
Cost-Model Oblivious
Database Tuning with Reinforcement Learning

Debabrota Basu1, Qian Lin1, Weidong Chen1, Hoang Tam Vo3,
Zihong Yuan1, Pierre Senellart1,2, and Stéphane Bressan1

1 School of Computing, National University of Singapore, Singapore
debabrota.basu@u.nus.edu

2 Institut Mines–Télécom; Télécom ParisTech; CNRS LTCI, France
3 SAP Research and Innovation, Singapore

Abstract. In this paper, we propose a learning approach to adaptive
performance tuning of database applications. The objective is to validate
the opportunity to devise a tuning strategy that does not need prior
knowledge of a cost model. Instead, the cost model is learned through
reinforcement learning. We instantiate our approach to the use case
of index tuning. We model the execution of queries and updates as
a Markov decision process whose states are database configurations,
actions are configuration changes, and rewards are functions of the cost
of configuration change and query and update evaluation. During the
reinforcement learning process, we face two important challenges: not
only the unavailability of a cost model, but also the size of the state space.
To address the latter, we devise strategies to prune the state space, both
in the general case and for the use case of index tuning. We empirically
and comparatively evaluate our approach on a standard OLTP dataset.
We show that our approach is competitive with state-of-the-art adaptive
index tuning, which is dependent on a cost model.

1 Introduction
In a recent SIGMOD blog entry [10], Guy Lohman asked “Is query optimization
a ‘solved’ problem?”. He argued that current query optimizers and their cost
models can be critically wrong. Instead of relying on wrong cost models, the
author and his colleagues have proposed in [19] a learning optimizer.

In this paper, we propose a learning approach to performance tuning of
database applications. By performance tuning, we mean selection of an optimal
physical database configuration in view of the workload. In general, configurations
differ in the indexes, materialized views, partitions, replicas, and other parameters.
While most existing tuning systems and literature [6,17,18] rely on a predefined
cost model, the objective of this work is to validate the opportunity for a tuning
strategy to do without.

To achieve this, we propose a formulation of database tuning as a reinforcement
learning problem (see Section 3). The execution of queries and updates is modeled
as a Markov decision process whose states are database configurations, actions
are configuration changes and rewards are functions of the cost of configuration
change and query/update evaluation. This formulation does not rely on a pre-
existing cost model, rather it learns it.

We present a solution to the reinforcement learning formulation that tackles
the curse of dimensionality (Section 4). To do this, we reduce the search space
by exploiting the quasi-metric properties of the configuration change cost, and
we approximate the cumulative cost with a linear model.

We instantiate our approach to the use case of index tuning (Section 5). We
use this case to demonstrate the validity of a cost-model oblivious database
tuning with reinforcement learning, through experimental evaluation on a TPC-
C workload [14] (see Section 6). We compare the performance with the Work
Function Index Tuning (WFIT) algorithm [18]. Results show that our approach
is competitive yet does not need to know a cost model.

Related work is discussed in Section 2.

2 Related Work

Our work is intertwined with mainly two lines of research. Our methodology is
designed to deal with the problem of automated database configuration. Using
our approach described in Section 4, we have proposed COREIL, an algorithm
to solve the problem of index tuning. Traditionally, most of the works proposed
in the field of automated database configuration are conducted in an offline
manner. In offline methodologies, database administrators identify and update
representative workloads from the database queries based on these representative
workloads, new database configurations are realized to create new beneficial
indexes [1], smart vertical partition for reducing I/O costs [16], or possibly for
engendering a combination of index selection, partitioning and replication for
both stand-alone databases [11] and parallel databases [2].

But with increasing complexity and agility of database applications and the
introduction of modern database environments such as database as a service,
the aforementioned tasks of database administrators are becoming more tedious
and problematic. Therefore it is desirable to design automated solutions of the
database design problem that are able to continuously monitor the incoming
queries or the changes in workload and can react readily by adapting the database
configuration. An online approach for physical design tuning is proposed in [6],
that progressively chooses an optimal solution at each step through case-by-case
analysis of potential benefits. Similarly, [17] proposes a self-regulating framework
for continuous online physical tuning where effective indexes are created and
deleted in response to the shifting workload. In one of the most recent proposals
for semi-automated index tuning, WFIT [18], the authors have proposed a method
based on the Work function algorithm and the feedbacks from manual changes of
configurations. To evaluate the cost of executing a query workload with the new
indexes as well as the cost of configuration transition, i.e. for profiling indexes’
benefit, most of the aforementioned online algorithms like WFIT exploit the
what-if optimizer [7] which returns such estimated costs. As COREIL is able to
learn the estimated cost of queries gradually through subsequent iterations, it
is applicable to a wider range of database management systems which may not
implement what-if-optimizer or expose its interface to the users.

