa}Ka=1 for a given horizon T ∈ N and produces a his-
toryHT ≜ {(At, Rt)}Tt=1. At each step t, the choice of the
arm depends on the previous history Ht−1. The reward Rt

is sampled from the reward distribution νAt
and is condi-

tionally independent of the previous historyHt−1. π can be
represented by a sequence (πt)Tt=1 , where πt : Ht−1 → [K]
is a probability kernel. Thus, if we denote a sequence of
actions as A ≜ [a1, . . . , aT ], a sequence of rewards as
R ≜ [r1, . . . , rT ], then the policy could be seen as a (ran-
domized) mechanism that takes as input the sensitive reward
dataset R and outputs a sequence of actions A with proba-
bility Mπ

R(A) ≜
∏T

t=1 πt(at | a1, r1, . . . , at−1, rt−1). To
define DP in bandits, we extend the event-level privacy under
continuous observations framework (Dwork et al. 2010a).



Table 1: Regret upper bounds for Rényi DP bandits. Terms in blue correspond to the cost of Rényi DP

Setting Regret Upper Bound Reference

Finite-arm Rényi DP Bandits O
(√

KT log(T )
)
+O

(
K
√

α
ϵ log(T )

)
Corollary 6

Linear Rényi DP Bandits O
(√

dT log(KT )
)
+O

(√
α
ϵ d

2(log(KT ))
3
2

)
Theorem 8

Linear Contextual Rényi DP Bandits O
(
d log(T )

√
T
)
+O

(√
α
ϵ d

2 log(T )2
)

Theorem 10

Definition 3. A policy π = (πt)
T
t=1 is

• ϵ-global DP if

sup
A∈[K]T ,R∼R′

Mπ
R(A)− eϵMπ

R′(A) ≤ 0. (3)

• (α, ϵ)-global RDP for a given α > 1, if

sup
R∼R′

Dα(Mπ
R∥Mπ

R′) ≤ ϵ. (4)

Here, R ∼ R′ denotes that the reward sequences are neigh-
bouring, i.e they only differ on a single time-step t.

Remark. For a given R,Mπ
R is a probability distribution

on ([K]T ,P([K]T )), i.e
∑

A∈[K]T Mπ
R(A) = 1.

In the following three sections, we consider three ban-
dit settings, namely stochastic bandits with finitely many
arms, stochastic linear bandits with (fixed) finitely many
arms and linear contextual bandits with context-dependent
feasible arms. For all of these bandit settings, we impose
(α, ϵ)-global RDP (Definition 3) as the privacy constraint,
where the rewards are the private data to protect.

4 Stochastic Bandits with (α, ϵ)-global RDP
In this section, we first specify the stochastic bandits with
(α, ϵ)-global RDP. Then, we provide an (α, ϵ)-global RDP
algorithm, namely AdaR-UCB, and analyse its performance
(regret) to quantify the cost of (α, ϵ)-global RDP.

Formulation. Let ν = (Pa : a ∈ [K]) a bandit instance
with K arms and means (µa)a∈[K]. The goal is to design
a (α, ϵ)-global RDP policy that maximizes the cumulative
reward or equivalently minimizes regret over a horizon T :

RegT (π, ν) ≜ Tµ⋆ − E

[
T∑

t=1

Rt

]
=

K∑
a=1

∆aE [Na(T )] . (5)

Here, µ⋆ ≜ maxa∈[K] µa is the mean of the optimal arm
a⋆. ∆a ≜ µ⋆ − µa is the sub-optimality gap of the arm a.
Na(T ) ≜

∑T
t=1 1 {At = a} is the number of times the arm

a is played till T , where the expectation is taken both on the
randomness of the environment ν and the policy π.

Algorithm: AdaR-UCB. Now, we propose AdaR-UCB al-
gorithm. To design AdaR-UCB, we first define the private
index to select the arms (Line 6 of Algorithm 2):

Ia(tℓ − 1, β) ≜ µ̂ℓ
a +N

(
0, σ2

a,ℓ

)
+Ba(tℓ − 1, β). (6)

Here, µ̂ℓ
a is the empirical mean of rewards computed us-

ing only samples from the last episode arm a was played.

Algorithm 2: AdaR-UCB

1: Input: Privacy budget (α,ϵ), an environment ν with K
arms, optimism parameter β > 3

2: Output: Actions satisfying (α,ϵ)-global RDP
3: Initialisation: Choose each arm once and let t = K
4: for ℓ = 1, 2, . . . do
5: Let tℓ = t+ 1
6: Compute Aℓ = argmaxa I

α,ϵ
a (tℓ − 1, β) (Eq. (6))

7: Choose arm Aℓ until round t such that NAℓ
(t) =

2NAℓ
(tℓ − 1)

8: end for

σ2
a,ℓ ≜ α

2ϵ×( 1
2Na(tℓ−1))

2 is the noise calibrated using The-

orem 2 to make the empirical mean (α, ϵ)-RDP and fi-
nally the exploration bonus is defined as Ba(tℓ − 1, β) ≜√(

1
2× 1

2Na(tℓ−1)
+ α

ϵ×( 1
2Na(tℓ−1))

2

)
β log(tℓ).

AdaR-UCB is an extension of the generic algorithmic
wrapper proposed in (Azize and Basu 2022), which turns any
index-based bandit algorithm ϵ-global DP, to the (α, ϵ)-global
RDP setting. Following (Azize and Basu 2022), AdaR-UCB
relies on three ingredients: arm-dependent doubling, forget-
ting, and adding calibrated Gaussian noise. First, the algo-
rithm runs in episodes. In each episode, the same arm is
played for double the number of times it was last played. Sec-
ond, at the beginning of a new episode, the index of an arm a,
as defined in Eq. (6), is computed only using samples from
the last episode arm a was played and forgetting all the other
samples. Due to these two ingredients, each empirical mean
computed in the index of Eq. (6) only needs to be (α, ϵ)-
RDP so that the whole sequence of released empirical means
is (α, ϵ)-RDP. We formalise this intuition in Lemma 11 of
Appendix A.

Theorem 4 (Privacy of AdaR-UCB). For rewards in [0, 1],
AdaR-UCB satisfies (α, ϵ)-global RDP.

Proof Sketch. The main idea is that a change in reward only
affects the empirical mean calculated in one episode, which is
made private using the Gaussian Mechanism and Lemma 11.
Since the actions are only calculated using the private em-
pirical means, AdaR-UCB is (α, ϵ)-global RDP following
the post-processing lemma. We refer to Appendix A for the
complete proof.

Regret Analysis. We derive both gap-dependent and gap-
independent upper bounds on regret of AdaR-UCB and dis-
cuss the additive cost due to (α, ϵ)-global RDP.



Theorem 5 (Gap-dependent Regret). For rewards in [0, 1]
and β > 3, AdaR-UCB yields a regret upper bound of∑

a:∆a>0

(
8β

∆a
log(T ) + 8

√
βα

ϵ

√
log(T ) +

2β

β − 3

)
.

Corollary 6 (Gap-independent Regret). For rewards in [0, 1]
and β > 3, AdaR-UCB yields a regret upper bound of

O
(√

KT log(T )
)
+O

(
K

√
α

ϵ
log(T )

)
.

Proof Sketch. The proof is a direct application of Theorem 12
in (Azize and Basu 2022), which is a generic regret decom-
position for adaptive phased index-based bandit algorithms,
with forgetting. The difference comes from the form of the
index, with a different privacy bonus, that comes from the
concentrated Gaussian Mechanism specific to Rényi DP. We
refer to Appendix B for the complete proof.
Discussion: RDP for Almost-free. The bound of Theorem 5
shows that, in the gap-dependent regret, the price of (α, ϵ)-
global RDP is the additive term O

(√
α
ϵ log(T )

)
. For a fixed

budget (α, ϵ), this additive term is negligible in comparison
to the non private part O

(
log(T )

∆

)
as the horizon T → ∞.

This is in sharp contrast with the ϵ-global DP setting, where
the price of DP is Ω

(
log(T )

ϵ

)
(Shariff and Sheffet 2018).

5 Linear Bandits with (α, ϵ)-global RDP
In this section, we study (α, ϵ)-global RDP for linear bandits
with finite number of arms.

Formulation. Similar to the formulation of Section 4, here,
we consider that a fixed set of actions A ⊂ Rd is available
at each round such that |A| = K. In addition, the reward
is not just a sample from distribution but is generated by a
linear structural equation (Lattimore and Szepesvári 2018).
Specifically, at step t, the observed reward

Rt ≜ ⟨θ⋆, At⟩+ ηt, (7)

where ηt is a conditionally 1-subgaussian noise, i.e.
E [exp (ληt) | A1, η1, . . . , At−1] ≤ exp

(
λ2/2

)
almost

surely for all λ ∈ R.

