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Abstract—This paper presents a novel search metaheuristic
inspired from the physical interpretation of the optic flow
of information in honeybees about the spatial surroundings
that help them orient themselves and navigate through search
space while foraging. The interpreted behavior combined with
the minimal foraging is simulated by the artificial bee colony
algorithm to develop a robust search technique that exhibits ele-
vated performance in multidimensional objective space. Through
detailed experimental study and rigorous analysis, we highlight
the statistical superiority enjoyed by our algorithm over a wide
variety of functions as compared to some highly competitive
state-of-the-art methods.

Index Terms—Artificial bee colony algorithm, foraging, global
optimization, locomotion, metaheuristics, optic flow model,
saccadic flight, swarm.

I. Introduction

SCIENTIFIC communities believe that honeybee foragers
are quick in associative learning [1], [2]. They can save

energy during their search for food by not repeating move-
ments to already visited food sites, unless they get suffi-
ciently rewarded by the presence of reasonable food content.
By drawing an analogy of this minimal foraging model of
honeybees, we can design metaheuristics that will efficiently
utilize computational resources. One of the foremost steps that
was taken in this direction was that by Sato and Hagiwara
[3] who proposed the first algorithm based on bees foraging
called the Bee System (BS). Later on, more in-depth studies
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were conducted on the dance and communication, collective
decision, task allocation, mating, nest site selection, marriage,
foraging, floral and pheromone laying, and navigation be-
haviors of the bees swarm. These led to the development
of algorithms based on bee swarm intelligence (SI) [4], for
example, virtual bee, BeeAdHoc, the marriage in honeybees,
the BeeHive, bee colony optimization, etc. The turning point
in the recognition of the bee SI algorithms came with the
proposal of the Artificial Bee Colony (ABC) algorithm [5] by
simulating the foraging model of bees. It accounts for more
than half of the research work involving bee colony-based
metaheuristics. Interested readers can refer to the survey by
Karaboga et al. [4] to see the works involving ABC algorithm.

However, ABC too has its own drawbacks. Biological find-
ings [1], [2], [6] suggest that the ability of honeybees to forage
is dependent on their locomotion ability in the search space.
This, in turn, depends on certain biotic factors, primarily on the
flow of visual information from the surroundings. Locomotion
is the basic life-supporting mechanism that enables a living
being to travel in its environment, escape from potential
danger, and most importantly to collect food. As a matter of
fact, most of our behaviors are highly dependent on our ability
to see, and most organisms are blessed with visual control
movement maneuvers (saccadic flight) that help them adjust
their motion to avert collision, escape encounter with potential
threat, instantiate reflexive movement, and so on.

The classical ABC [5] treats a set of search points as food
sources and proceeds by changing the position of the search
points just like a forager changing its position to find better
food sources. But this approach depends only on the position
of food sources and their fitness value. In contrast to the
biological factors that form the actual basis of decision making
in the foragers’ food site selection, basic ABC implementation
neglects most of such criteria. One such important factor is the
ratio of fitness value T (nectar content of food sources) to the
distance E (traveled by foragers). In addition, the movement
of the foragers is guided by certain geo-spatial factors, which
are neglected by the ABC algorithm. Looking at the broader
picture, we see that there has been scarcely any attempt to
unify the behavioral characteristics of the bee SI under one
roof. Although it is practically not possible to replicate all
the characteristics, a subset of these characteristics, such as
communication, collective decision, task allocation, nest site
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selection, foraging, and navigation behaviors of the swarm,
when properly implemented in a synchronous manner, can lead
to the devisal of a more efficient means of problem solving as
compared to its predecessors.

Motivated by these findings, we propose an optimization
technique called spatially informative perturbation-based ABC
algorithm with saccadic flight (SiPABC−Sf ), based on the
optic flow [6] of geo-spatial information about the surrounding
location in the foragers. The SiPABC−Sf synergizes the basics
of the bee foraging model and associative learning with the
locomotion-based behaviors that have their sources in the optic
flow of dynamic data relative to its position in the environment.
Note that the source of the synchronism implemented by our
algorithm keeps true to its starting point—vision, the ability
to see. SiPABC−Sf makes use of locomotion along intelligent
directions in the search space via saccadic flight strategy [7],
which is inspired from the sharp maneuvers of the head and
the body employed by honeybees to familiarize themselves
with the spatial layout of the surroundings. The steps of the
algorithm can be broadly classified into two simple stages. The
first stage involves the selection of guided locomotion modes
that diversify the local search process based on color learning
in the foragers. It is simulated by an initial exposure to a
specific color corresponding to a locomotion mode. Then, it
adapts itself to the suitable mode through associative learning
implemented mathematically. The second stage is involved
with the processing of neighborhood information. The sac-
cadic flight strategy is based on an evaluation of strategically
effective sites for search as modeled by its two components:
1) tradeoff function and 2) correlative neurological model
based on the combined feedback arising from the centering
response and the directionally selective motion response.

The rest of the paper is organized as follows. Section II
discusses the background details of the bee colony to assist
in understanding their organization, mode of communication,
and related studies on their observed behavior. Section III pro-
vides an overview of the classical ABC algorithm. Section IV
presents the SiPABC−Sf algorithm in sufficient detail, out-
lining the functional philosophy of the integrated approaches
undertaken. Section V discusses the experimental results
of comparing the performance of our algorithm. Finally,
Section VI concludes the paper unraveling some important
future avenues of research. To gain better understanding,
interested readers can refer to the supplementary file.

II. Background Details: Foraging, Learning, and

Locomotive Behavior in Honey Bees

An insect colony, although made up of many identical
members, can function cooperatively in a synchronous manner
as a superorganism [8]. The degree of their synchronism,
cooperation, task force division, and dynamic interaction go a
long way in ensuring their survival just like the cells in our
body.

A. Foraging and Communication

1) Food source: The initial search for food begins by
seeking trial food sources, which are gradually discarded

during the ongoing search for fitter ones. Depending on
external parameters, such as distance, nectar concentra-
tion, and ease of extraction, the fitness of a food source
is judged. The basic idea is to memorize the location of
the food source if it is found to be adequately rewarding
in nature.

2) Unemployed Foragers: The foraging action begins with
the bees having no prior knowledge about the food site.
A bee is categorized as a scout bee if it searches or
a recruit who attends to a bio-communication mode
called the waggle dance and goes to the site using the
information conveyed to it.

