
Regularized Cost-Model Oblivious
Database Tuning with Reinforcement Learning

Debabrota Basu1, Qian Lin1, Weidong Chen1, Hoang Tam Vo3,
Zihong Yuan1, Pierre Senellart1,2, and Stéphane Bressan1

1 School of Computing, National University of Singapore, Singapore
debabrota.basu@u.nus.edu

2 LTCI, CNRS, Télécom ParisTech, Université Paris-Saclay, Paris, France
3 SAP Research and Innovation, Singapore

Abstract. In this paper, we propose a learning approach to adaptive
performance tuning of database applications. The objective is to validate
the opportunity to devise a tuning strategy that does not need prior
knowledge of a cost model. Instead, the cost model is learned through
reinforcement learning. We instantiate our approach to the use case of
index tuning. We model the execution of queries and updates as a Markov
decision process whose states are database configurations, actions are
configuration changes, and rewards are functions of the cost of configura-
tion change and query and update evaluation. During the reinforcement
learning process, we face two important challenges: the unavailability of
a cost model and the size of the state space. To address the former, we
iteratively learn the cost model, in a principled manner, using regulariza-
tion to avoid overfitting. To address the latter, we devise strategies to
prune the state space, both in the general case and for the use case of
index tuning. We empirically and comparatively evaluate our approach
on a standard OLTP dataset. We show that our approach is competitive
with state-of-the-art adaptive index tuning, which is dependent on a cost
model.

1 Introduction

In a recent SIGMOD blog entry [23], Guy Lohman asked “Is query optimization a
‘solved’ problem?”. He argued that current query optimizers and their cost models
can be critically wrong. Instead of relying on wrong cost models, Stillger et al.
have proposed LEO-DB2, a learning optimizer [41]; its enhanced performance
with respect to classical query optimizers strengthens the claim of discrepancies
introduced by the predetermined cost models. Stillger et al. have proposed
LEO-DB2, a learning optimizer [41]; its enhanced performance with respect to
classical query optimizers strengthens the claim of discrepancies introduced by
the predetermined cost models

This is our perspective in this article: we propose a learning approach to
performance tuning of database applications. By performance tuning, we mean
selection of an optimal physical database configuration in view of the workload. In

general, configurations differ in the indexes, materialized views, partitions, replicas,
and other parameters. While most existing tuning systems and literature [10,39,40]
rely on a predefined cost model, the objective of this work is to validate the
opportunity for a tuning strategy to do without.

To achieve this, we propose a formulation of database tuning as a reinforcement
learning problem (see Section 3). The execution of queries and updates is modelled
as a Markov decision process whose states are database configurations, whose
actions are configuration changes, and whose rewards are functions of the cost of
configuration change and query/update evaluation. This formulation does not
rely on a preexisting cost model, rather it learns it.

We present a solution to the reinforcement learning formulation that tackles
the curse of dimensionality (Section 4). To do this, we reduce the search space
by exploiting the quasi-metric properties of the configuration change cost, and
we approximate the cumulative cost with a linear model. We formally prove that,
assuming such a linear approximation is sound, our approach converges to an
optimal policy for estimating the cost.

We then tackle in Section 5 the problem of overfitting: to avoid instability
while learning the cost model, we add a regularization term in learning the
cost model. We formally derive a bound on the total regret of the regularized
estimation, that is logarithmic in the time step (i.e., in the size of the workload).

We instantiate our approach to the use case of index tuning (Section 6),
developing in particular optimizations specific to this use case to reduce the
search space. The approaches of Sections 4 and 5 provide us with two algorithms
COREIL and rCOREIL to solve the index tuning problem.

We use this case to demonstrate the validity of a cost-model oblivious database
tuning with reinforcement learning, through experimental evaluation on a TPC-C
workload [31] (see Section 7). We compare the performance with the Work
Function Index Tuning (WFIT) algorithm [40]. Results show that our approach is
competitive yet does not need knowledge of a cost model. While the comparison of
WFIT with COREIL establishes reinforcement learning as an effective approach
to automatize the index tuning problem, performance of rCOREIL with respect
to COREIL demonstrates that the learning performance is significantly enhanced
by a crisp estimation of the cost model.

Related work is discussed in Section 2.

This article extends a conference publication [6]. In addition to minor edits
and precisions added throughout the paper, the following material is novel: the
discussion of related work on reinforcement learning (Section 2.2); the result of
convergence to an optimal policy (Proposition 2) and its proof; the introduction
of regularization (Section 5), including bounds on regrets (Theorem 1 and Sec-
tion 6.4), the experimental comparison between regularized and non-regularized
versions of our approach (Section 7.4) and the study of the quality of their cost
estimators (Section 7.5).