Assumption 1 (Boundedness). We assume that all the quan-
tities of interest are bounded.

1. Actions are bounded: ∥a∥2 ≤ 1 for all a in A.
2. Rewards are bounded: |Rt| ≤ 1.
3. The unknown parameter is bounded: ∥θ⋆∥2 ≤ 1

Similar to Section 4, the goal is to design a (α, ϵ)-global
RDP policy that minimizes regret (Eq. (5)). However, the
particularity of this setup is that an optimal policy should
take advantage of the structure existing between arms to get
rid of the polynomial dependence of regret on K.

Algorithm. In order to design a near-optimal algorithm
with RDP, we propose an (α, ϵ)-global RDP extension of
the G-Optimal design-based Phased Elimination (GOPE)
algorithm (Algorithm 12 (Lattimore and Szepesvári 2018)),

Algorithm 3: AdaR-GOPE

1: Input: Privacy budget (α, ϵ), A ⊂ Rd and δ
2: Output: Actions satisfying (α,ϵ)-global RDP
3: Initialisation: Set ℓ = 1, t1 = 1 and A1 = A
4: for ℓ = 1, 2, . . . do
5: βℓ ← 2−ℓ

6: Step 1: Find the G-optimal design πℓ for Aℓ:

max
π∈P(Aℓ)∑

a∈Aℓ
π(a)=1, |Supp(π)|≤d(d+1)/2

log detV (π).

7: Step 2: Choose each action a ∈ Aℓ for Tℓ(a) times
where Tℓ(a) is defined by Eq 8.

8: Observe rewards {Rt}
tℓ+

∑
a Tℓ(a)

t=tℓ
9: Tℓ ←

∑
a∈Aℓ

Tℓ(a) and tℓ+1 ← tℓ + Tℓ + 1
10: Step 3: Estimate the parameter as

θ̂ℓ = V −1
ℓ

tℓ+1−1∑
t=tℓ

AtRt with Vℓ =
∑

a∈Supp(πℓ)

Tℓ(a)aa
⊤

11: Step 4: Make the parameter estimate private

θ̃ℓ = θ̂ℓ + V −1
ℓ

∑
a∈Supp(πℓ)

aNa

where (Na)a∈Supp(πℓ)
iid∼ N

(
0, 2αϵ

)
.

12: Step 4: Eliminate low rewarding arms:

Aℓ+1 =

{
a ∈ Aℓ : max

b∈Aℓ

〈
θ̃ℓ, b− a

〉
≤ 2βℓ

}
.

13: end for

namely AdaR-GOPE. We state the pseudocode of AdaR-
GOPE in Algorithm 3.

At the end of each phase of AdaR-GOPE, arms that are
likely to be sub-optimal, i.e. the ones with a gap exceeding
the current target (βℓ), are eliminated. The elimination cri-
terion only depends on the samples collected in the current
phase. In addition, the actions to be played during a phase are
chosen based on the solution of an optimal design problem to
minimise the number of required samples to eliminate arms
that are sub-optimal.

In particular, if πℓ is the G-optimal solution forAℓ at phase
ℓ, then each action a ∈ Aℓ is played Tℓ(a) times, where

Tℓ(a) ≜

⌈
8dπℓ(a)

β2
ℓ

log

(
4Kℓ(ℓ+ 1)

δ

)

+
2dπℓ(a)

βℓ

√
2α

ϵ
d(d+ 1) log

(
4Kℓ(ℓ+ 1)

δ

)⌉
(8)

The samples collected in the present phase do not influence
which actions are played in it. This decoupling has two advan-
tages: (a) It allows us to make use of the tighter confidence
bounds available in the fixed design setting (Appendix C.2),
and (b) use Lemma 11 to make the algorithm private.



Theorem 7 (Privacy of Algorithm 3). Under Assumption 1,
AdaR-GOPE (Algorithm 3) satisfies (α, ϵ)-global RDP.

Proof Sketch. A change in reward at any time-step only affects
the estimate θ̂ℓ in the corresponding phase. By making each
θ̂ℓ (α, ϵ)-RDP with respect to the sequence of rewards ob-
served in the corresponding phase, the whole sequence of re-
leased estimates (θ̂ℓ)ℓ becomes (α, ϵ)-RDP, due to Lemma 11.
Since the action selection only depends on (θ̂ℓ)ℓ, the algo-
rithm is (α, ϵ)-global RDP by the post-processing lemma.
We refer to Appendix A for the complete proof.

Regret Analysis. Now, we quantify the additional cost
incurred by AdaR-GOPE due to (α, ϵ)-global RDP.

Theorem 8. Under Assumption 1 and for δ ∈ (0, 1), with
probability at least 1 − δ, the regret RT of AdaR-GOPE
(Algorithm 3) is upper-bounded by

C1

√
dT log

(
K log(T )

δ

)
+C2d

2

√
α

ϵ
log

(
K log(T )

δ

)
log(T )

where C1 and C2 are universal constants. If δ = 1
T , then

E(RT ) ≤ O
(√

dT log(KT )
)
+O

(√
α
ϵ d

2(log(KT ))
3
2

)
Proof Sketch. Under the "good event" that all the private
parameters θ̃ℓ are well estimated, we show that the optimal
action never gets eliminated. But the sub-optimal arms get
eliminated as soon as the elimination threshold is smaller than
their sub-optimality gaps. The regret upper bound follows
directly. We refer to Appendix C for complete proof.
Discussions. Here, we discuss briefly about the regret bound.

1. RDP for Almost-free: Theorem 8 shows that the price
of (α, ϵ)-global RDP is the additive term Õ

(√
α
ϵ d

2
)
.

For a fixed RDP budget (α, ϵ), the regret due to pri-
vacy becomes negligible in comparison with the privacy-
oblivious term in regret, i.e. Õ

(√
dT
)

, as T →∞.

2. Extension to ϵ-global DP: An ϵ-global DP version of Al-
gorithm 3 could easily be given, by changing the Gaussian
noise with a calibrated Laplace noise. The regret bound
will be similar to the one in Theorem 8, up to added mul-
tiplicative log(T ) terms in the private part, due to the
concentration of the sum of Laplace noise.

3. Related Regret Bounds. A similar algorithm achieving
ϵ-global DP is proposed in (Algorithm 1, (Hanna et al.
2022)). However, their algorithm has two shortcomings.
First, the algorithm does not retrieve the optimal non-
private regret bound for this setting. The non-private regret
bound in their analysis is Õ

(
d
√
T
)

(ref. Eq.18 (Hanna

et al. 2022)), which is
√
d loose compared to the regret

bound Õ
(√

dT
)

achievable by a non-private algorithm.
As explained in Section 22 of (Lattimore and Szepesvári
2018), the main reason for proposing a G-optimal elimina-
tion algorithm is to obtain a

√
d dependency in the regret,

rather than a d dependency of typical optimism-based
strategies.

This leads to the second shortcoming: an added fine-tuned
parameter, q, as in Line 3 of Algorithm 1 (Hanna et al.
2022). q depends on the horizon T and dictates the length
of the episodes. This makes the algorithm not anytime,
in contrast to AdaR-GOPE, which is anytime. Their al-
gorithm encounters this issue due to a non-tight regret
analysis, that depends on the fine-tuned parameter q.

6 Linear Contextual Bandits with
(α, ϵ)-global RDP

Now, we consider an even more general setting of bandits,
where the feasible arms at each step depend on a context
observed at that set. Thus, the set of feasible arms change over
steps. We study (α, ϵ)-global RDP in this problem, called
linear contextual bandits.

Formulation. Contextual bandits generalise the finite-
armed bandits by allowing the learner to use side-information.
At each step t, the policy observes a context ct ∈ C, which
might be random or not. Having observed the context, the
policy chooses an action At ∈ [K] and observes a reward
Rt. For the linear contextual bandits, the reward Rt depends
on both the arm at and the context ct in terms of a linear
structural equation:

Rt = ⟨θ⋆, ψ(at, ct)⟩+ ηt. (9)
Here, ψ : [K]× C → Rd is the feature map, θ⋆ ∈ Rd is the
unknown parameter, and ηt is the noise, which we assume to
be conditionally 1-subgaussian.

Under Eq. (9), all that matters is the feature vector that
results in choosing a given action rather than the identical the
action itself. This justifies studying a reduced model: in round
t, the policy is served with the decision set At ⊂ Rd, from
which it chooses an action at ∈ At and receives a reward

Rt = ⟨θ⋆, at⟩+ ηt

where ηt is 1-subgaussian given A1, A1, R1, . . . ,At−1,
At−1, Rt−1,At, and At.