For designing and tuning online automated databases, our proposed approach
uses the more general structure of reinforcement learning [20] that offers a rich
pool of techniques available in literature. Markov decision processes (MDPs) [13]
are one such model where each action leads to a new state and a given reward
according to a probability distribution that must be learned. On the basis of
such a cumulative reward, these processes decide the next action to perform for
the optimal performance. Though use of Markov decision process for modelling
data cleaning tasks has been proposed in [4], its application in data management
is limited because of typically huge state space and complex structures of data in
each state (in our case, indexes). Some recent research works like [3] and [?] have
also approached dynamic index selection based on data mining and optimization
algorithms. But in our proposed method, COREIL, we tackle the issues of
using reinforcement learning in database applications. Other complications like
delayed rewards obtained after a long sequence of state transitions and partial
observability [21] of current state due to uncertainty, are also less prevalent in
the proposed structure of COREIL.

3 Problem Definition

Let R be a logical database schema. We can consider R to be the set of its
possible database instances. Let S be the set of physical database configurations
of instances of R. For a given database instance, two configurations s and s′

may differ in the indexes, materialized views, partitions, replicas, and other
parameters. For a given instance, two configurations will be logically equivalent
if they yield the same results for all queries and updates.

The cost of changing configuration from s ∈ S to s′ ∈ S is denoted by the
function δ(s, s′). The function δ(s, s′) is not necessarily symmetric as the cost of
changing configuration from s to s′ and the reverse may not be the same. On
the other hand, it is a non-negative function and also verifies the identity of
indiscernibles (there is no free configuration change) and the triangle inequality
(it is always cheaper to do a direct configuration change). Therefore, it is a
quasi-metric on S.

Let Q be a workload set, defined as a schedule of queries and updates (for
brevity, we refer to both as queries). Without significant loss of generality, we
consider the schedule to be sequential and the issue of concurrency control
orthogonal to the current presentation. Query qt is the tth query in the schedule,
which is executed at time t.

The cost of executing query q ∈ Q on configuration s ∈ S is denoted by the
function cost(s, q). We model a query qt as a random variable, whose generating
distribution may not be known a priori : qt is only observable at time t.

Let s0 be the initial configuration of the database. At any time t the configu-
ration is changed from st−1 to st with the following events in order:
1. Arrival of query qt. We call q̂t the observation of qt at time t.
2. Choice of the configuration st ∈ S based on q̂1, q̂2, . . . , q̂t and st−1.
3. Change of configuration from st−1 to st. If no configuration change occurs at

time t, then st = st−1.

4. Execution of query q̂t under the configuration st.
The cost of configuration change and query execution at time t, referred as

the per-stage cost, is

C(st−1, st, q̂t) := δ(st−1, st) + cost(st, q̂t)

We can phrase in other words the stochastic decision process of choosing the
configuration changes as a Markov decision process (MDP) [13] where states
are database configurations, actions are configuration changes, and penalties
(negative rewards) are the per-stage cost of the action. Note that transitions from
one state to another on an action are deterministic (in contrast to the general
framework of MDPs, there is no uncertainty associated with the new configuration
when a configuration change is decided). On the other hand, penalties are both
stochastic (they depend on the query, a random variable) and uncertain (the cost
of a query in a configuration is not known in advance, in the absence of a reliable
cost model).

Ideally, the problem would be to find the sequence of configurations that
minimizes the sum of future per-stage costs; of course, assuming an infinite
horizon [20], this sum is infinite. One practical way to circumvent this problem is
to introduce a discount factor γ that gives more importance to immediate costs
than to costs distant in the future, and to try and minimize a cumulative cost
defined with γ. Under Markov assumption, a sequence of configuration changes
is determined by a policy π : S ×Q→ S, which, given the current configuration
st−1 and a query q̂t, returns a configuration st := π(st−1, q̂t).