3) Employed Foragers: The unemployed foragers, on en-
countering a food source, are employed at it and start
performing exploitation. While loading nectar, a forager
memorizes the information like distance and location.
It returns back to the nest and deposits the collected
nectar. Following the unloading process, it can choose to
further exploit the site, abandon the source found if it is
exhausted, or recruit taskforce by conveying information
about the food source to the fellow foragers via waggle
dance.

Communication [9] is of absolute necessity to transmit in-
formation about resources. Waggle dance [10] is one such
information-sharing mechanism through which the foragers
can share the details regarding the direction and distance of
the nectar site from the hive with the dance duration being
directly proportional to the distance. The to-and-fro commute
between the food source and the hive can be executed by the
bees successfully by map-oriented navigation, as pointed out
in [11] regarding spatial memory of the path traversed.

B. Color Learning in Bees

Austrian zoologist Karl von Frisch [12] was the first person
to have vouched for the presence of color vision in honeybees
after an extensive experimental analysis. Later on, Menzel
carried out the work started by von Frisch and conducted tests
to understand the color learning and visual memory. It was
affirmed that the bees can retain past information about the
color of the source from which they got rewarded for a span of
a few days after the initial exposure. He also concluded about
the preferential ease of color learning in bees with regard to
the violet color since most of the flowers are identical to it.
The visual memory has been put to use by demarcating the
colors as locomotive indicators associated with a given mode
of locomotion. The interlinking between color learning and
visual memory has been utilized in our algorithm design.

C. Correlative Representation of Elementary Motion
Detection

Optic flow of spatial information takes place when the bees
traverse through the environment during locomotion and it is
continually analyzed by the parallel motion detectors associ-
ated with the neural system of the bees. The data assimilating
from the vast visual field are combined and analyzed in the
presence of photoreceptors. The primary purpose of the motion
detectors is to detect local motion information during the
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Fig. 1. Representation of the correlative optic model for motion detection.
(a) Biological diagram. (b) Schematic diagram.

propagation and generate a corrective yaw that compensates
for the unwanted deviations that the bees may encounter during
their flight, so that they do not divert from their intended
course. This compensatory mechanism is directionally sensi-
tive and is based on the optometric reception of signals. We
present a simple schematic diagram in Fig. 1 to explain the
course of neural transmission from the photoreceptors to the
brain. Correlation between the received signals helps to relate
between two distinct points based on location or time, which
are essential factors in the locomotion. In this case, we use
cross correlation to detect the similarity between the signals
from two receptors. Cross correlation between two continuous
functions f1 (t) and f2 (t) is mathematically defined as

f1 (t)∗ f2 (t) =

+∞∫
−∞

f ∗
1 (τ) .f2 (t + τ)dτ. (1)

In Fig. 1(b), the temporal filters R1 and R2 process the optic
signals from the photoreceptors A1 and A2, respectively. A
simple delay-and-multiply mechanism works here. The output
of filter R1, after passing through the temporal filter X1, is
multiplied (cross correlated) with the signal from adjacent
filter R2, after it passes through an additional filter Y 2. As-
sumption is made that the Y filters are slower in signal filtering
than X filters. This leads to a time lag between the incident
signals, hence the need for cross correlation arises. A supposed
visual pattern moving from left to right will induce signals in
receptor A1 and A2 with A1 leading A2. The propagation delay
in filter Y 2 being more, we get temporal coincidence between
signals traversing the path A1-R1-X1 and A2-R2-X2 resulting
in positive response [indicated by + in Fig. 1(b)]. Similar
explanation can be given for negative response resulting from
a visual pattern moving from right to left. The signals from
both the paths, after being correlated, are summed and passed
to the elementary motion detector (EMD). The outcome from
the EMD is the directionally selective motion response. This
relative strength forms the basis of the saccadic flight strategy.

D. Centering Response in Bees

Honeybees can successfully balance the distance be-
tween the flanking sides while traversing through a gap.
Srinivasan et al. [13] studied the centering response through

Fig. 2. Observed torque response in the bees versus (a) angular velocity
V (degrees−1) and (b) temporal frequency F temporal (Hz) as shown by
Srinivisan et al. [13].

an elaborate setup. It was concluded that the bees avert
mid-fight collisions by balancing angular speeds apparently
subtended by the walls. Further investigation revealed that the
balancing takes place independently of the geometrical pattern
(spatial-frequency variation) exhibited by both the sides. The
centering response is insensitive to directions while the pho-
toreceptors’ response is directionally sensitive in nature and
can be implemented in optimization theory to avoid trapping
at local optima.

E. Neural Response to Spatial and Temporal Change in
Physical Environment in Bees

Srinivasan et al. [14] experimentally investigated the op-
tometric response of a bee suspended in a drum and sub-
jected it to rotation of the black and white strip lines in
the inner lining of drum. The results have shown that the
torque response for the variation of the angular velocity of
the drum [as shown in Fig. 2(a)]) is a bell-shaped curve. The
peak response obtained varies significantly with the change
in the angular velocity of the drum, sometimes exhibiting a
short tail (low velocity) and at times exhibiting an indented
tail (high velocity). This variation in response can be better
approximated by using Cauchy distribution (11), which has a
long tail compared to the normal distribution. A similar plot
of the variation of the torque response is shown in Fig. 2(b)
with the temporal frequency results in an identical Gaussian
curve (9) but with minimal displacement with the change in the
frequency. It must be noted that the variation is with respect
to the logarithmic scale. On linearizing them, an exponential
variation of the mean is to be included [see (12) and (13)].

F. Saccadic Flight Strategy

Saccade refers to the rapid succession of individual move-
ments of the eye, head, or other body parts that help in
extracting the essential information about the spatial structure
of environment. It helps in creating a map of the surrounding,
and aids in mental analysis. It can be analogously inferred that
just like polyatomic molecules most of the flying insects have
six degrees of freedom: three translational and three rotational.
This complicates the optic flow model and the saccadic flight
strategy may help in segregating the translational movement
signals from the rotational ones. The pattern of movements
displayed by the honeybees help them to obtain a clearer
picture of the newly found food sites. They memorize such
locations and convey these to the waiting foragers in the hive.
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The aforementioned details are fundamental to the locomo-
tion in bees and in turn to the proposed algorithm.