Different choices of At lead to different settings. If At =
{ψ(ct, a) : a ∈ [K]}, then we have a contextual linear bandit.
On the other hand, if At = {e1, . . . , ed} where (ei)i are the
unit vectors of Rd then the resulting bandit problem reduces
to the stochastic finite-armed bandit of Section 4.

The goal is to design a (α, ϵ)-global RDP policy that mini-
mizes the regret, which is defined as

R̂T ≜
T∑

t=1

max
a∈At

⟨θ⋆, a− at⟩ , RT ≜ E[R̂T ]

We suppose that Assumption 1 also holds in this setting.
Remark 1. In this section, we suppose that ct is public in-
formation, and thus At is too. Rewards are the only private
statistics to protect. The main difference compared to Sec-
tion 5 is that the set of actionsAt is allowed to change at each
time-step t. Thus, the action-elimination based strategies, as
used in Section 5, are not useful.
Stochastic contexts. In this section, we have an additional
assumption on context generation. Specifically, we adopt the
same assumption as in (Gentile, Li, and Zappella 2014), i.e.
the contexts are stochastically generated.



Assumption 2 (Stochastic Contexts). At each step t,
the context set At ≜ {at1, . . . , atkt

} is generated condi-
tionally i.i.d (conditioned on kt and the history Ht ≜
{A1, A1, X1, . . . ,At−1, At−1, Xt−1,At, At}) from a ran-
dom process A such that

• ∥A∥2 = 1
• E[AAT ] is full rank, with minimum eigenvalue λ0 > 0
• ∀z ∈ Rd, ∥z∥2 = 1, the random variable (zTA)2 is

conditionally subgaussian, with variance

ν2t ≜ V
[
(zTA)2 | kt, Ht

]
≤ λ20

8 log(4kt)

This additional assumption gives us explicit control
on the minimum eigenvalue of the design matrix Vt ≜∑t

t′=1At′A
T
t′ . Using Lemma 27 on the minimum eigenvalue,

we quantify more precisely the effect of the added noise due
to (α, ϵ)-global RDP and derive tighter confidence bounds.

Algorithm. One of the popular and well-analysed algo-
rithm for non-private contextual bandits is the Rarely Switch-
ing OFUL (Optimism in Face of Uncertainty- Linear) al-
gorithm (Abbasi-Yadkori, Pál, and Szepesvári 2011). We
propose an (α, ϵ)-global RDP extension of Rarely Switching
OFUL, namely AdaR-OFUL.

The OFUL algorithm applies the "optimism in face of un-
certianty principle" to the contextual linear bandit setting,
which is to act in each round as if the environment is as
nice as plausibly possible. In finite-action stochastic bandits,
this means choosing the action with the largest upper confi-
dence bound. In the case of linear contextual bandits, the idea
remains the same, but the form of the confidence bound is
more complicated. This is because the observed rewards yield
side-information about more than just the arm played. OFUL
algorithm computes a regularized least square estimate of
the parameter θ and an ellipsoid confidence set around the
estimated parameter. For each new observed action set At,
OFUL chooses the action with the largest upper confidence
bound in the confidence ellipsoid.

The Rarely Switching OFUL Algorithm (RS-OFUL) can
be seen as an "adaptively" phased version of the OFUL algo-
rithm. RS-OFUL runs in episodes. At the beginning of each
episode, the least square estimate and the confidence ellipsoid
are updated. For the whole episode, the same estimate and
confidence ellipsoid are used to choose the optimistic action.
The condition to update the estimates (Line 6 of Algorithm 4)
is to accumulate enough "useful information" in terms of the
design matrix, which makes an update worth enough. RS-
OFUL only updates the estimates log(T ) times, while OFUL
updates at each time-step of OFUL. RS-OFUL achieves sim-
ilar regret as OFUL, up to a

√
1 + C multiplicative constant.

AdaR-OFUL (Algorithm 4) extends RS-OFUL by pri-
vately estimating the least-square estimate, while adapting
the confidence ellipsoid accordingly. By Lemma 11, AdaR-
OFUL only needs to make the estimate at every episode
(α, ϵ)-RDP.

Theorem 9 (Privacy of Algorithm 4). Under Assumptions 1
and 2, AdaR-OFUL (Algorithm 4) satisfies (α, ϵ)-global RDP.

Algorithm 4: AdaR-OFUL

1: Input: Privacy budget (α, ϵ), Horizon T , Regularizer λ,
Dimension d, Doubling Schedule C

2: Output: A sequence of T -actions satisfying (α, ϵ)-global
RDP

3: Initialisation: V0 = λId, θ̃ = 0d, τ = 0, ℓ = 1
4: for t = 1, 2, . . . do
5: Observe At

6: if det(Vt−1) > (1 + C) det(Vτ ) then
7: Sample Yℓ ∼ N (0, 2αϵ Id)

8: Compute θ̃t−1 = (Vt−1)
−1(
∑t−1

s=1AsRs +∑ℓ
m=1 Ym)

9: ℓ← ℓ+ 1 and τ ← t− 1
10: end if
11: ComputeAt = argmaxa∈At

〈
θ̃τ , a

〉
+β̃τ∥a∥(Vτ )−1

12: Play arm At, Observe reward Rt

13: Vt ← Vt−1 +AtA
T
t

14: end for

Proof Sketch. Similar to the previous algorithms, a change in
the reward only affects the estimate of θ in the corresponding
episode. Since the context is public, there is no privacy cost in
estimating the design matrix V . Thus, making each estimate
(α, ϵ)-RDP concludes the proof. We refer to Appendix A for
the complete proof.
Remark 2. WhenC = 1, Algorithm 4 can be seen as a direct
generalisation of AdaR-UCB to the linear contextual bandits.
Then, Line 6 of Algorithm 4 reduces to the arm-dependent
doubling for the finite-arm stochastic bandits.

Regret Analysis. Now, we upper bound the additional re-
gret incurred by AdaR-OFUL due to global RDP.
Theorem 10. Under Assumptions 1 and 2, and for δ ∈ (0, 1],
with probability at least 1− δ, the regret RT of AdaR-OFUL
(Algorithm 4) is upper bounded by

RT ≤ O
(
d log(T )

√
T
)
+O

(√
α

ϵ
d2 log(T )2

)
Proof Sketch. As for the non-private proofs of OFUL and
RS-OFUL, the main challenge in regret analysis of AdaR-
OFUL is to design tight ellipsoid confidence sets around the
private estimate θ̃t. To do so, we rely on the self-normalized
bound for vector-valued martingales theorem of (Abbasi-
Yadkori, Pál, and Szepesvári 2011). The regret us yielded
by adjoining this theorem with the assumption of stochastic
contexts controlling λmin(Gt) and the concentration of χ2

distribution. The rest of the proof is adapted from the analysis
of RS-OFUL (Abbasi-Yadkori, Pál, and Szepesvári 2011).
The only difference is that β̃ that controls the optimism width
is not increasing anymore, but could be decomposed into
the sum of an increasing and decreasing part. We also show
that the number of updates of the estimated parameters is in
O(log(T )). We refer to Appendix D for the complete proof.
Discussion: RDP for Almost-free. The upper bound of Theo-
rem 10 shows that the price of (α, ϵ)-global RDP for linear
contextual bandits is the additive term Õ

(√
α
ϵ d

2
)
. For a



fixed budget (α, ϵ), the regret dependent on RDP turns negli-
gible in comparison with the privacy-oblivious regret term of
Õ
(
d
√
T
)

, as T →∞.
Limitations. Here, we discuss the limitations of our analysis.
• The context ct is public: This assumption gets rid of the

additional task of estimating privately both the design
matrix for computing θ̃, and the determinant of the design
matrix to decide whether or not to update the estimates
(Line 6 of Algorithm 4). Since the last condition should be
checked at each time-step, a possible way to adapt AdaR-
OFUL would be to estimate privately the design matrix at
each step using the tree-based mechanism (Dwork et al.
2010b; Chan, Shi, and Song 2011) as in (Shariff and
Sheffet 2018). However, with this change, the current
analysis will not hold. With the added noise in the design
matrix, the private estimate of the design matrix at step
t+ 1 is no longer a rank 1 update of the private estimate
at step t. The trick of Lemma 28 cannot be used anymore,
which is the basis of the current analysis.

• The context ct is stochastic: Our regret upper bound relies
on Assumption 2, i.e. stochastic generation of the contexts.
Without this assumption, there would not be a 1√

T
in the

confidence width β̃ that gives an additional cost of log(T )
due to (α, ϵ)-global RDP rather than

√
T . The (ϵ, δ)-Joint

DP algorithm (Shariff and Sheffet 2018), proposed for
private and adversarial contexts, has an additional re-
gret of 1

ϵ

√
T due to privacy. It is still an open problem

whether it is possible to design a private algorithm for
linear contextual bandits with private and adversarially
chosen contexts, such that the additional regret due to
privacy is only in log(T ).