2 Related Work

We now review the related work in two areas of relevance: self-tuning databases,
and the use of reinforcement learning for data management applications.

2.1 Automated Database Configuration

Table 1 provides a brief classification of related research in automated database
configuration, in terms of various dimensions: the offline or online nature of the
algorithm (see further), and the physical design aspects being considered by
these works (index selection, vertical partitioning, or mixed design together with
horizontal partitioning and replication).

Table 1. Automated physical database design

Index selection Vert. partitioning Mixed

Offline [1, 20, 46] [17,22,34] Stand-alone: [11, 13,27]
Parallel DBs: [2, 33]

Online [10, 24,25,40] [3, 21,37]

Offline Algorithms Traditionally, automated database configuration is con-
ducted in an offline manner. In that approach, database administrators (DBAs)
identify representative workloads from the trace of historical database queries and
updates. That task can be done either manually or with the help of sophisticated
tools provided by database vendors. Based on these representative workloads,
new database configurations are realized: for example, new beneficial indexes to
be created [1,20,46], smart vertical partitioning for reducing I/O costs [17,22,34],
or possibly a combination of index selection, partitioning and replication for both
stand-alone databases [11,13,27] and parallel databases [2, 33].

Online Algorithms Given the increasing complication and agility of database
applications, coupled with the introduction of modern database environments
such as database-as-a-service, the aforementioned manual task of DBAs, though
it can be done at regular times in an offline fashion, becomes even more tedious
and problematic. Therefore, it is desirable to design more automated solutions to
the database design problem that are able to continuously monitor changes in the
workload and react in a timely manner by adapting the database configuration
to the new workload. In fact, the problem of online index selection has been
well-studied in the past [10, 12, 24, 25, 40]. Generally, these techniques adopt
the same working model in which the system continuously tracks the incoming
queries for identifying candidate indexes, profiles the benefit of the indexes, and
realizes the ones that are most useful for query execution. Specifically, an online

approach to physical design tuning (index selection) was proposed in [10]. The
essence of the algorithm is to progressively choose the optimal plan at each
step by using a case-by-case analysis on the potential benefits that we may lose
by not implementing relevant candidate indexes. That is, each new database
configuration is selected only when a physical change, i.e., creating or deleting an
index, would be helpful in improving system performance. Similarly, a framework
for continuous online physical tuning was proposed in [39] where effective indexes
are created and deleted in response to the shifting workload. Furthermore, the
framework is able to self-regulate its performance by providing explicit mechanism
for controlling the overhead of profiling the benefit of indexes.

One of the key components of an index selection algorithm is profiling indexes’
benefit, i.e., how to evaluate the cost of executing a query workload with the new
indexes as well as the cost of configuration transition, i.e., creating and deleting
indexes. To realize this function, most of the aforementioned online algorithms
exploit a what-if optimizer [14] which returns such estimated costs. For examples,
the what-if optimizer of DB2 was used in [40], and the what-if optimizer of
SQL Server was employed in [10], while the classical optimizer of PostgreSQL
was extended to support what-if analysis in [39]. However, it is well-known that
invoking the optimizer for estimating the cost of each query under different
configurations is expensive [28]. In this work, we propose an algorithm that does
not require the use of a what-if optimizer while being able to adaptively provide a
better database configuration in the end, as reported in our experimental results.

More recently, as column-oriented databases have attracted a great deal
of attention in both academia and industry, online algorithms for automated
vertical partitioning becomes critical for such an emerging breed of database
systems [3, 21, 37]. Specifically, a storage advisor for SAP’s HANA in-memory
database system was proposed in [37] in order to take advantage of both columnar
and row-oriented storage layouts. At the core of that storage advisor is a cost
model which is used to estimate and compare query execution times for different
stores. Similarly, a continuous layout adaptation has been recently been introduced
in [3] with the aim to support multiple storage layouts in a single engine which
is able to adapt to changing data access patterns. The adaptive store monitors
the access patterns of incoming queries through a dynamic window of N queries
and devises cost models for evaluating the workload and layout transformation
cost. Furthermore, in order to efficiently find a near optimal data layout for a
given workload, the hybrid store exploits proper heuristic techniques to prune the
immense search space of alternative data layouts. On the contrary, the algorithm
introduced in [21] uses data mining techniques for vertical partitioning in database
systems. The technique is based on closed item sets mining from a query set
and system statistic information at run-time, and hence is able to automatically
detect changing workloads and perform a re-partitioning action without the need
of interaction from DBAs.