III. Classical ABC Algorithm

The classical ABC algorithm [15], [16] was proposed and
investigated for the derivative free optimization of nonlinear,
nonconvex, and multimodal objective functions. The steps of
the ABC algorithm are outlined as follows.

A. Initialization of Food Source

ABC begins its search for the optimal solution by randomly
initializing food sources, θC

i representing the ith member, in the
real parameter space �D. These trial solutions are randomly
initialized within the solution space as

θC
ij = θj,min + randj (0, 1) × (

θj,max − θj,min
)

(2)

where j = 1, 2, .. D and i = 1, 2, . . . , SN for a
D-dimensional problem employing SN number of sources in
the current cycle C. Initial solutions spread across the solution
space defined by the bounds θmax=

(
θ1,max,θ2,max,...θD,max

)
and θmin=

(
θ1,min,θ2,min,...θD,min

)
. The trial counter of each

food source is set to 0 after the initialization process. The
termination criterion is reached when the value of C reaches
the maximum cycle number MCN or the error value attained
is less than a predefined threshold. The former is used here.

B. Employer Bee Phase

In this phase, the employed foragers seek a food source
with the intention of exploiting it. It is a customary scheme
to set only one forager for a given food source such that
bijective mapping occurs. The forager exploits the local site
and modifies it position around the source by changing a single
positional parameter as

vC
ij = θC

ij + φij×
(
θC
ij − θC

kj

)
(3)

where i is the running index and k can take any values from
{1, 2, ...., SN} \{i} with φij being a random number uniformly
distributed in the range (−1, 1). φij determines the degree
of positional perturbation of the forager. In the cases of trial
solutions overshooting the bounds, they are reinitialized within
the bounds. The foragers continually analyze their near vicinity
in the search of better food source. They evaluate the fitness
based on the nectar content (fitness value). Similarly ABC uses
a fitness function formulated (for minimization problems) as

fitnessi =

{
1
/

(1 + fi) if fi≥0
1 + abs (fi) iffi<0

}
(4)

where fi is the actual objective (or cost) function to be
minimized. For maximization purpose, we can directly set
fitnessi equal to fi. If a food source of higher fitness is found,
then greedy selection occurs to replace the present position
θC
i of its employed food source by the updated position vC

i .
However, in case of no improvement in fitness value, the trial
counter is increased by 1 to indicate worsening fitness value.

C. Onlooker Bee Phase

The nectar-collecting foragers after loading nectar travel
back to the hive to unload it. In the process, they may
communicate the information about the newly found sources
to the bees waiting in the hive. Depending on the fitness value
conveyed by the waggle dancers, the onlookers select a single
food site. This is done by the roulette wheel process where the
fitter food sources have more chances of being selected than a
less fit one. The probability of getting selected is proportional
to the fitness value and is calculated as

pi =
fitnessi

SN∑
i=1

fitnessi

. (5)

Again, a similar positional modification as in (3) occurs
followed by the greedy selection and the trial counter update.
This process is continued until all the onlookers have been
allotted food sources.

D. Scout Phase: Abandonment Criteria

It is natural for a food source to become exhausted after
being repeatedly exploited by the foragers. To avoid making
further travels to an exhausted food source, the employed
bee abandons it and behaves as a scout bee that performs
random walks in the search space to locate a new food source.
This analogy is mapped by a trial counter, which is increased
by 1 each time the forager is unable to improve upon its
previous value. Once it reaches a threshold value defined by
the parameter limit, it is thought to be exhausted and the
food source is reinitialized randomly and the corresponding
trial counter is reset to 0. The parameter limit significantly
affects the performance of the ABC algorithm. Small value
of parameter limit is identical to premature reinitialization
while a considerably larger value leads to wastage of fitness
evaluations (FEs) in computing fitness of exhausted food
sources with no signs of development.

IV. SIPABC− SF Algorithm

This section describes the proposed algorithm in sufficient
detail. In Section IV-A, we discuss the locomotion modes that
have been implemented in the algorithm. This is followed by a
discussion in Section IV-B on the associative-color learning in
honeybees that helps to link the locomotion schemes with the
color pool. In Section IV-C, we elaborate the saccadic flight
strategy and its implementation. Finally, in Section IV-D, our
algorithmic model is described along with the pseudocode.

A. Locomotion Schemes: Analysis of Positional Modification

Classical ABC algorithm carries out modification of the
forager’s position according to (3) whereby a component
of a randomly sampled displacement vector is added to the
position vector of the presently employed food source. This
rectilinear locomotion greatly inhibits the solution domain that
is explored. However, it is imperative that the perturbation
operation must distribute the search agents over a greater
region of the solution space. As depicted in Fig. 3, we see
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Fig. 3. Search mechanism employed by ABC algorithm. (a) Rectilinear
propagation of search agents (foragers) in search space. (b) Narrow exploration
range of ABC algorithm search space.

that the foragers move in straight lines. This causes the areas
marked in blue, in Fig. 3(b), to remain mostly unexplored.
Even to explore this region, say to reach a point in the blue
region, it requires a minimum of two consecutive rectilinear
perturbations and leads to the wastage of one extra FE. Akay
and Karaboga proposed a measure to tackle this in [17].
However, there was little effort to diversify the search process.
Diversification does not strictly apply to population diversity
only; it can refer to the varying modes by which we perturb
the solutions (forager’s position) in the solution space as in
many EAs [18], [19].

Inspired by this, we use certain locomotion modes to
scatter the foragers to ensure improved search. These are
but simple modifications on the original ABC scheme. They
are incorporated in the algorithmic framework based on the
thumb rule that the bees change their position and orientation
during foraging; they adopt a variety of motions both rotational
and translation. For simplicity, we mimic the translational
components through the varying modes of locomotion. The
formulas and associated nomenclatures are as follows.

1) Normal spatial locomotion (NRm-SPL): The normal
spatial locomotion is the originally proposed scheme
which is same as (3). The forager undergoes a trans-
lation directed along the displacement vector from the
employed food source θC

i to a neighboring one.

vC
ij := NRm − SPL

(
θC
ij

)
= θC

ij + φij×
(
θC
ij − θC

kj

)
(6a)

where j is the parameter to be perturbed. Modify-
ing the NRm − SPL, we define a set of locomotion
modes.