Remark 3. Related Problem Setups: (Neel and Roth 2018)
proposes LinPriv, which is a reward-private extension of Lin-
ear UCB aimed for ensuring ϵ-global DP in linear contextual
bandit. The context is assumed to be public but adversely
chosen. Theorem 5 in (Neel and Roth 2018) claims that the
regret of LinPriv is of order Õ

(
d
√
T + 1

ϵKd log T
)

. We be-
lieve that there is an error in this regret analysis. It should be
Õ
(
d
√
T + 1

ϵKd
√
T
)

. We refer to Appendix D.3 for details.

Thus, the problem of achieving lower than
√
T cost due to im-

posing privacy, while also considering adversarial contexts,
still remain open.

7 Conclusion and Future Work
We study bandits with (α, ϵ)-global RDP under three settings.
We design an (α, ϵ)-global RDP bandit algorithm for each
setting, and show that the additional cost in the regret incurred
due to Rényi DP is negligible compared to the regret incurred
oblivious to privacy. The three algorithms share the same
algorithmic blueprint. They add calibrated Gaussian noise
and they run in adaptive episodes. This revelation allows us
to devise a generic and simple algorithmic approach to make
any index-based bandit algorithm (α, ϵ)-global RDP.

One limitation of our analysis in the linear contextual ban-
dit setting is the assumption that the contexts are public and

stochastic. In recommender systems, the context may con-
tain sensitive information about individuals. Also, in practice,
we might not have information about the generation process
of the observed contexts. Designing and analysing an algo-
rithm that does not rely on these two assumptions, and still
achieves (α, ϵ)-global RDP almost for free, is an interesting
open question.

Another future direction is to derive regret lower bounds
for bandits with (α, ϵ)-global RDP. Regret lower bounds for
bandits with ϵ-global DP have been studied in the literature.
(Shariff and Sheffet 2018) first showed that Bernoulli stochas-
tic bandits with ϵ-global DP should incur an additional regret
of Ω

(
log(T )

ϵ

)
. (Azize and Basu 2022) refine this result and

generalize it to any probability distributions. (Azize and Basu
2022) also give regret lower bounds for linear bandit with
ϵ-global DP. However, deriving regret lower bounds for ban-
dits with (α, ϵ)-global RDP or (ϵ, δ)-global DP is still an
open problem. The problem-dependent regret upper bound
for stochastic bandits with (α, ϵ)-global RDP (Theorem 5)
suggests that the lower bounds for bandits with (α, ϵ)-global
RDP may be of order Ω

(√
α
ϵ log(T )

)
. Proving this conjec-

ture would be an interesting technical challenge to explore.
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Appendix
A Privacy Proofs

Lemma 11 (Privacy Lemma). LetM be a mechanism that takes as input a set {r1, . . . , rk} for every k ∈ N∗ and outputs a
distribution.
Let ℓ < T and t1, . . . tℓ, tℓ+1 be in [1, T ] such that 1 = t1 < · · · < tℓ < tℓ+1 − 1 = T .
Let’s define the following mechanism

G : {r1, . . . , rT } →
ℓ⊗

i=1

M{rti ,...,rti+1−1} (10)

IfM is (α, ϵ)-RDP then G is (α, ϵ)-RDP

Proof. Suppose that M is (α, ϵ)-RDP, and let r ≜ {r1, . . . , rT } and r′ ≜ {r′1, . . . , r′T } be two neighboring rewards. This
implies that ∃j ∈ [1, T ] such that rj ̸= r′j and ∀t ̸= j, rt = r′t.

Let ℓ′ be such that tℓ′ ≤ j ≤ tℓ′+1 − 1.
We have that

Dα(Gr∥Gr′) =
1

α− 1
log

(∫
o=(o1,...,oℓ)

Gr′(o)
(
Gr(o)
Gr′(o)

)α
)

Since

Gr(o) =
ℓ∏

i=1

M{rti ,...,rti+1−1}(oi)

and

Gr′(o) =
ℓ∏

i=1

M{r′ti ,...,r
′
ti+1−1}(oi)

we get
Gr(o)
Gr′(o)

=
M{rt

ℓ′
,...,rtj ,...,rtℓ′+1

−1}(oi)

M{rt
ℓ′
,...,r′tj

,...,rt
ℓ′+1

−1}(oi)

Thus,
Dα(Gr∥Gr′) = Dα(M{rt

ℓ′
,...,rtj ,...,rtℓ′+1

−1}∥M{rt
ℓ′
,...,r′tj

,...,rt
ℓ′+1

−1}) ≤ ϵ

Theorem 4 (Privacy of AdaR-UCB). For rewards in [0, 1], AdaR-UCB satisfies (α, ϵ)-global RDP.

Proof. Fix two neighboring reward streams rT = {r1, . . . , rT } and r′T = {r′1, . . . , r′T }.
This implies that ∃j ∈ [1, T ] such that rj ̸= r′j and ∀t ̸= j, rt = r′t.

LetM{rti ,...,rti+1−1} ≜ 1
ti+1−ti

∑ti+1−1
s=ti

rs + Zi where Zi ∼ N
(
0, α

2ϵ(ti+1−ti)
2

)
.

For rewards in [0, 1], the L2 sensitivity of f : {rti , . . . , rti+1−1} → 1
ti+1−ti

∑ti+1−1
s=ti

rs is 1
ti+1−ti

. Using Theorem 2,M is
(α, ϵ)-RDP.

For fixed episodes, we apply Lemma 11 to show that G, as defined in Eq. 10 is also (α, ϵ)-RDP.
Since for the two neighbouring rewards rT and r′T , we have that rj−1 = r′j−1, and {rj+1, . . . , rT } = {r′j+1, . . . , r

′
T }, the

time-steps tℓ corresponding to the beginning of each adaptive episodes are random variables that have the same law under rT
and r′T .

Taking the expectation over the adaptive episodes shows that the whole sequence of released noisy empirical means G is
(α, ϵ)-RDP.

The released actions of AdaR-UCB only depend on the sequence of released noisy empirical means G. By post-processing,
AdaR-UCB is (α, ϵ)-global RDP.

We use the same proof structure for the privacy of Algorithm 3 and Algorithm 4. The only difference is to specify the actual
mechanismM used for each episode and show that it is an (α, ϵ)-global RDP mechanism.



Theorem 7 (Privacy of AdaR-GOPE). For rewards in [0,1], AdaR-GOPE (Algorithm 3) satisfies (α, ϵ)-global RDP.

Proof. Fix two neighboring reward streams rT = {r1, . . . , rT } and r′T = {r′1, . . . , r′T }.
This implies that ∃j ∈ [1, T ] such that rj ̸= r′j and ∀t ̸= j, rt = r′t.

Let θ̂ be the mechanism that estimates the parameter θ using the least square estimate, i.e θ̂ : {Rt}
tℓ+1−1
t=tℓ

→
V −1
ℓ

∑tℓ+1−1
t=tℓ

AtRt such that Vℓ =
∑

a∈Supp(πℓ)
Tℓ(a)aa

⊤.
We can write that

tℓ+1−1∑
t=tℓ

AtRt =
∑

a∈Supp(πℓ)

a
∑

At=a,t∈[tℓ,tℓ+1−1]

Rt.

For rewards in [−1, 1], the L2 sensitivity of
∑

At=a,t∈[tℓ,tℓ+1−1]Rt is 1.

Let (Na)a∈Supp(πℓ)
iid∼ N

(
0, 2αϵ

)
.

Using Theorem 2 we have that
∑

a∈Supp(πℓ)
a
(∑

At=a,t∈[tℓ,tℓ+1−1]Rt +Na

)
is (α, ϵ)-RDP.

Which gives thatM : {Rt}
tℓ+1−1
t=tℓ

→ θ̂
(
{Rt}

tℓ+1−1
t=tℓ

)
+ V −1

ℓ

∑
a∈Supp(πℓ)

aNa is (α, ϵ)-RDP.
For fixed episodes, we apply Lemma 11 to show that G, as defined in Eq. 10 is also (α, ϵ)-RDP.
Since for the two neighboring rewards rT and r′T , we have that rj−1 = r′j−1, and {rj+1, . . . , rT } = {r′j+1, . . . , r

′
T }, the

time-steps tℓ corresponding to the beginning of each adaptive episodes are random variables that have the same law under rT
and r′T .

Taking the expectation over the adaptive episodes shows that the whole sequence of released noisy empirical means G is
(α, ϵ)-RDP.