We define the cost-to-go function V π for a policy π as:

V π(s) := E

[∞∑
t=1

γt−1C(st−1, st, q̂t)

]
satisfying

{
s0 = s

st = π(st−1, q̂t), t ≥ 1
(1)

where 0 < γ < 1 is the discount factor. The value of V π(s) represents the expected
cumulative cost for the following policy π from the current configuration s.

Let U be the set of all policies for a given database schema. Our problem can
now be formally phrased as to minimize the expected cumulative cost, i.e., to
find an optimal policy π∗ such that π∗ := argminπ∈U V

π(s0).

4 Adaptive Performance Tuning
4.1 Algorithm Framework
In order to find the optimal policy π∗, we start from an arbitrary policy π,
compute an estimation of its cost-to-go function, and incrementally attempt to
improve it using the current estimate of the cost-to-go function V for each s ∈ S.
This strategy is known as policy iteration [20] in reinforcement learning literature.

Assuming the probability distribution of qt is known in advance, we improve
the cost-to-go function V

πt of the policy πt at iteration t using

V
πt
(s) = min

s′∈S

(
δ(s, s′) + E [cost(s′, q)] + γV

πt−1
(s′)
)

(2)

We obtain the updated policy as argminπt∈U V
πt
(s). The algorithm terminates

when there is no change in the policy. The proof of optimality and convergence
of policy iteration can be found in [12].

Unfortunately, policy iteration suffers from several problems. First, there may
not be any proper model available beforehand for the cost function cost(s, q).
Second, the curse of dimensionality [12] makes the direct computation of V
hard. Third, the probability distribution of queries is not assumed to be known
a priori, making it impossible to compute the expected cost of query execution
E [cost(s′, q)].

Algorithm 1 Algorithm Framework
1: Initialization: an arbitrary policy π0 and a cost model C0

2: Repeat till convergence
3: V

πt−1 ← approximate using a linear projection over φ(s)
4: Ct−1 ← approximate using a linear projection over η(s, q̂t)
5: πt ← argmins∈S′

(
Ct−1 + γV

πt−1(s)
)

6: End

The basic framework of our algorithm is shown in Algorithm 1. Initial policy π0
and cost model C0 can be intialized arbitrarily or using some intelligent heuristics.
In line 5 of Algorithm 1, we have tried to overcome the issues at the root of the
curse of dimensionality by juxtaposing the original problem with approximated
per-stage cost and cost-to-go function. Firstly, we map a configuration to a vector
of associated feature φ(s). Then, we approximate the cost-to-go function by a
linear model θTφ(s) with parameter θ. It is extracted from a reduced subspace S′
of configuration space S that makes the search for optimal policy computationally
cheaper. Finally, we learn the per-stage cost C(s, s′, q̂) by a linear model ζT η(s, q̂)
with parameter ζ. This method does not need any prior knowledge of the cost
model, rather it learns the model iteratively. Thus, we have resolved shortcomings
of policy iteration and the need of predefined cost model for the performance
tuning problem in our algorithm. These methods are depicted and analyzed in
the following sections.

4.2 Reducing the Search Space

To reduce the size of search space in line 5 of Algorithm 1, we filter the con-
figurations that satisfy certain necessary conditions deduced from an optimal
policy.

Proposition 1. Let s be any configuration and q̂ be any observed query. Let π∗
be an optimal policy. If π∗(s, q̂) = s′, then cost(s, q̂) − cost(s′, q̂) ≥ 0. Further-
more, if δ(s, s′) > 0, i.e., if the configurations certainly change after query, then
cost(s, q̂)− cost(s′, q̂) > 0.

Proof. Since π∗(s, q̂) = s′, we have

δ(s, s′) + cost(s′, q̂) + γV (s′)

≤ cost(s, q̂) + γV (s)

= cost(s, q̂) + γE
[
min
s′′

(δ(s, s′′) + cost(s′′, q̂) + γV (s′′))
]

≤ cost(s, q̂) + γδ(s, s′) + γV (s′),

where the second inequality is obtained by exploiting triangle inequality δ(s, s′′) ≤
δ(s, s′) + δ(s′, s′′), as δ is a quasi-metric on S.