2) Explorative spatial locomotion (ER-SPL): This mode,
as the name suggests, ensures greater exploration of the
search space. Only difference is in the random manner
in which the mutually exclusive food sources are chosen
with respect to the employed food source θC

i .

vC
ij := ER − SPL

(
θC
ij

)
= θC

k1j
+ φij×

(
θC
k2j

− θC
k3j

)
. (6b)

3) Exploitative spatial locomotion (EX-SPL): The EX-SPL
spatial locomotion is a greedy scheme suitable for
unimodal functions. It displaces the foragers from its
present position and attracts them toward the fittest food
source θC

fit thereby enhancing the rate of convergence

vC
ij := EX − SPL

(
θC
ij

)
= θC

ij + φij×
(
θC
fitj − θC

ij

)
. (6c)

4) Modified approaches: Using the basic modes,
NRm-SPL, ER-SPL, and EX-SPL, we can employ
modified locomotion modes. The relative focus on
exploration and exploitation is brought about in two
ways, either by adding an extra directional component
(with an apostrophe ′ in the name) during positional
perturbation or by decentralizing the attraction from
the fittest food source to the top N%. The same
nomenclature is applied here with only the case of the
letters x and r denoting the relative tendency to exploit
or to explore. For instance, with X indicates high affinity
for exploitation while x refers to reduced tendency to
exploit. Same explanation goes for exploration.

EXr−SPL
(
θC
i

)
: This locomotion mode is less greedy than

the EX − SPL scheme. Instead of using the fittest member,
we randomly select one of the fittest N% sources denoted by
θC
Nfit . It balances between exploitation and exploration with

more focus on the former (indicated by X and r)

vC
ij := EXr − SPL

(
θC
ij

)
= θC

ij + φij×
(
θC
Nfitj − θC

ij

)
. (7a)

EXR′−SPL
(
θC
i

)
: On adding an extra random displacement

vector
(
θC
k1j

− θC
k2j

)
to EXr −SPL, we obtain this locomotion

mode designed to ensure greater search space exploration
while learning from the top N% food sources simultaneously.
The use of symbol X and R (both in upper case) indicate that
the strength of exploration is comparatively stronger than the
EXr − SPL scheme

vC
ij := EXR′ − SPL

(
θC
ij

)
= θC

ij + φij

× {(
θC
Nfitj − θC

ij

)
+

(
θC
k1j

− θC
k2j

)}
. (7b)

Exr − SPL
(
θC
i

)
: This locomotion mode is an intermediate

between EXr − SPL and ER − SPL, whereas the employed
food source θC

ij in EXr − SPL is replaced by a randomly se-
lecting one. This helps to distribute attraction more uniformly
since a random member experiences attraction to any one of
the elite members. This strategy is neither too greedy nor too
random and maintains the exploration-exploitation tradeoff

vC
ij := Exr − SPL

(
θC
ij

)
= θC

k1j
+ φij×

(
θC
Nfitj − θC

k2j

)
. (7c)

ExR′ − SPL
(
θC
i

)
: While maintaining the exploitation of

Exr−SPL scheme, further diversity can be induced by adding
a further directional component to it. It can be presented as

vC
ij := ExR′ − SPL

(
θC
ij

)
= θC

k1j
+ φij

× {(
θC
Nfitj − θC

k2j

)
+

(
θC
k3j

− θC
k4j

)}
. (7d)

In (6) and (7), kx are mutually exclusive integers that can
take any values from {1, 2, ..., SN} except running index i.
We make use of locomotion modes ER − SPL, EXr − SPL,

Exr − SPL, EXR′ − SPL,and ExR′ − SPL in our algorithm
for modifying the position of the bees.

B. Associative Learning in Honeybees: Color Guided
Selection of Locomotion Modes

Frisch [12] and Menzel and Backhaus [11] experimentally
established that the bees are exposed to colors on entering
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Fig. 4. Array of colors encountered by a forager and the associated motion
associated with it.

a floral site and they tend to memorize the color and the
associated reward (nectar content). In optimization scenario,
an ideal analogy would be to think of the associated reward
in terms of fitness of the food source θC

i and the color
being representative of a locomotion mode that the bee has
undertaken to modify its position. Based on this analogy, we
make use of five different colors to synergize the locomotion
pool with the colored vision of foragers. In Fig. 4, we depict
the array of colors encountered by the forager along with
the associated locomotion mode. Note that irrespective of the
initial exposure to color, bees tend to learn the colors associ-
ated with more rewarding food sources gradually through their
own experience. To understand this, assume that the foragers
are spread in the functional landscape uniformly. Now which
particular locomotion mode is helpful in discovering better
food sites depends on the locality of the forager, as well
as their distribution at that instant. Thus, different foragers
learn different colors. So instead of maintaining individual
records of each foragers, we use an average metric called color
selection mean (Cm), which is updated as shown later.

This raises an important issue: how do the bees perform
locomotion based on color learning? A very simple yet ef-
fective measure has been put into action by designing a color
selection scale (as in Fig. 5) to link the colors with locomotion
modes. The scale ranges from 0 to 1 and is divided into
five parts, each corresponding to a particular color (same as
those in Fig. 4) which in turn is associated with a locomotion
mode. The bees usually have a tendency to learn darker
color (violet, black) quickly as compared to lighter ones. This
behavior has been mapped by allotting a larger portion of
the scale for black color. We assume that at the start of the
foraging process, the unemployed bees randomly enter the
floral sites and encounter one of the five colors and based
on it perform spatial locomotion via the associated mode. The
value of Cm indicates the mean color response of the entire
forager population.

Based on their color learning rate, the gradual transition
occurs and the foragers select the locomotion modes prob-
abilistically. We shift the value of Cm by a weighted sum.
The color selection probabilities of successful food sources

Fig. 5. Color selection scale indicating proportionate coloring strategy.

are considered during powered mean calculation. The color
selection scale closely resembles the natural behavior of bees.
Initially, the bees retain their behavior of recognizing dark
color, so the initial color selection mean Cm is set 0.5 (shown
by the white arrow in Fig. 5). It coincides with the center of
the scale corresponding to black representing ER-SPL mode.
The lighter color variants are present on the right side of the
color selection scale and correspond to modes—EXR’-SPL and
ExR’-SPL.