The released actions of Algorithm 3 only depend on the sequence of released noisy empirical means G. By post-processing,
Algorithm 3 is (α, ϵ)-global RDP.

Theorem 9 (Privacy of AdaR-OFUL). For rewards in [0,1], AdaR-OFUL (Algorithm 4) satisfies (α, ϵ)-global RDP.

Proof. Fix two neighboring reward streams rT = {r1, . . . , rT } and r′T = {r′1, . . . , r′T }.
This implies that ∃j ∈ [1, T ] such that rj ̸= r′j and ∀t ̸= j, rt = r′t.

Let θ̂ be the mechanism that estimates the parameter θ using the least square estimate on the whole sequence, i.e θ̂ :
{Rt}ts=1 → V −1

t

∑t
s=1AsRs such that Vt =

∑t
s=1 asa

⊤
s .

We can write that
t∑

s=1

AsRs =

ℓ(t)∑
ℓ=1

∑
t∈[tℓ,tℓ+1−1]

AtRt.

For rewards in [−1, 1] and actions At such that ∥At∥ ≤ 1, the L2 sensitivity of the sum
∑

t∈[tℓ,tℓ+1−1]AtRt is 2.
Let Yℓ ∼ N (0, 2αϵ Id).
Using Theorem 2 we have that

∑ℓ(t)
ℓ=1

∑
t∈[tℓ,tℓ+1−1]AtRt + Yℓ is (α, ϵ)-RDP.

Which gives thatM : {Rt}ts=1 → θ̂
(
{Rt}ts=1 +

∑ℓ
m=1 Ym

)
is (α, ϵ)-RDP.

For fixed episodes, we apply Lemma 11 to show that G, as defined in Eq. 10 is also (α, ϵ)-RDP.
Since for the two neighboring rewards rT and r′T , we have that rj−1 = r′j−1, and {rj+1, . . . , rT } = {r′j+1, . . . , r

′
T }, the

time-steps tℓ corresponding to the beginning of each adaptive episodes are random variables that have the same law under rT
and r′T .

Taking the expectation over the adaptive episodes shows that the whole sequence of released noisy empirical means G is
(α, ϵ)-RDP.

The released actions of Algorithm 3 only depend on the sequence of released noisy empirical means G. By post-processing,
Algorithm 3 is (α, ϵ)-global RDP.



B Finite-arm Rényi DP Bandits
B.1 Concentration Inequalities
Lemma 12. Assume that (Xi)1≤i≤n are iid random variables in [0, 1], with E(Xi) = µ. Then, for any δ ≥ 0,

P

(
µ̂n + Zn −

√(
1

2n
+

α

ϵn2

)
log

(
1

δ

)
≥ µ

)
≤ δ, (11)

and

P

(
µ̂n + Zn +

√(
1

2n
+

α

ϵn2

)
log

(
1

δ

)
≤ µ

)
≤ δ, (12)

where µ̂n = 1
n

∑n
t=1Xt and Zn ∼ N

(
0, α

2ϵn2

)
.

Proof. Let Y = (µ̂n + Zn − µ).
Using Properties 2. and 3. of Lemma 22, we get that Y is

√
1
4n + α

2ϵn2 -subgaussian.
We conclude using the concentration on subgaussian random variables, i.e. Lemma 21.

B.2 Regret Analysis
Theorem 5. For rewards in [0, 1], AdaR-UCB satisfies (α, ϵ)-global RDP, and for β > 3, it yields a regret upper bound of∑

a:∆a>0

(
8β

∆a
log(T ) + 8

√
βα

ϵ

√
log(T ) +

2β

β − 3

)
Proof. By the generic regret decomposition of Theorem 11 in (Azize and Basu 2022), for every suboptimal arm a, we have that

E[Na(T )] ≤ 2ℓ+1 + P
(
Gc

a,ℓ,T

)
T +

β

β − 3
,

where

Ga,ℓ,T =

{
µ̂a,2ℓ + Zℓ +

√(
1

2× 2ℓ
+

α

ϵ× (2ℓ)2

)
β log(T ) < µ1

}
.

such that Zℓ ∼ N
(
0, α

2ϵ×(2ℓ)2

)
Step 1: Choosing an ℓ. Now, we observe that

P(Gc
a,ℓ,T ) = P

(
µ̂a,2ℓ + Zℓ +

√(
1

2× 2ℓ
+

α

ϵ× (2ℓ)2

)
β log(T ) ≥ µ1

)

= P

(
µ̂a,2ℓ + Zℓ −

√(
1

2× 2ℓ
+

α

ϵ× (2ℓ)2

)
β log(T ) ≥ µa + ϵ

)

for ϵ =
(
∆a − 2

√(
1

2×2ℓ
+ α

ϵ×(2ℓ)2

)
β log(T )

)
.

The idea is to choose ℓ big enough so that ϵ ≥ 0.
Let us consider the contrary, i.e.

ϵ < 0⇒ 2ℓ <
2β log(T )

∆2
a

(
1 + ∆a

√
α

ϵβ log(T )

)

⇒ 2ℓ <
2β

∆2
a

log(T ) + 2

√
βα

ϵ∆2
a

√
log(T )

Thus, by choosing

ℓ =

⌈
1

log(2)
log

(
2β

∆2
a

log(T ) + 2

√
βα

ϵ∆2
a

√
log(T )

)⌉



we ensure ϵ > 0. This also implies that

P(Gc
a,ℓ,T ) ≤ P

(
µ̂a,2ℓ + Zℓ −

√(
1

2× 2ℓ
+

α

ϵ× (2ℓ)2

)
β log(T ) ≥ µa

)
≤ 1

T β

The last inequality is due to Equation 11 of Lemma 12.
Step 2: The Regret Bound. Combining Steps 1 and 2, we get that

E[Na(T )] ≤
β

β − 3
+ 2ℓ+1 + T × 1

T β

≤ 8β

∆2
a

log(T ) + 8

√
βα

ϵ∆2
a

√
log(T ) +

2β

β − 3
.

Plugging this upper bound back in the definition of problem-dependent regret

RegT (AdaR-UCB, ν) ≤
∑

a:∆a>0

(
8β

∆a
log(T ) + 8

√
βα

ϵ

√
log(T ) +

2β

β − 3

)
.



C Linear Rényi DP Bandits
C.1 Basic Definitions of Optimal Design
Definition 13 (Optimal Design). Let A ⊂ Rd and π : A → [0, 1] be a distribution on A so that

∑
a∈A π(a) = 1. Let

V (π) ∈ Rd×d and f(π), g(π) ∈ R be given by

V (π) =
∑
a∈A

π(a)aaT , f(π) = log detV (π), g(π) = max
a∈A
∥a∥V (π)−1

• π is called a design
• The set Supp (π) ≜ {a ∈ π : π(a) ̸= 0} is called the core set of A
• A design that maximizes f is known as a D-optimal design
• A design that minimizes g is known as G-optimal design

Theorem 14 (Kiefer–Wolfowitz Theorem). Assume that A is compact and span(A) = Rd. The following are equivalent:
• π⋆ is a minimiser of g.
• π⋆ is a maximiser of f .
• g(π⋆) = d

Furthermore, there exists a minimised π⋆ of g such that |Supp (π)| ≤ d(d+1)
2

C.2 Concentration Inequalities
Let A1, . . . , At be deterministically chosen without the knowledge of XR1, . . . , Rt and π be an optimal design for A.
Let Vt ≜

∑t
s=1AsA

T
s =

∑
a∈ANa(t)aa

T be the design matrix, θ̂t = V −1
t

∑t
s=1AsRs be the least square estimate and

θ̃t = θ̂t + V −1
t

(∑
b∈Supp(π) bNb

)
where Nb ∼ N

(
0, 2αϵ

)
Theorem 15. For every a ∈ A and δ ∈ [0, 1], we have that

P

(∣∣∣〈θ̃t − θ⋆, a〉∣∣∣ ≥ gt
√
2 log

(
4

δ

)
+ g2t

√
2αd(d+ 1)

ϵ
log

(
4

δ

))
≤ δ

where gt = maxb∈A ∥b∥V −1
t

.

Proof. For every a ∈ A 〈
θ̃t − θ⋆, a

〉
=
〈
θ̂t − θ⋆, a

〉
+

∑
b∈Supp(π)

(
aTV −1

t b
)
Nb

=
〈
θ̂t − θ⋆, a

〉
+ Zt

where Zt ≜
∑

b∈Supp(π)

(
aTV −1

t b
)
Nb.