This infers that

cost(s, q̂)− cost(s′, q̂) ≥ (1− γ)δ(s, s′) ≥ 0.

The assertion follows.

By Proposition 1, if π∗ is an optimal policy and s′ = π∗(s, q̂) 6= s, then
cost(s, q̂) > cost(s′, q̂). Thus, we can define a reduced subspace as

Ss,q̂ = {s′ ∈ S | cost(s, q̂) > cost(s′, q̂)}.

Hence, at each time t, we can solve

πt = argmin
s∈Sst−1,q̂t

(
δ(st−1, s) + cost(s, q̂t) + γV

πt−1
(s)
)
. (3)

Next, we design an algorithm that converges to an optimal policy through
searching in the reduced set Ss,q̂.

4.3 Modified Policy Iteration with Cost Model Learning

We calculate the optimal policy using the least square policy iteration (LSPI) [9].
If for any policy π, there exists a vector θ such that we can approximate V π(s) =
θTφ(s) for any configuration s, then LSPI converges to the optimal policy. This
mathematical guarantee makes LSPI an useful tool to solve the MDP as defined
in Section 3. But the LSPI algorithm needs a predefined cost model to update
the policy and evaluate the cost-to-go function. It is always not obvious that any
form of cost model would be available and as mentioned in Section 1, pre-defined
cost models may be critically wrong. This motivates us to develop another form
of the algorithm, where the cost model can be equivalently obtained through
learning.

Assume that there exists a feature mapping η such that cost(s, q) ≈ ζTη(s, q)
for some vector ζ. Changing the configuration from s to s′ can be considered as
executing a special query q(s, s′). Therefore we approximate

δ(s, s′) = cost(s, q(s, s′)) ≈ ζTη(s, q(s, s′)).

The vector ζ can be updated iteratively using the well-known recursive least
squares estimation (RLSE) [22] as shown in Algorithm 2, where ηt = η(st−1, q̂t)

Algorithm 2 Recursive least squares estimation.

1: procedure RLSE(ε̂t, Bt−1
, ζt−1,ηt)

2: γt ← 1 + (ηt)TB
t−1

ηt

3: B
t ← B

t−1 − 1
γt
(B

t−1
ηt(ηt)TB

t−1
)

4: ζt ← ζt−1 − 1
γt
B
t−1

ηtε̂t

5: return Bt, ζt.
6: end procedure

Algorithm 3 Least squares policy iteration with RLSE.
1: Initialize the configuration s0.
2: Initialize θ0 = θ = 0 and B0 = εI.
3: Initialize ζ0 = 0 and B0

= εI.
4: for t=1,2,3,. . . do
5: Let q̂t be the just received query.
6: st ← argmin

s∈Sst−1,q̂t

(ζt−1)Tη(st−1, q(st−1, s)) + (ζt−1)Tη(s, q̂t) + γθTφ(s)

7: Change the configuration to st.
8: Execute query q̂t.
9: Ĉt ← δ(st−1, st) + cost(st, q̂t).
10: ε̂t ← (ζt−1)Tη(st−1, q̂t)− cost(st−1, q̂t)

11: Bt ← Bt−1 − Bt−1φ(st−1)(φ(st−1)−γφ(st))TBt−1

1+(φ(st−1)−γφ(st))TBt−1φ(st−1)
.

12: θt ← θt−1 +
(Ĉt−(φ(st−1)−γφ(st)T θt−1)Bt−1φ(st−1)

1+(φ(st−1)−γφ(st))TBt−1φ(st−1)
.

13: (B
t
, ζt)← RLSE(ε̂t, B

t−1
, ζt−1,ηt)

14: if (θt) converges then
15: θ ← θt.
16: end if
17: end for

and ε̂t = (ζt−1)Tηt−cost(st−1, q̂t) is the prediction error. Combining RLSE with
LSPI, we get our cost-model oblivious algorithm as shown in Algorithm 3.

In Algorithm 3, the vector θ determines the current policy. We can make
decision by solving the equation in line 6. The values of δ(st−1, s) and cost(s, q̂t)
are obtained from the cost model. The vector θt is used to approximate the
cost-to-go function following the current policy. If θt converges, then we update
the current policy (line 14-16).