Recently, [9] and [5] have aimed at solving the problem of online index
selection for large join queries and data warehouses. Since both approaches
use a predefined cost model, similarly to [40], it renders them susceptible to

erroneous estimations of the cost model. In our work, we are removing the effects
of errors made by the cost model by learning it. This gives our approach more
robustness and flexibility than cost-model–dependent ones. Moreover, [9] uses
genetic algorithms to optimize the selection of multi-table indexes incrementally.
But genetic algorithms generally performs worse than reinforcement learning [35]
in this kind of dynamic optimization tasks due to its more exploratory nature.
In addition, reinforcement learning agents have a more real-time behaviour
than genetic behaviour. In [5], authors use a heuristics approach where they
incrementally look for frequent itemsets in a query workload. With the knowledge
base acquired from there updates, indexes are generated for the frequent itemsets
while eliminating the ones generated for infrequent itemsets. Due to such greedy
behaviour, higher variance and instability is expected than for reinforcement
learning approaches where a trade-off between exploration and exploitation is
reached through learning.

Discussion Compared to the state-of-the-art in online automated database
design, our proposed overall approach is more general and has the potential
to be applied for various problems such as index selection, horizontal/vertical
partitioning design, and in combination with replication as well; we note however
that we experiment solely with index tuning in this article. More importantly,
as our proposed online algorithm is able to learn the estimated cost of queries
gradually through subsequent iterations, it does not need the what-if optimizer
for estimating query cost. Therefore, our proposed algorithm is applicable to
a wider range of database management systems which may not implement a
what-if optimizer or expose its interface to users.

2.2 Reinforcement Learning in Data Management

Reinforcement learning [42] is about determining the best thing to do next under
an evolving knowledge of the world, in order to reach a goal. This goal is commonly
represented as maximization of the cumulative reward obtained while performing
some actions. Here each action leads to an individual reward and to a new
state, usually in a stochastic manner. Markov decision processes (MDPs) [30]
are a common model for reinforcement learning scenarios. In this model each
action leads to a new state and to a given reward according to a probability
distribution that must be learned. This implies an inherent trade-off between
exploration (trying out new actions leading to new states and to potentially
high rewards) and exploitation (performing actions already known to yield
high rewards), a compromise explored in depth in, e.g., the stateless model of
multi-armed bandits [4]. Despite being well-adapted to the modelling of uncertain
environments, the use of MDPs in data management applications has been limited
so far. The use of MDP for modelling data cleaning tasks has been raised in [7].
In that paper, the authors discussed the absence of a straightforward technique
to do that because of the huge state space. More generally, the following reasons
may explain the difficulties in using reinforcement learning in data management
applications:

(i) As in [7], the state space is typically huge, representing all possible partial
knowledge of the world. This can be phrased as the curse of dimensionality.

(ii) States have complex structures, namely that of the data, or, in our case, of
the database configuration.

(iii) Rewards may be delayed, obtained after a long sequence of state transitions.
This is for example the case in focused Web crawling, which is a data-
centric application domain. Still multi-armed bandits have been successfully
applied [16] to this problem.

(iv) Because of data uncertainty, there may be only partial observability of the
current state. That changes the problem to a partially observable Markov
decision process [44].

The last two issues are fortunately not prevalent in the online tuning problem
discussed here. This lets us formulate online tuning problem as an MDP and
focus on a solution to the first two problems.

3 Problem Definition

Let R be a logical database schema. We can consider R to be the set of its
possible database instances. Let S be the set of corresponding physical database
configurations of instances of R. For a given database instance, two configurations
s and s′ may differ in the indexes, materialized views, partitions, replicas, and
other parameters. For a given instance, two configurations will be logically
equivalent if they yield the same results for all queries and updates.

The cost of changing configuration from s ∈ S to s′ ∈ S is denoted by
the function δ(s, s′). The function δ(s, s′) is not necessarily symmetric, i.e., we
may have δ(s, s′) 6= δ(s′, s). This property emerges as the cost of changing
configuration from s to s′ and the reverse may not be the same. On the other
hand, it is a non-negative function and also verifies the identity of indiscernibles:
formally, δ(s, s′) > 0 and the equality holds if and only if s = s′. Physically this
means that there is no free configuration change. As it is always cheaper to do a
direct configuration change, we get

∀s, s′, s′′ ∈ S δ(s, s′′) 6 δ(s, s′) + δ(s′, s′′).