Step 1: Concentration of the least square estimate. Using Eq.(20.2) from Chapter 20 of (Lattimore and Szepesvári 2018),
we have that

P

(∣∣∣〈θ̂t − θ⋆, a〉∣∣∣ ≥ gt
√

2 log

(
4

δ

))
≤ δ

2

Step 2: Concentration of the additional Gaussian noise. On the other hand, we have that∣∣aTV −1
t b

∣∣ ≤ |V − 1
2

t a∥ |V − 1
2

t b∥ ≤ max
b∈Supp(π)

|b∥2
V −1
t

= g2t

using that |Supp (πℓ)| ≤ d(d+1)
2 , Nb ∼ N (0, 2αϵ ) and Properties 1 and 2 of Lemma 22, we get that

Zt is σt-subgaussian, where σt = g2t

√
αd(d+ 1)

ϵ

Using Lemma 21, we get that

P

(
|Zt| ≥ g2t

√
2αd(d+ 1)

ϵ
log

(
4

δ

))
≤ δ

2

Steps 1 and 2 together conclude the proof.



Corollary 16. Let β be a fixed confidence level. If we choose each action a ∈ A

Na(t) =

⌈
8dπ(a)

β2
log

(
4

δ

)
+

2dπ(a)

β

√
2αd(d+ 1)

ϵ
log

(
4

δ

)⌉
then, for t =

∑
a∈Supp(π)Na(t), we get that

P
(∣∣∣〈θ̃t − θ⋆, a〉∣∣∣ ≥ β) ≤ δ

Proof. We have that

Vt =
∑

a∈Supp(π)

Na(t)aa
T ≥ cV (π)

where c ≜ 8d
β2 log

(
4
δ

)
+ 2d

β

√
2αd(d+1)

ϵ log
(
4
δ

)
.

Which means that

g2t = max
b∈A
∥b∥2

V −1
t
≤ 1

c
max
b∈A
∥b∥2V (π)−1 =

g(π)

c
=
d

c

Which gives that

gt

√
2 log

(
4

δ

)
+ g2t

√
2αd(d+ 1)

ϵ
log

(
4

δ

)
≤

√
2d log

(
4
δ

)√
8d
β2 log

(
4
δ

) + d
√

2αd(d+1)
ϵ log

(
4
δ

)
2d
β

√
2αd(d+1)

ϵ log
(
4
δ

)
≤ β

2
+
β

2
= β

and conclude using Theorem 15.

C.3 Regret Analysis
Theorem 8. If rewards are in [0, 1], Algorithm 3 is (α, ϵ)-global RDP and with probability at least 1 − δ, the regret RT of
Algorithm 3 is upper bounded by

RT ≤ C1

√
dT log

(
k log(T )

δ

)
+ C2d

2

√
α

ϵ
log

(
k log(T )

δ

)
log(T )

where C1 and C2 are positive-valued universal constants.
If δ = 1

T , then E(RT ) ≤ C1

√
dT log(kT ) + C2

√
α
ϵ d

2 log(kT )
3
2

Proof. Step 1: Defining the good event E. Let

E ≜
∞⋂
ℓ=1

⋂
a∈Aℓ

{∣∣∣〈θ̃ℓ − θ∗, a〉∣∣∣ ≤ βℓ} .
Using Corollary 16, we get that

P(¬E) ≤
∞∑
ℓ=1

∑
a∈Aℓ

P
(∣∣∣〈θ̃ℓ − θ∗, a〉∣∣∣ > βℓ

)
≤

∞∑
ℓ=1

∑
a∈Aℓ

δ

kℓ(ℓ+ 1)
≤ δ

Step 2: Good properties under the event E. We have that under E

• The optimal arm a⋆ ∈ argmaxa∈A ⟨θ∗, a⟩ is never eliminated.

Proof. for every episode ℓ and b ∈ Aℓ, we have that〈
θ̃ℓ, b− a⋆

〉
=
〈
θ̃ℓ − θ⋆, b− a⋆

〉
+ ⟨θ⋆, b− a⋆⟩ ≤

〈
θ̃ℓ − θ⋆, b− a⋆

〉
≤
∣∣∣〈θ̃ℓ − θ∗, a⋆〉∣∣∣+ ∣∣∣〈θ̃ℓ − θ∗, b〉∣∣∣ ≤ 2βℓ



• Each sub-optimal arm a will be removed after ℓa rounds where ℓa ≜ min{ℓ : 4βℓ < ∆a}.

Proof. We have that 〈
θ̃ℓa , a

⋆ − a
〉
≥ ⟨θ⋆, a⋆⟩ − βℓa − ⟨θ⋆, a⟩ − βℓa
= ∆a − 2βℓa > 2βℓa

• for a ∈ Aℓ+1, we have that ∆a ≤ 4βℓ.

Proof. If ∆a > 4βℓ, then ℓ ≥ ℓa and arm a is already eliminated, i.e. a /∈ Aℓ+1

Step 3: Regret decomposition under E.
Fix ∆ to be optimized later.
Under E, each sub-optimal action a such that ∆a > ∆ will only be played for the first ℓ∆ rounds where

ℓ∆ ≜ min{ℓ : 4βℓ < ∆} =
⌈
log2

(
4

∆

)⌉
We have that

RT =
∑
a∈A

∆aNa(T )

=
∑

a:∆a>∆

∆aNa(T ) +
∑

a:∆a≤∆

∆aNa(T )

=

ℓ∆∧ℓ(T )∑
ℓ=1

∑
a∈Aℓ

∆aTℓ(a) + T∆

≤
ℓ∆∧ℓ(T )∑

ℓ=1

4βℓ−1Tℓ + T∆

where ℓ(T ) is the total number of episodes played until timestep T .
Step 4: Upper-bounding Tℓ and ℓ(T ) under E. We have that

Tℓ =
∑

a∈Supp(πℓ)

Tℓ(a)

=
∑

a∈Supp(πℓ)

⌈
8dπℓ(a)

β2
ℓ

log

(
4kℓ(ℓ+ 1)

δ

)
+

2dπℓ(a)

βℓ

√
2α

ϵ
d(d+ 1) log

(
4kℓ(ℓ+ 1)

δ

)⌉

≤ d(d+ 1)

2
+

8d

β2
ℓ

log

(
4kℓ(ℓ+ 1)

δ

)
+

2d

βℓ

√
2α

ϵ
d(d+ 1) log

(
4kℓ(ℓ+ 1)

δ

)
since βℓ+1 = 1

2βℓ and
∑ℓ(T )

ℓ=1 Tℓ = T , there exists a constant C such that ℓ(T ) ≤ C log(T ).
Which means that, for ℓ ≤ ℓ(T ), there exists a constant C ′ such that

log

(
4kℓ(ℓ+ 1)

δ

)
≤ C ′ log

(
k log(T )

δ

)
hence

Tℓ ≤
d(d+ 1)

2
+

8d

β2
ℓ

C ′ log

(
k log(T )

δ

)
+

2d

βℓ

√
2α

ϵ
d(d+ 1)C ′ log

(
k log(T )

δ

)
Step 5: Upper-bounding the regret under E.



Under E
ℓ∆∧ℓ(T )∑

ℓ=1

4βℓ−1Tℓ ≤
ℓ∆∧ℓ(T )∑

ℓ=1

8βℓ

(
d(d+ 1)

2
+

8d

β2
ℓ

C ′ log

(
k log(T )

δ

)
+

2d

βℓ

√
2α

ϵ
d(d+ 1)C ′ log

(
k log(T )

δ

))

≤ 4d(d+ 1) + 64dC ′ log

(
k log(T )

δ

)( ℓ∆∑
ℓ=1

2ℓ

)
+ 16(d+ 1)2

√
2α

ϵ
C ′ log

(
k log(T )

δ

)
ℓ(T )

≤ 4d(d+ 1) + 16dC ′ log

(
k log(T )

δ

)(
16

∆

)
+ 16(d+ 1)2

√
2α

ϵ
C ′ log

(
k log(T )

δ

)
ℓ(T )

≤ 4d(d+ 1) + C1d log

(
k log(T )

δ

)
1

∆
+ C2d

2

√
α

ϵ
log

(
k log(T )

δ

)
log(T )

All in all, we have that

RT ≤ 4d(d+ 1) + C2d
2

√
α

ϵ
log

(
k log(T )

δ

)
log(T ) + C1d log

(
k log(T )

δ

)
1

∆
+ T∆

Step 6: Optimizing for ∆. Taking ∆ =

√
C1d
T log

(
k log(T )

δ

)
, we get that

RT ≤ C1

√
dT log

(
k log(T )

δ

)
+ C2d

2

√
α

ϵ
log

(
k log(T )

δ

)
log(T )

Step 7: Upper bounding the expected regret. For δ = 1
T , we get that

E(RT ) ≤ (1− δ)RT (δ) + δT

≤ RT (δ) + 1

≤ C ′
1

√
dT log(kT ) + C ′

2

√
α

ϵ
d2 log(kT )

3
2



D Reward-Private Linear Contextual Rényi DP Bandits
D.1 Confidence bound for the private least square estimator
Theorem 17. Let δ ∈ (0, 1). Then, with probability 1−O(δ), it holds that, for all t ∈ [1, T ],

∥θ̃t − θ⋆∥Vt ≤ β̃t
where

β̃t = βt +
γt√
t

such that

βt = O
(√

d log(t)
)

and γt = O
(√

α

ϵ
d log(t)

)
and βt and γt are increasing in t.