To check the efficiency and effectiveness of this algorithm, instead of using
any heuristics we have initialzed policy π0 as initial configuration s0 and the
cost-model C0 as 0 shown in the lines 1-3 of Algorithm 3.

5 Case Study: Index Tuning

In this section, we present COREIL, an algorithm for tuning the configurations
differing in their secondary indexes and handling the configuration changes corre-
sponding to the creation and deletion of indexes, which instantiates Algorithm 3.

5.1 Reducing the Search Space

Let I be the set of indexes that can be created. Each configuration s ∈ S is an
element of the power set 2I . For example, 7 attributes in a schema of R yield a
total of 13699 indexes and a total of 213699 possible configurations. Such a large
search space invalidates a naive brute-force search for the optimal policy.

For any query q̂, let r(q̂) be a function that returns a set of recommended
indexes. This function may be already provided by the database system (e.g., as
with IBM DB2), or it can be implemented externally [1]. Let d(q̂) ⊆ I be the set
of indexes being modified (update, insertion or deletion) by q̂. We can define the
reduced search space as

Ss,q̂ = {s′ ∈ S | (s− d(q̂)) ⊆ s′ ⊆ (s ∪ r(q̂))}. (4)

Deleting indexes in d(q̂) will reduce the index maintenance overhead and creating
indexes in r(q) will reduce the query execution cost. Note that the definition
of Ss,q̂ here is a subset of the one defined in Section 4.2 which deals with the
general configurations.

Note that for tree-structured indexes (e.g., B+-tree), we could further consider
the prefix closure of indexes for optimization. For any configuration s ∈ 2I , define
the prefix closure of s as

〈s〉 = {i ∈ I | i is a prefix of an index j for some j ∈ s}. (5)

Thus in Equation (4), we use 〈r(q̂)〉 to replace r(q̂) for better approximation. The
intuition is that in case of i /∈ s but i ⊆ 〈s〉 we can leverage the prefix index to
answer the query.

5.2 Defining the Feature Mapping φ
Let V be the cost-to-go function following a policy. As mentioned earlier, Algo-
rithm 3 relies on a proper feature mapping φ that approximates the cost-to-go
function as V (s) ≈ θTφ(s) for some vector θ. The challenge lies in how to define
φ under the scenario of index tuning. In COREIL, we define it as

φs′(s) :=

{
1, if s′ ⊆ s
−1, otherwise.

for each s, s′ ∈ S. Let φ = (φs′)s′∈S . Note that φ∅ is an intercept term since
φ∅(s) = 1 for all s ∈ S. The following proposition shows the effectiveness of φ
for capturing the values of the cost-to-go function V .

Proposition 2. There exists a unique θ = (θs′)s′∈S which approximates the
value function as

V (s) =
∑
s′∈S

θs′φs′(s) = θ
Tφ(s). (6)

Proof. Suppose S = {s1, s2, . . . , s|S|}. Note that we use superscripts to denote
the ordering of elements in S.

Let V = (V (s))Ts∈S and M be a |S| × |S| matrix such that

Mi,j = φsj (s
i).

Let θ be a |S|-dimension column vector such that Mθ = V . If M is invertible
then θ =M−1V and thus Equation (6) holds.

We now show that M is invertible. Let ψ be a |S| × |S| matrix such that

ψi,j =Mi,j + 1.

We claim that ψ is invertible and its inverse is the matrix τ such that

τi,j = (−1)|s
i|−|sj |ψi,j .

To see this, consider

(τψ)i,j =
∑

1≤k≤|S|

(−1)|s
i|−|sk|ψi,kψk,j

=
∑

sj⊆sk⊆si

(−1)|s
i|−|sk|.

Therefore (τψ)i,j = 1 if and only if i = j. By the Sherman-Morrison formula, M
is also invertible.