C. Finding Intelligent Directions During Foraging: Saccadic
Flight Strategy

A saccade is a rapid intermittent movement of the eye
observed in a living organism with the purpose of gaining
useful information about the spatial surrounding. Experimental
demonstrations [20] suggest that during a flight the bees
perform sharp turns of the body and the head to become aware
of their present location. Biologically, it has been confirmed
that the translation motion is guided by the perceived distance
to surrounding obstructions, and the saccadic flight strategy
comes handy in optical filtering of the rotational components
allowing the translational ones to pass through.

By using local information from similar members we ar-
range the food sources on the fitness scale, as shown in
Fig. 6, to analyze randomly selected food sources used for
perturbation of food source θC

i . We encode the saccadic flight
strategy through two subroutines: 1) tradeoff function τ(.)
and 2) the correlative neurological response CNR(.). τ(.) is
a two-step approach involved with the generation of mutually
exclusive food sources selected by the tournament selection
and then determining their relative position. It returns a value,
which decides the relative position of the selected food sites
on the scale, based on which the neurological response is
simulated depending on the correlation-based optic model,
discussed in Section II-D. Note that we are simulating the
photoreceptor model depicted in Fig. 1, but instead of finding
the correlation between images we are concerned with the
correlation between the food sources, i.e., the trial solutions
here. It can be realized in terms of divertive forces in the
original locomotion path to guide the foragers along intelligent
directions in the search process. The response depends on
the value of relative response parameter δ and also on the
locomotion modes. The individual subroutines are discussed
as follows.

1) Tradeoff function τ(.): Movement needs energy to be
expended on the part of the foragers to travel to-and-fro
its selected site. It is advisory on their part to analyze
the distance E and the reward T associated with a given
food site and make a tradeoff between them to arrive
at a decision of either selecting or discarding the food
source. If energy expended in traveling the distance E to
a food source is not commensurate the reward T received
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from it, the forager will decide against travel. Thus,
the need for a tradeoff based on distance and fitness
is mandatory. Conventional ABC framework shows that
the onlooker bees select a food source based on its
relative fitness making it prone to local trapping since
multiple onlookers can select a fitter source leading to
crowding of foragers around presently found suboptimal
solutions. τ (.) provides an alternative way. It is an
operator whose purpose is to generate a set of mutually
exclusive food source locations that the onlooker can
approach without losing too much energy and being am-
ply rewarded with food. It consists of two subroutines:
generator and analyzer. The generator produces an array
of exclusive food sources selected by the tournament
selection procedure. Similarity is measured in terms
of the p-norm distance. Then, the analyzer maps the
generated individuals on the fitness scale and assigns
them relative position scaled in descending order from
the fittest to the least fit one.

2) Correlative neurological response CNR(.): Originally
correlation model is based on the retinal flow of data
from two photoreceptors located in the front end, one
being slightly displaced compared to the other. In
case of general D-dimensional space, the biological
3-D vision is of no practical use. We apply the relative
position of the exclusive food sources, as returned by
the tradeoff function, to guide the optic model. The
food source located centrally is demarcated as median
fit and is set as the reference. Now, the selected mutually
exclusive food sources will lie either to the left or right
of the reference. Those lying between the best fit and the
median are treated as relatively good while those lying
between the worst fit and the median are judged to be
comparatively bad. An example has been illustrated in
Fig. 6 to explain the functioning. Suppose, we make use
of an array of 15 food sources. A call to function τ (.)
returns a set of five food sources 5, 8, 9, 13, and 15.
In the scale, the food sources are sorted in descending
order of fitness value with food source 3 being the fittest
one while 12 being the worst one.

The functioning of the feedback mechanism, illustrated in
Fig. 1(b), is now discussed to generate corrective motion
component (Section IV-D) using the T/E ratio to guide the
bee intelligently in the search space. Let Nn and Np denote
the number of food sources lying to the right and left of the
median fit position (7th food source in Fig. 6), respectively.
The value of relative response parameter (δ = Np − Nn) gives
the difference between food sites that are treated as fitter Np to
those that are relatively less fit Nn. Strong positive values of δ

(2 or 3) gives positive feedback thereby simulating the + signal
[in Fig. 1(b)], while a sufficiently negative value (−2 or less)
evokes the – signal. A value lying in the range of [−1, 1] does
not give a strong response. Table I maps the locomotion mode
with the corresponding neural response based on the value of δ.

The correlative response results in generation of corrective
motion components that are added to the original locomotion

Fig. 6. Relative position of the food sources on fitness scale. It is affirmed
that the position of food source 8 (marked in green) is nearest to the best fit
side is the fittest one selected while 5 (marked in red) being nearest to the
least fit side of the scale is judged as the least fit. The rest of the selected
food sources are marked in red denoting intermediate fitness.

TABLE I

Correlative Neurological Response Based on Locomotion

Mode and Value of δ

to enhance diversity. How and why they are implemented is
discussed in the next subsection.

An important observation was made with respect to this T/E
tradeoff since it involves both fitness and distance calculations.
The authors state that by replacing the fitness-based selection
of food source in classical ABC approach by making use of
distance E affects the algorithmic performance. This prompted
us to simulate the T/E tradeoff by using affinity-based (dis-
tance) probability calculation (16). After selecting the food
sources, they are mapped in fitness scale to determine Nn and
Np and in turn δ. The corrective motion generated by CNR

makes use of the T/E ratio by adding directional components
directed along θbestfit or θworstfit , which are food sources that
have the highest and lowest value of T/E ratio with respect
to θi, respectively. This small change was instrumental in
enhancing not only the convergence speed but also helped
to reduce the chances of premature trapping for deceptive
functions where most of direct search methods fail. Having
discussed the essential components of our method, we proceed
with the description of the algorithm.

D. SiPABC−Sf Algorithm

In our proposed SiPABC−Sf approach, the similarity with
the classical ABC algorithm is kept intact with vital modifica-
tions in the operator dynamics. Unlike classical ABC, we do
not distinguish between the employed bee and the onlooker
bee phase. Rather we operate on the same forager population
in two stages: 1) the color guided locomotion (CGL) and
2) the saccadic flight strategy (SFS). We felt that instead of
evaluating the trial population twice (after two phases) as is
done in ABC, it is judicious to use the CGL to modify the
forager’s position and then a corrective motion component
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based on the locomotion mode chosen earlier. Only then
fitness evaluation occurs and synchronous greedy selection is
instantiated. This has benefits as far as population diversity
and time complexity issues are concerned. Also a modified
affinity-based probability calculation has been applied.