Proof. Step 1: Decomposing θ̃t − θ⋆. We have that

θ̃t − θ⋆ = V −1
t

 t∑
s=1

AsRs +

ℓ(t)∑
m=1

Ym

− θ⋆
= V −1

t

 t∑
s=1

As(A
T
s θ

⋆ + ηs) +

ℓ(t)∑
m=1

Ym

− θ⋆
= V −1

t

(Vt − λId)θ⋆ +
t∑

s=1

Asηs +

ℓ(t)∑
m=1

Ym

− θ⋆
= V −1

t

St +

ℓ(t)∑
m=1

Ym − λθ⋆


∥θ̃t − θ⋆∥Vt
= ∥St +Nt − λθ⋆∥V −1

t

where St ≜
∑t

s=1Asηs, Nt =
∑ℓ(t)

m=1 Ym ∼ N
(
0, 2αℓ(t)ϵ Id

)
and ℓ(t) is the number of episodes until time-step t (number

of updates of θ̃.
Step 2: Defining the good event E. Let

E1 =

{
∀t ∈ [1, T ] : ∥St∥V −1

t
≤

√
2 log

(
1

δ

)
+ log

(
det(Vt)

λd

)}
,

E2 =

{
∀t ∈ [1, T ] : λmin(Gt) ≥

λ0t

4
− 8 log

(
t+ 3

δ/d

)
− 2

√
t log

(
t+ 3

δ/d

)}
,

E3 =

∀t ∈ [1, T ] : ∥Nt∥ ≤

√√√√2αℓ(t)

ϵ

(
d+ 2

√
d log

(
T

δ

)
+ 2 log

(
T

δ

))
where Gt ≜

∑t
s=1AsA

T
s , and let

E = E1 ∩ E2 ∩ E3 (13)

Step 3: Showing that E happens with high probability.

For event E1:

By a direct application of Lemma 26, we get that
P(¬E1) ≤ δ.



For event E2:

By a direct application of Lemma 27, we get that
P(¬E2) ≤ δ.

For event E3:

Since Nt ∼ N
(
0, 2αℓ(t)ϵ Id

)
, a direct application of Lemma 24 gives that

P(¬E3) ≤ δ.

All in all, we get that P(E) ≥ 1− 3δ.
Step 4: Upper bounding ∥θ̃t − θ⋆∥Vt under E. We have that,

∥θ̃t − θ⋆∥Vt ≤ ∥St∥V −1
t

+ ∥Nt∥V −1
t

+ ∥λθ⋆∥V −1
t

Under E, Vt ≥ (λ+ λmin(Gt))Id ≥ λId.
Which gives that, under E,

∥Nt∥V −1
t
≤ 1√

λ+ λmin(Gt)
∥Nt∥

≤

√√√√√√
2αℓ(t)

ϵ

(
d+ 2

√
d log

(
1
δ

)
+ 2 log

(
T
δ

))
λ+ λ0t

4 − 8 log
(

t+3
δ/d

)
− 2

√
t log

(
t+3
δ/d

) ≜
γt√
t

and

∥St∥V −1
t

+ ∥λθ⋆∥V −1
t
≤

√
2 log

(
1

δ

)
+ log

(
det(Vt)

λd

)
+

λ√
λ
∥θ⋆∥

=

√
2 log

(
1

δ

)
+ log

(
det(Vt)

λd

)
+
√
λ∥θ⋆∥ ≜ βt

So, under E, we have that

∥θ̃t − θ⋆∥Vt
≤ β̃t

where

β̃t = βt +
γt√
t

Step 5: Upper bounding det(Vt) and ℓ(t).
Under E, using the determinant trace inequality, we have that

det(Vt) ≤
(
1

d
trace(Vt)

)d

≤
(
dλ+ t

d

)d

which gives that

βt =

√
2 log

(
1

δ

)
+ d log

(
1 +

t

λd

)
+
√
λ∥θ⋆∥

We can say that βt = O(
√
d log(t)).

On the other hand, after each episode, the det(Vt) is, at least, increased multiplicatively by (1 + C), which means that under
E, we have that

(1 + C)
ℓ(t)

det(V0) ≤ det(Vt) ≤
(
λ+

t

d

)d



which gives that

ℓ(t) ≤ d

log(1 + C)
log

(
1 +

t

λd

)
so ℓ(t) = O(d log(t)) and γt = O

(√
α
ϵ d log(t)

)
Step 6: Putting everything together.

Under event E, we have that ∥θ̃t − θ⋆∥Vt
≤ β̃t where β̃t = βt +

γt√
t
, βt = O(

√
d log(t)) and γt = O

(√
α
ϵ d log(t)

)
such

that βt and γt are increasing.

D.2 Regret Analysis
Theorem 10. For rewards in [0,1], Algorithm 4 is (α, ϵ)-global RDP and with probability at least 1 − O(δ), the regret of
Algorithm 4 is upper-bounded by

O
(
d log(T )

√
T
)
+O

(√
α

ϵ
d2 log(T )2

)
Proof. Let E be the event defined in equation 13.

Step 1: Regret decomposition.

Let A⋆
t = argmaxa∈At ⟨θ⋆, a⟩.

We have that

RT =

T∑
t=1

rt, where rt = ⟨θ⋆, A⋆
t −At⟩

Step 2: Instantaneous regret upper bound, under E.
At step t, let τt be the last step where θ̃ was updated.
Let Ct = {θ ∈ Rd : ∥θ − θ̃t−1∥Vt−1 ≤ β̃t−1} and UCBt(a) = maxθ∈Ct ⟨θ, a⟩.
Also, define θ̆τt = argmaxθ∈Cτt

⟨θ,At⟩ so that UCBτt(At) =
〈
θ̆τt , At

〉
.

Finally, Line 11 of Algorithm 4 could be re-written as At = argmaxa∈At
UCBτt(a).

Under E, we have that

rt = ⟨θ⋆, A⋆
t −At⟩

(a)

≤
〈
θ̆τt − θ⋆, At

〉
(b

≤ ∥θ̆τt − θ⋆∥Vt−1
∥At∥V −1

t−1

(c)

≤

√
det(Vt−1)

det(Vτt)
∥θ̆τt − θ⋆∥Vτt

∥At∥V −1
t−1

(d)

≤
√
1 + C(2β̃τt)∥At∥V −1

t−1

where:
(a) Under E, θ⋆ ∈ Cτt and ⟨θ⋆, A⋆

t ⟩ ≤ maxθ∈Cτt
⟨θ,A⋆

t ⟩ = UCBτt(A
⋆
t ) ≤ UCBτt(At) =

〈
θ̆τt , At

〉
.

(b) By the Cauchy-Schwartz inequality.
(c) By Lemma 28.
(d) By definition of τt and Line 6 of Algorithm 4 , we have that det(Vt−1) ≤ (1 + C) det(Vτt) and under E, θ⋆ ∈ Cτt , so
∥θ̆τt − θ⋆∥Vτt

≤ 2β̃τt .
We also have that rt ≤ 2 and β̃τt ≤ βT + γT√

τt
, which gives

rt ≤ 2
√
1 + CβT

(
1 ∧ ∥At∥V −1

t−1

)
+ 2
√
1 + C

γT√
τt

(
1 ∧ ∥At∥V −1

t−1

)



Step 3: Upper-bounding the regret, under E.
Under E, we have that

RT =

T∑
t=1

rt

≤ 2
√
1 + CβT

T∑
t=1

(
1 ∧ ∥At∥V −1

t−1

)
+ 2
√
1 + CγT

T∑
t=1

1
√
τt

(
1 ∧ ∥At∥V −1

t−1

)

≤ 2
√
1 + CβT

√√√√T

T∑
t=1

1 ∧ ∥At∥2V −1
t−1

+ 2
√
1 + CγT

√√√√( T∑
t=1

1

τt

)(
T∑

t=1

1 ∧ ∥At∥2V −1
t−1

)
(14)

where the last inequality is due to the Cauchy-Schwartz inequality.
Step 4: The elliptical potential lemma.