However, for any configuration s, θ(s) is a |2I |-dimensional vector. To reduce
the dimensionality, the cost-to-go function can be approximated by V (s) ≈∑
s′∈S,|s′|≤N θs′φs′(s) for some integer N . Here we assume that the collaborative

benefit among indexes could be negligible if the number of indexes exceeds N . In
particular when N = 1, we have

V (s) ≈ θ0 +
∑
i∈I

θiφi(s). (7)

where we ignore all the collaborative benefits among indexes in a configuration.
This is reasonable since any index in a database management system is often
of individual contribution for answering queries [15]. Therefore, we derive φ
from Equation (7) as φ(s) = (1, (φi(s))

T
i∈I)

T . By using this feature mapping φ,
COREIL approximates the cost-to-go function V (s) ≈ θTφ(s) for some vector θ.

5.3 Defining the Feature Mapping η
A good feature mapping for approximating functions δ and cost must take into
account both the benefit from the current configuration and the maintenance
overhead of the configuration.

To capture the difference between the index set recommended by the database
system and that of the current configuration, we define a function β(s, q̂) =
(1, (βi(s, q̂))

T
i∈I)

T , where

βi(s, q̂) :=

0, i /∈ r(q̂)
1, i ∈ r(q̂) and i ∈ s
−1, i ∈ r(q̂) and i /∈ s.

If the execution of query q̂ cannot benefit from index i then βi(s, q̂) always equals
zero; otherwise, βi(s, q̂) equals 1 or -1 depending on whether s contains i or
not. For tree-structured indexes, we could further consider the prefix closure of
indexes as defined in Equation (5) for optimization.

On the other hand, to capture whether a query (update, insertion or deletion)
modifies any index in the current configuration, we define a function α(s, q̂) =
(αi(s, q̂))i∈I where

αi(s, q̂) =

{
1, if i ∈ s and q̂ modify i
0, otherwise.

Note that if q̂ is a selection query, α trivially returns 0.
By combining β and α, we get the feature mapping η = (βT ,αT)T used in

COREIL. It can be used to approximate the functions δ and cost as described in
Section 4.3.

6 Performance Evaluation
In this section, we present an empirical evaluation of COREIL. We implement
a prototype of COREIL in Java and compare its performance with that of the
state-of-the-art WFIT algorithm [18]. WFIT is based on the Work Function
Algorithm [5]. To determine the change of configuration, it considers all the
queries seen so far and solves a deterministic problem towards minimizing the
total processing cost.

6.1 Experimental Setup

We conduct all the experiments on a server running IBM DB2 10.5. The server
is equipped with Intel i7-2600 Quad-Core @ 3.40 GHz and 4 GB RAM. We
measure wall-clock times for execution of all components. Specially, for execution
of workload queries or index creating/dropping, we measure the response time
of processing corresponding SQL statement in DB2. Additionally, WFIT uses
the what-if optimizer of DB2 to evaluate the cost. In this setup, each query is
executed only once and all the queries were generated from one execution history.
The scale factor (SF) used here is 2.

6.2 Dataset and Workload

The dataset and workload is conforming to the TPC-C specification [14] and
generated by the OLTP-Bench tool [8]. The 5 types of transactions in TPC-C

0 500 1,000 1,500 2,000 2,500 3,000
0

1,000

2,000

3,000

4,000

5,000

Query #

T
im

e
(m

s)

COREIL
WFIT

Fig. 1. Evolution of the efficiency (total time per query) of the two systems from the
beginning of the workload (smoothed by averaging over a moving window of size 20)

are distributed as NewOrder 45%, Payment 43%, OrderStatus 4%, Delivery 4%
and StockLevel 4%. Each of these transactions are associated with 3 ∼ 5 SQL
statements (query/update). Note that [18] additionally uses the dataset NREF
in its experiments. However, this dataset and workload are not publicly available.

6.3 Efficiency

Figure 1 shows the total cost of processing TPC-C queries for online index tuning
of COREIL and WFIT. Total cost consists of the overhead of corresponding
tuning algorithm, cost of configuration change and that of query execution.
Results show that, after convergence, COREIL has lower processing cost most of
the time. But COREIL converges slower than WFIT, which is expected since it
does not rely on the what-if optimizer to guide the index creations. With respect
to the whole execution set, the average processing cost of COREIL (451 ms)
is competitive to that of WFIT (452 ms). However, if we calculate the average
processing cost of the 500th query forwards, the average performance of COREIL
(357 ms) outperforms that of WFIT (423 ms). To obtain further insight from
these data, we study the distribution of the processing time per query, as shown
in Figure 2. As can be seen, although COREIL exhibits larger variance in the
processing cost, its median is significantly lower that that of WFIT. All these
results confirms that COREIL has better efficiency than WFIT under a long
term execution.