Just like any population-based metaheuristic, the first step
begins with the instantiation of a trial population using (1).
The default colony size SN is set to 100 for our algorithm.
This initialized trial population will be improved upon through
the repeated application of search operators iteratively until
the termination criterion is met. The details of the individual
stages, as used in our algorithm, are given as follows.

1) Color Guided selection of Locomotion Pool (CGL): The
color selection probability CSi is generated independently
from normal distribution for every forager as

CSi = Gaussian (Cm, σm) (9)

where the initial mean of the Gaussian distribution is equal to
0.5 and the standard deviation σm equal to 0.2. The value of
CSiis truncated in the range [0, 1] and is regenerated other-
wise. The value of CSi is compared with the color selection
scale (shown in Fig. 5) and accordingly the locomotion mode
is chosen as presented as follows:

(0, 0.1] (0.1, 0.3]
↓ ↓

EXr−SPL Exr−SPL

(0.3, 0.7]
↓

ER − SPL

(0.7, 0.9] (0.9, 1.0]
↓ ↓

ExR′−SPL EXR′−SPL.
(10)

While performing locomotion, the degree of positional mod-
ification of the jth parameter of ith food source is controlled by
the perturbation factor φi,j sampled from Cauchy distribution

φij = Cauchy
(
μp, σp

)
(11)

where μp and σp are the location parameter and scale param-
eter of Cauchy distribution having initial values of 0 and 0.2.
The value of scale parameter is varied nonlinearly as

σp (C) = σp (0) − (�σ)

(
em.C/MCN − 1

em − 1

)
(12)

with the value of σp (0) (initial), �σ and m being 0.2, 0.1
and 10, respectively. The scale parameter variation is based
on the response to angular velocity [as in Fig. 2(a)], which is
nonlinear in nature. Due to infinite second moment the Cauchy
distribution has a wider tail than normalized distribution and is
used for approximating the torque response. We point out that
the nonlinear variation, as is (12), accounts for the logarithmic
nature of the x-axis as is observed in Fig. 2(a). The value of
MR is kept fixed at 0.65 in our approach. The value of the
mean Cm is updated after each cycle as

Cm = w.Cm + (1 − w) .meanpow

(
CS∗) (13a)

where the weighting factor w is randomly generated in the
range (0.95, 1] and meanpow is the powered mean of the set
CS∗ of CSi of successful solutions. The power p is varied as
per the temporal frequency response [Fig. 2(b)]

p (C) = p (0) + (�p)

(
em.C/2.MCN − 1

em/2 − 1

)
. (13b)

Equation (13b) is identical to (12) with the initial value
p (0) being 1 which is increased to a maximum of 2 (�p

being 1). The mean Cm is reflective of the performance of
the locomotion modes at play and gives a truer indication of
the population. This nonlinear variation [21] is essential to the
performance of the algorithm. The value of N used in (6) is
varied similarly from 35% to 10%.

2) Saccadic Flight Strategy: Following the CGL, we cal-
culate the affinity matrices D and F which holds the distance
and fitness information relative to each forager. Note that this
calculation can be done by using only the upper triangular
part of the matrices based on the property of symmetry and
skew symmetry. That is to say the elements of matrices D

and F satisfy the condition D (i, j) = D (j, i) and F (i, j) =
−F (j, i) , j, i ∈ {1, 2, ..SN}, respectively. We also need to
keep a copy of the population members in descending order
of fitness value. Even the order of indices can also be stored
saving memory space. This will be utilized by the tradeoff
function later on.

With reference to ith food source, we will proceed in our
discussion. During the matrix computations, we determine the
probability of selecting the jth food source for the positional
modification of θC

i . It is calculated as

pi,j = 0.9
D(i, j)

maxj{D(i, j)} + 0.1 (14)

where D(i, j) refers to the element of the jth column in the
ith row. Depending on the locomotion mode that was applied
to θC

i in the previous stage, x food sources are selected with
the probability value calculated above, i.e., rand[0, 1]≤pi,j .
The variable x equals the number of stochastic food sources
associated with a locomotion mode as given in (6b) and (7).
So x takes the value of 0 for EXr − SPL, 2 for EXR′ − SPL

and Exr −SPL, 3 for ER−SPL and 4 for ExR′ −SPL. This
is done by the generator part of the tradeoff function.

The selected x food sources are mapped on the fitness
scale (if x>0). The mapping is enacted through a simple
logical process. The indices are stored in a temporary archive
based on fitness value and first, last, and the median fitness
values are retrieved from it. A one to one check occurs in
which the fitness values of each of the x food sources are
checked. If it lies between the fitness value of median and
first element, then variable Np is incremented by 1. On the
other hand if it is below the fitness of median element, then
Nn is incremented by 1 such that Np + Np = x. The value of
δ = Np − Nn is calculated and based on the entries given in
Table I, the corrective motion response is chosen. However,
the motion component is the result of the correlation-based
optic model that in response to the local neighborhood. The
response formulas are given as follows:

SeekingResponse dirs = α+.
(
θbestfit − θi

)
EscapingResponse dire = α−.

(
θi − θworstfit

)
CenteringResponse dirc=α1

∼.
(
θbestfit−θi

)
+ α2

∼.
(
θi − θworstfit

)
(15)

where θbestfit and θworstfit refer to the fittest and the worst
food sources based on the T/E ratio. For centering response,
information from the best and the worst food sources is
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essential for directional insensitivity. The scaling factors have
been set as

α1
∼ =

∣∣f (
θbestfit

) − f (θi)
∣∣/∣∣f (

θbestfit

) − f
(
θworstfit

)∣∣
α2

∼ = −∣∣f (
θworstfit

) − f (θi)
∣∣/|f (θbest) − f (θworst)|

and α+ are α− computed as per (11).
Note that due to the saccadic flight strategy, bees do

not travel in rectilinear paths and the actual distance tra-
versed by the bees while traveling between food sources is
more than the displacement between them. Thus, we use a
p-norm distance with p = 1.5 instead of p = 2 (Euclidean) for
calculating TEi,j =

(
f

(
θj

) − f (θi)
)/∥∥θj, θi

∥∥
p=1.5. This gives

a near estimate of the distance traveled by the foragers.
Relaxation of choice permits uniform distribution of the work-
force and saves additional computation of the scout phase
used in the original ABC. The generalized formula for the
movement of the bee in the onlooker phase is as follows:

vC
ij := Mode

(
θC
ij

)
+ Response(r) (16)

where Mode
(
θC
ij

)
is based on color learning as previously

mentioned and Response(r) can be any of those given in
(15). However, uncontrolled use of this corrective motion
component causes the search to be too random in nature. To

check its usage, we apply (16) with a probability of 1−MR on
those parameters which were not affected during the positional
modification in CGL earlier on. The saccadic flight strategy
(SFS) in insect colony is the key to their efficient extraction of
neighborhood information and helps in enhancing the search
process.