We use that 1 ∧ x ≤ log(1 + x) and det(Vt) = det(Vt−1)
(
1 + ∥At∥2Gt−1(λ)−1

)
to have that

T∑
t=1

(
1 ∧ ∥At∥2V −1

t−1

)
≤ 2

T∑
t=1

log
(
1 + ∥At∥2V −1

t−1

)
= 2 log

(
det(VT )

det(V0)

)
≤ 2d log

(
1 +

T

λd

)
(15)

often known as the elliptical potential lemma.
Step 5: Upper-bounding the length of every episode under E.

Episode ℓ starts at tℓ and ends at tℓ+1 − 1, so we have that

det(Vtℓ+1−1)

det(Vtℓ)
≤ 1 + C (16)

On the other hand,

det(Vtℓ+1−1)

det(Vtℓ)
=

tℓ+1−1∏
t=tℓ+1

(
1 + ∥At∥2V −1

t−1

)
(17)

Under E, we use that

Vt−1 ≤ (λ+ λmax (Gt−1)) Id ≤ (λ+ t− 1) Id

since λmax (Gt−1) ≤ trace(Gt−1) ≤ t− 1.
which gives that

∥At∥2V −1
t−1

≥ 1

λ+ t− 1
Plugging in Equation 17, we get that

det(Vtℓ+1−1)

det(Vtℓ)
≥

tℓ+1−1∏
t=tℓ+1

(
1 +

1

λ+ t− 1

)

=

tℓ+1−1∏
t=tℓ+1

(
λ+ t

λ+ t− 1

)
=
λ+ tℓ+1 − 1

λ+ tℓ

≥ 1

λ+ 1

tℓ+1

tℓ

where the last inequality uses that tℓ ≥ 1 and λ ≥ 1.
Finally using the upper bound of Equation 16, we get that

tℓ+1

tℓ
≤ (1 + C)(1 + λ)



Which gives that

T∑
t=1

1

τt
=

ℓ(T )∑
ℓ=1

tℓ+1−1∑
t=tℓ

1

tℓ
=

ℓ(T )∑
ℓ=1

tℓ+1 − tℓ
tℓ

≤ (1 + C)(1 + λ)ℓ(T ) (18)

Step 6: Putting everything together.
Plugging the upper bounds of Equation 15 and 18 in the regret upper bound of Equation 14, we get that

RT ≤ 2
√
1 + C

√
2d log

(
1 +

T

λd

)(
βT
√
T + γT

√
(1 + C)(1 + λ)ℓ(T )

)
We finalize by using that

βT = O
(√

d log(T )
)
, γT = O

(√
α

ϵ
d log(T )

)
and ℓ(T ) = O (d log(T ))

We get that

RT ≤ O
(
d log(T )

√
T
)
+O

(√
α

ϵ
d2 log(T )2

)

D.3 Rectifying LinPriv Regret Analysis
(Neel and Roth 2018) propose LinPriv: Reward-Private Linear UCB, an ϵ-global DP linear contextual bandit algorithm. The
context is assumed to be public but adversely chosen. The algorithm is an ϵ-global DP extension of OFUL, where the reward
statistics are estimated, at each time-step and for every arm, using a tree-based mechanism (Dwork et al. 2010b; Chan, Shi, and
Song 2011).

Theorem 5 in (Neel and Roth 2018) claims that the regret of LinPriv is of order

Õ
(
d
√
T +

1

ϵ
Kd log T

)
.

We believe there is a mistake in their regret analysis. In the proof of Theorem 5, they say that
"The crux of their analysis is actually the bound

∑n
t=1 ∥xi,t∥V −1

i,t
≤ 2d log

(
1 + n

λd

)
. "

However, we believe that the result they are citing from (Abbasi-Yadkori, Pál, and Szepesvári 2011) is erroneous. The correct
one is

n∑
t=1

∥xi,t∥2V −1
i,t

≤ 2d log
(
1 +

n

λd

)
,

which is known as the elliptical potential lemma ( Eq. (15)).
To get the sum, a Cauchy-Schwartz inequality is generally used which leads to

n∑
t=1

∥xi,t∥V −1
i,t
≤

√√√√n

n∑
t=1

∥xi,t∥2V −1
i,t

≤
√
2nd log

(
1 +

n

λd

)
After n is replaced by T

K , an additional multiplicative
√
T should appear in the private regret.

Thus, the rectified regret should be Õ
(
d
√
T + 1

ϵKd
√
T
)

.

Remark 4. In the proof of Theorem 5 (Neel and Roth 2018), to bound the sum
∑
wi,t ≤ O(

√
log T )

∑n
t=1 ∥xi,t∥V −1

i,t
, they use

the correct bound on the sum
∑n

t=1 ∥xi,t∥V −1
i,t

with the
√
T appearing. However, they misuse it for the private part.



E Existing Technical Results and Definitions
In this section, we summarise the existing technical results and definitions required to establish our proofs.
Lemma 18 (Post-processing Lemma (Proposition 2.1, (Dwork, Roth et al. 2014))). If a randomised algorithm A satisfies
(ϵ, δ)-Differential Privacy and f is an arbitrary randomised mapping defined on A’s output, then f ◦ A satisfies (ϵ, δ)-DP.
Lemma 19 (Markov’s Inequality). For any random variable X and ε > 0,

P(|X| ≥ ε) ≤ E[|X|]
ε

.

Definition 20 (Subgaussianity). A random variable X is σ-subgaussian if for all λ ∈ R, it holds that

E[exp(λX)] ≤ exp(λ2σ2/2)

Lemma 21 (Concentration of Subgaussian random variables). If X is σ-subgaussian, then for any ϵ ≥ 0,

P (X ≥ ϵ) ≤ exp

(
− ϵ2

2σ2

)
Lemma 22 (Properties of Subgaussian random variables). Suppose that X1 and X2 are independent and σ1 and σ2-subgaussian,
respectively, then
1. cX is |c|σ-subgaussian for all c ∈ R.
2. X1 +X2 is

√
σ2
1 + σ2

2-subgaussian.
3. If X has mean zero and X ∈ [a, b] almost surely, then X is b−a

2 -subgaussian.
Lemma 23 (Theorem 7.8 of (Zhang 2011)). If A ≥ B ≥ 0, then
• det(A) ≥ det(B)
• A−1 ≤ B−1 if A and B are non-singular.

Lemma 24 (Concentration of the χ2-distribution, Claim 17 of (Shariff and Sheffet 2018)). If X ∼ N (0, Id) and δ ∈ (0, 1), then

P

(
∥X∥2 ≥ d+ 2

√
d log

(
1

δ

)
+ 2 log

(
1

δ

))
≤ δ

Lemma 25 (Concentration of top singular value, Section 4.2 of (Shariff and Sheffet 2018)). If M ∈ Rd×d such that Mi,j
iid∼

N (0, 1), ∥M∥ ≜ top singular value of M and δ ∈ (0, 1), then

P
(
∥M∥ > 4

√
d+ 1 + 2 log

(
1

δ

))
≤ δ

Lemma 26 (Theorem 20.4 of (Lattimore and Szepesvári 2018)). Let the noise ρt be conditionally 1-subgaussian (conditioned
on A1, X1, . . . , At−1, Xt−1, At), St =

∑t
s=1Asρs and Vt(λ) = λId +

∑t
s=1AsA

T
s . Then, for all λ > 0 and δ ∈ (0, 1),

P
(
∃t ∈ N : ∥St∥2Vt(λ)−1 ≥ 2 log

(
1

δ

)
+ log

(
det(Vt(λ))

λd

))
≤ δ

Lemma 27 (Lemma 2, Equation (6) of (Gentile, Li, and Zappella 2014)). Let, at each round, At = {at1, . . . , atkt
} be generated

i.i.d (conditioned on kt and the history Ht) from a random process A such that
• ∥A∥ = 1
• E[AAT ] is full rank, with minimum eigenvalue λ0 > 0
• ∀z ∈ Rd, ∥z∥ = 1, the random variable (zTA)2 is conditionally subgaussian, with variance

ν2t = V
[
(zTA)2 | kt, Ht

]
≤ λ20

8 log(4kt)

Then

P

(
∃t ∈ N : λmin

(
t∑

s=1

AsA
T
s

)
≤ λ0t

4
− 8 log

(
t+ 3

δ/d

)
− 2

√
t log

(
t+ 3

δ/d

))
≤ δ

Lemma 28 (Lemma 12 in (Abbasi-Yadkori, Pál, and Szepesvári 2011)). Let A, B and C be positive semi-definite matrices such
that A = B + C. Then, we have that

sup
x ̸=0

xTAx

xTBx
≤ det(A)

det(B)