Figures 3 and 4 show analysis of the overhead of corresponding tuning
algorithm and cost of configuration change respectively. By comparing Figure 1
with Figure 3, we can see that the overhead of the tuning algorithm dominates
the total cost and the overhead of COREIL is significantly lower than that of
WFIT. In addition, WFIT tends to make costlier configuration changes than

COREIL WFIT

200

400

600

800

T
im

e
(m

s)

Fig. 2. Box chart of the efficiency (total time per query) of the two systems. We show
in both cases the 9th and 91th percentiles (whiskers), first and third quartiles (box)
and median (horizontal rule).

COREIL, which is reflected in a higher time for configuration change. This would
be discussed further in the micro-analysis. Note that both methods converge
rather quickly and no configuration change happens beyond the 700th query.

0 500 1,000 1,500 2,000 2,500 3,000
0

500

1,000

1,500

Query #

T
im

e
(m

s)

COREIL
WFIT

Fig. 3. Evolution of the overhead (time of the optimization itself) of the two systems
from the beginning of the workload (smoothed by averaging over a moving window of
size 20)

0 200 400 600 800 1,000
0

5,000

10,000

15,000

20,000

Query #

T
im

e
(m

s)

COREIL
WFIT

Fig. 4. Evolution of the time taken by configuration change (index creation and de-
struction) of the two systems from the beginning of the workload; no configuration
change happens past query #1000

6.4 Effectiveness
To verify the effectiveness of indexes created by the tuning algorithms, we extract
the cost of query execution from the total cost. Figure 5 (note the logarithmic
y-axis) indicates that the set of indexes created by COREIL shows competitive
effectiveness with that created by WFIT, though WFIT is more effective in general
and exhibits less variance after convergence. Again, this is to be expected since
COREIL does not have access to any cost model for the queries. As previously
noted, the total running time is lower for COREIL than WFIT, as overhead
rather than query execution dominates running time for both systems.

We have also performed a micro-analysis to check whether the indexes created
by the algorithms are reasonable. We observe that WFIT creates more indexes
with longer compound attributes, whereas COREIL is more parsimonious in
creating indexes. For instance, WFIT creates a 14-attribute index as shown
below.

[S_W_ID, S_I_ID, S_DIST_10, S_DIST_09, S_DIST_08, S_DIST_07,
S_DIST_06, S_DIST_05, S_DIST_04, S_DIST_03, S_DIST_02,
S_DIST_01, S_DATA, S_QUANTITY]

The reason of WFIT creating such a complex index is probably due to multiple
queries with the following pattern.

SELECT S_QUANTITY, S_DATA, S_DIST_01, S_DIST_02, S_DIST_03,
S_DIST_04, S_DIST_05, S_DIST_06, S_DIST_07, S_DIST_08,
S_DIST_09, S_DIST_10

FROM STOCK
WHERE S_I_ID = 69082 AND S_W_ID = 1;

0 500 1,000 1,500 2,000 2,500 3,000

101

102

103

Query #

T
im

e
(m

s)

COREIL
WFIT

Fig. 5. Evolution of the effectiveness (query execution time in the DBMS alone) of the
two systems from the beginning of the workload (smoothed by averaging over a moving
window of size 20); logarithmic y-axis

In contrast, COREIL tends to create shorter compound-attribute indexes.
For example, COREIL created an index [S_I_ID, S_W_ID] which is definitely
beneficial to answer the query above and is competitive in performance compared
with the one created by WFIT.

7 Conclusion

We have presented a cost-model oblivious solution to the problem of performance
tuning. We have first formalized this problem as a Markov decision process. We
have devised and presented a solution, which addresses the curse of dimensionality.
We have instantiated the problem to the case of index tuning and implemented
the COREIL algorithm to solve it. Experiments show competitive performance
with respect to the state-of-the-art WFIT algorithm, despite COREIL being
cost-model oblivious.