3) Synchronous Greedy Selection: This brings us to the last
phase of our algorithm whereby synchronous greedy selection
is performed. This has its advantages when compared with
asynchronous selection. The synchronous technique uses a
memory archive to store the solutions generated after the two
previous stages have been implemented. The fitness evaluation
occurs only after modifying all the food sources. A one-to-one
selection occurs whereby the foragers replace the location
of the food source in their memory if a better solution is
produced by the modified food source. In addition to diversity,
the synchronous selection relaxes the need for recalculating
the matrices D and F, as well as sorting the fitness matrix
every time a solution replaces its predecessor. This will be
highlighted later through complexity analysis.

4) Putting It All Together: A complete pseudo-code of the
algorithm is given below. This will help in getting a complete
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TABLE II

Mean, Standard Deviation, and P -Values of Wilcoxon’s Rank Sum Test for Best of Run Error Values for 50D Functions

picture when all the individual processes are assembled to-
gether as one.

V. Experimental Setup and Simulation Results

A. Benchmark Test Suite

The benchmark suite of IEEE CEC 2005 competition com-
prises of 25 challenging problems that presents, in addition
to scalability, shifting, rotation, and ill-conditioning, highly
multimodal landscapes, a huge number of local optima, and
nonseparable nature of functions. The first 5 functions f1 −f5

are unimodal, f6 − f12 are classic multimodal, f13 − f14

are expanded functions and functions f15 − f25 are hybrid

composition functions that are formed by combining classical
benchmark functions, such as Rastrigin, Schwefel, Griewanks,
Weierstrass, etc. The functions also have global optima on
bounds, wide optima basin, narrow optima basin, and rotated
with high condition number matrix. For more details on these
benchmarks, readers may consult the technical report [22]. All
problems are scalable and we have considered 30-D, 50-D, and
100-D functions for testing the proposed method.

B. Contending Algorithms Compared and Parametric Setup

The algorithms considered in the comparative study are
based on a wide variety of features, such as self adapta-
tion, local search, memory archive, diversification, learning
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TABLE III

Adjusted P -Values for Pair Wise Statistical Comparisons Between SIPABC−SF and Peer Algorithms

strategy. Each algorithm has its unique property of guiding
the search toward promising regions of the fitness landscape.
Best parametric settings were used for the peer algorithms as
recommended by the corresponding literatures.

1) Artificial Bee Colony (ABC) [5], [16].
2) Modified Artificial Bee Colony (m-ABC) [10].
3) Differential Evolution with Strategy adaptation (SaDE)

[23].
4) An adaptive DE with optional external archive (JADE)

[24].
5) A Self-adaptive DE (jDE) [25].
6) Hybrid approach based on PSO and ABC algorithm

(HPA) [26].
7) Comprehensive Learning PSO (CLPSO) [27].
8) Group Search Optimizer (GSO) [28].

For analysis, we have conducted 50 independent sample
runs of the contending algorithms for each function and
reported the mean and the standard deviation of the best-of-
run error values. The simulation was carried out under the
following platform configurations.

• Software: MATLAB 2010a (version 7.10).
• Processor: Intel i5 2nd gen.
• CPU Speed: 2.76 GHz.
• Memory: 4-GB DDR3 RAM.
• Operating System: MS Windows 7.

The best-of-run error has been defined as the difference
between the actual global optima f * of the objective function
under consideration and the best functional value f (θbest)
achieved by the optimizer after a given FEs budget, which
marks the termination criterion. The termination criterion can
be any one of the following-time budget (online optimization),
fixed number of iterations (offline optimization) or fixed num-
ber of FEs (engineering problems). According to the technical
report [22], the stopping condition is maximum number of
FEs which is fixed at D×104 for D-dimensional problem.
To understand the statistical significance of the results, we
use Wilcoxon’s rank-sum test [29] on independent samples
at 5% significance level. The P-values returned by the test
must be less than 0.05 (5% significance level) as a proof
against the null hypothesis. Additional inclusion of Nemeny’s
test, Shaffer’s static procedure, Holm’s test and Bergmann-
Hommel’s dynamic procedure help to perform multiple pair

wise comparisons. The adjusted P-values are obtained through
these four procedures as reported in [30] and [31].

C. Comparative Analysis

Experimental observations in terms of the mean and stan-
dard deviation of the best-of-the-run errors are recorded.
Due to space limitation, we have presented the result for
50 dimensions in Table II for each of the contending algo-
rithms on functions f1 −f25. Discussions on 30-D and 100-D
have been provided in the supplementary document. P-values
obtained through the rank-sum test between the best algorithm
and each of the remaining algorithms over all the benchmark
functions are also presented in these tables. In these tables, NA
stands for not applicable and occurs for the best performing
algorithm itself in each case. Besides, we have included the
result of the aforementioned four statistical tests in Table III.
30-D, 50-D and 100-D have been considered to present a
general overview.

Table II indicates that the performance of SiPABC−Sf is
remains overall commendable in 50-D search space. In fact,
it excels in 50-D domain by achieving lower mean errors
compared to its contenders on 23 instances. On f10 SaDE
manages to outperform SiPABC−Sf which attains second
ranks among the participating EAs. SiPABC−Sf presents a
dominating performance for the unimodal (f1 to f5) and
classic multimodal problems (f6 to f12). For the expanded
functions, it performs at par with other algorithms and achieves
error of the same order. As the dimensionality is scaled up,
solving the hybrid composition functions (f16 to f25) become a
major challenge due to the exponential rise in local peaks and
high dispersion metric of the landscape. Most of the optimizers
are trapped in deceptive regions resulting in high error values.
SiPABC−Sf puts up a satisfying performance and obtains least
mean errors in a majority of cases. Only for rotated hybrid
composition f24, the results obtained are at par with adaptive
DE variants-SaDE, JADE and jDE, CLPSO and m-ABC, with
all reaching the value of 2e + 2.

The incorporation of a learning mechanisms (in CLPSO),
strategy or parameter adaptation (in algorithms like SaDE,
JADE, and jDE) and even hybridization (HPA) helps to avert
the problem of dimensionality to a good extent. Algorithms,
focusing only on local search, like ABC fail to locate optimum
when the dimension increases. CLPSO’s performance might
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Fig. 7. Median error of competing algorithms plotted against increasing
FEs for six 50D benchmark problems. (a) f 2: Shifted Schwefel’s function.
(b) f 9: Shifted Rastrigin’s function. (c) f 13: Expanded function. (d) f 15: Hybrid
composition function. (e) f 21: Rotated hybrid composition function. (f) f 24:
Rotated hybrid composition function.

improve on tuning the refreshing gap m [21]. The two biolog-
ically motivated approaches, GSO and ABC, completely fail in
case of hybrid composition cases and suffer from the curse of
dimensionality. On the other hand, SiPABC−Sf is propelled by
the combined effect of two evolving mechanisms makes use of
the saccadic flight strategy in executing intelligent search and
diversifying forager locomotion through color guided selection

of locomotion pool. There are instances like wide optima basin
(f18) where the parameter adaptation may be crucial to find the
optima. On the other hand, cases global optima being located
in narrow basins (f6 and f19) calls for a local search optimizer
that thoroughly scans the neighborhood for better solutions.
The combined effect of both helps SiPABC−Sf to provide
superior results in challenging situations (f6, f18, and f19).

Sample convergence characteristics corresponding to the
median run of the peer algorithms (when the runs are ranked
according to the best-of-the-run fitness values) have been
shown in Fig. 7 for six test functions. All the plots indicate
the better convergence speed of SiPABC−Sf as compared to
the other algorithms.

D. Complexity Analysis and Computational Effort

For worst case complexity analysis we consider a
D-dimensional problem with colony size SN. Considering that
unit operations deal with the problem parameters, we can
express the complexity in terms of SN and D. Initially each of
the D parameters for SN trial solutions is initialized leading
to O(SN.D). Next comes the CGL where the probability of
modifying a problem parameter is MR. Worst case complexity
will occur when all the D parameters for each trial solution
is perturbed after traversing two stages. We assume that half
of the problem’s parameters get perturbed in CGL while
other half in the next phase. Evidently from the pseudocode,
the value of CSi is generated (line 8), compared and saved
(line 9) leading to three computations. This is followed by
selecting x random members and one of the top N% members
needed for perturbation thereby incurring (x+1) computations.
The by D/2 parameters are then perturbed and saved. Since
(x+4)<<D/2, with increasing dimensionality, the complexity
of CGS can be better approximated as O(SN.D). As said
earlier, the matrices are calculated using the properties of
symmetry and skew-symmetry incurring SN(SN − 1)/2 com-
putations. Same goes for calculating probability. The sorting
based on fitness value has a complexity of O(SN. log SN)
since it is independent of dimensions. Thus, matrix and sorting
operations can be approximated by a complexity of O(SN2.D).
Now we move on to the saccadic flight strategy whereby the
remaining D/2 parameters are perturbed using the correlation
based model. Hypothetically if centering response is initiated
for the entire colony irrespective of their locomotion recorded
earlier, maximum complexity will be incurred due to the cal-
culation of both θbestfit and θworstfit . To do this, we proceed as
follows. With respect to the ith food source θC

i , we calculate the
T/E ratio for k �= i. Bookmarking helps to reduce complexity.
We use two indicators to store the value of k for which the
maximum and minimum value of TEi,k is obtained. These
indicators store the index for θbestfit and θworstfit , respectively.
This leads to linear complexity O(SN). The number of com-
putations needed to calculate δ while instantiating centering,
seeking or escaping response is of order x and can be safely
ignored. Now, we proceed with perturbation of the D/2
parameters that were previously unaltered. As explained above,
this leads to complexity of O(D). Thus, for each food source
there is approximately ∼ (SN+D) calculations. When problem
dimensionality increases, i.e., D>SN, we can approximate this
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as O(SN.D). In SiPABC−Sf , the main computational time
is incurred due to the distance calculations during matrix
operation. The use of synchronous update does away with the
need of repeated evaluation and updating of the affinity matrix
for each replacement during greedy selection. We need to cal-
culate the matrices only once per cycle. But the worst case is
not the actual reflective of the algorithm’s performance while
dealing with real life engineering problems [32]. The empirical
analysis has been presented in the supplementary attachment.

VI. Conclusion

The presented research has its source in the optic flow
of information in flying insects and takes an initiative in
the direction of multifaceted hybridization of the individ-
ual SI aspects, such collective intelligence, labor division,
cooperation and many more. Achieving this goal requires
the integration of the behavioral characteristics of foragers.
The constant interpretation of geographical neighborhood is
mapped into the objective space which aids the honeybees
in locomotion. During locomotion, honeybees link their geo-
spatial neighborhood to their associative learning and past
memory while moving through intelligent search paths. The
proposed SiPABC−Sf algorithm presents a novel foraging
model by interlinking the evolving mechanisms involved in
forager locomotion. The algorithmic model has been devised,
based on the stimulus from the environment (search space),
keeping close resemblance to the biological process. This
novel, biologically motivated metaheuristics SiPABC−Sf , is an
attempt to overcome the shortcomings of AE by incorporating
the algorithmic analogues of our current understanding of bio-
logical process. To the best of our knowledge the SiPABC−Sf
approach is the first of its kind that uses optic flow model
in a swarm-based metaheuristic for real-parameter optimiza-
tion. Through extensive experimentation and detailed analysis,
we can infer that our biologically simulated process obtains
significant predominance over highly competitive state-of-the-
arts.

One of the most noticeable features in biological swarms
is their ability to migrate from one place to another as
a part of their evolving adaptation for survival. It will be
interesting to develop a biological model closely resembling
swarm multipopulation and simulate the migration tendency
among them through cooperative coevolution.
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