Now that we have validated the possibility for cost-model oblivious database
tuning, we intend in future work to study the trade-off for COREIL between
efficiency and effectiveness in the case of index tuning. To show universality and
robustness of COREIL, we are planning to run further tests on other datasets
like TPC-E, TPC-H and benchmark for online index tuning. To find out its
sensitivity on setup, we want to experiment with varying scale factors and
and other parameters. Furthermore, we want to extend our approach to other
aspects of database configuration, including partitioning and replication. This
is not straightforward, as the solution will require heuristics that help curb the
combinatorial explosion of the configuration space as well as may need some
intelligent initialization technique.

Acknowledgement
This research is funded by the National Research Foundation Singapore under
its Campus for Research Excellence and Technological Enterprise (CREATE)
programme with the SP2 project of the Energy and Environmental Sustainability
Solutions for Megacities - E2S2 programme.

References
1. Agrawal, S., Chaudhuri, S., Narasayya, V.R.: Automated selection of materialized

views and indexes in sql databases. In: VLDB (2000)
2. Agrawal, S., Narasayya, V., Yang, B.: Integrating vertical and horizontal partitioning

into automated physical database design. In: SIGMOD (2004)
3. Azefack, S., Aouiche, K., Darmont, J.: Dynamic index selection in data warehouses.

CoRR abs/0809.1965 (2008), http://arxiv.org/abs/0809.1965
4. Benedikt, M., Bohannon, P., Bruns, G.: Data cleaning for decision support. In:

CleanDB (2006)
5. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-

bridge University Press (1998)
6. Bruno, N., Chaudhuri, S.: An online approach to physical design tuning. In: ICDE

(2007)
7. Chaudhuri, S., Narasayya, V.: Autoadmin: What-if index analysis utility. In: SIG-

MOD (1998)
8. Difallah, D.E., Pavlo, A., Curino, C., Cudre-Mauroux, P.: Oltp-bench: An exten-

sible testbed for benchmarking relational databases. Proceedings of the VLDB
Endowment 7(4), 277–288 (2013)

9. Lagoudakis, M.G., Parr, R.: Least-squares policy iteration. The Journal of Machine
Learning Research 4, 1107–1149 (2003)

10. Lohman, G.M.: Is query optimization a “solved” problem? http://wp.sigmod.org/
?p=1075 (2014)

11. Papadomanolakis, S., Dash, D., Ailamaki, A.: Efficient use of the query optimizer
for automated physical design. In: VLDB (2007)

12. Powell, W.B.: Approximate Dynamic Programming: Solving the Curses of Dimen-
sionality. Wiley-Interscience (2007)

13. Puterman, M.L.: Markov decision processes: discrete stochastic dynamic program-
ming. John Wiley & Sons (2009)

14. Raab, F.: TPC-C - the standard benchmark for online transaction processing
(OLTP). In: Gray, J. (ed.) The Benchmark Handbook. Morgan Kaufmann (1993)

15. Ramakrishnan, R., Gehrke, J., Gehrke, J.: Database management systems, vol. 3.
McGraw-Hill New York (2003)

16. Rasin, A., Zdonik, S.: An automatic physical design tool for clustered column-stores.
In: EDBT (2013)

17. Schnaitter, K., Abiteboul, S., Milo, T., Polyzotis, N.: On-line index selection for
shifting workloads. In: SMDB (2007)

18. Schnaitter, K., Polyzotis, N.: Semi-automatic index tuning: Keeping DBAs in the
loop. Proceedings of the VLDB Endowment 5(5), 478–489 (2012)

19. Stillger, M., Lohman, G.M., Markl, V., Kandil, M.: LEO – DB2’s LEarning Opti-
mizer. In: VLDB (2001)

20. Sutton, R.S., Barto, A.G.: Reinforcement Learning. MIT Press (1998)
21. White, D.J.: Markov decision processes. John Wiley & Sons New York, NY (1993)
22. Young, P.: Recursive least squares estimation. In: Recursive Estimation and Time-

Series Analysis, pp. 29–46. Springer Berlin Heidelberg (2011)

http://arxiv.org/abs/0809.1965
http://wp.sigmod.org/?p=1075
http://wp.sigmod.org/?p=1075

	Cost-Model Oblivious Database Tuning with Reinforcement Learning