This is simply the triangle inequality. As δ exhibits the aforementioned properties,
it is a quasi-metric on S.

Let Q be a workload, defined as a schedule of queries and updates. For brevity,
we refer to both of them as queries. To simplify, we consider the schedule to
be sequential and the issue of concurrency control orthogonal to the current
presentation. Thus, query qt represents the tth query in the schedule, which is
executed at time t.

We model a query qt as a random variable, whose generating distribution
may not be known a priori. It means that qt is only observable at time t. The
cost of executing query q ∈ Q on configuration s ∈ S is denoted by the function

cost(s, q). For a given query, the cost function is always positive as the system
have to pay some cost to execute a query.

Let s0 be the initial configuration of the database. At any time t the configu-
ration is changed from st−1 to st with the following events in order:
1. Arrival of query qt. We call q̂t the observation of qt at time t.
2. Choice of the configuration st ∈ S based on q̂1, q̂2, . . . , q̂t and st−1.
3. Change of configuration from st−1 to st. If no configuration change occurs at

time t, then st = st−1.
4. Execution of query q̂t under the configuration st.

Thus, the system has to pay the sum of the cost of configuration change and
that of query execution during each transition. Now, we define per-stage cost as

C(st−1, st, q̂t) := δ(st−1, st) + cost(st, q̂t).

We can phrase in other words the stochastic decision process of choosing the
configuration changes as a Markov decision process (MDP) [30] where states
are database configurations, actions are configuration changes, and penalties
(negative rewards) are the per-stage cost of the action. Note that in contrast to the
general framework of MDPs, transitions from one state to another on an action
are deterministic. Indeed, in this process there is no uncertainty associated with
the new configuration when a configuration change is decided. On the other hand,
penalties are stochastic, as they depend on the query which is a random variable.
In the absence of a reliable cost model, the cost of a query in a configuration is
not known in advance. This makes penalties uncertain.

Ideally, the problem would be to find the sequence of configurations that
minimizes the sum of future per-stage costs. We assume an infinite horizon [42],
which means an action will affect all the future states and actions of the system.
But it makes the cumulative sum of future per-stage costs infinite. One practical
way to circumvent this problem is to introduce a discount factor γ ∈ [0, 1).
Mathematically, it makes the cumulative sum of per-stage costs convergent.
Physically, it gives more importance to immediate costs than to costs distant
in the future, which is a practical intuition. Now, the problem translates into
finding the sequence of configurations that minimize a discounted cumulative cost
defined with γ. Under Markov assumption, a sequence of configuration changes
is represented by a function, called policy π : S × Q → S. Given the current
configuration st−1 and a query q̂t, a policy π determines the next configuration
st := π(st−1, q̂t).

We define the cost-to-go function V π for a policy π as:

V π(s) := E

[∞∑
t=1

γt−1C(st−1, st, q̂t)

]
such that

{
s0 = s

st = π(st−1, q̂t), t > 1
(1)

where 0 < γ < 1 is the discount factor. The value of V π(s) represents the expected
cumulative cost for the following policy π from the current configuration s.

Let U be the set of all policies for a given database schema. Our problem can
now be formally phrased as to minimize the expected cumulative cost, i.e., to

find an optimal policy π∗ such that

π∗ := argmin
π∈U

V π(s0)

where the initial state s0 is given.

4 Adaptive Database Tuning

4.1 Algorithm Framework

In order to find the optimal policy π∗, we start from an arbitrary policy π,
compute an estimation of its cost-to-go function, and incrementally attempt to
improve it using the current estimate of the cost-to-go function V for each s ∈ S.
This strategy is known as policy iteration [42] in the reinforcement learning
literature.

Traditionally, policy iteration functions as follows. Assuming the probability
distribution of qt is known in advance, we improve the cost-to-go function V

πt of
the policy πt at iteration t using

V
πt
(s) = min

s′∈S

(
δ(s, s′) + E [cost(s′, q)] + γV

πt−1
(s′)
)

(2)

We obtain the updated policy as argminπt∈U V
πt
(s). The algorithm terminates

when there is no change in the policy. The proof of optimality and convergence
of policy iteration can be found in [29].

Unfortunately, policy iteration suffers from several problems. First, there may
not be any proper model available beforehand for the cost function cost(s, q).
Second, the curse of dimensionality [29] makes the direct computation of V
hard. Third, the probability distribution of queries is not assumed to be known
a priori, making it impossible to compute the expected cost of query execution
E [cost(s′, q)].

Algorithm 1 Algorithm Framework
1: Initialization: an arbitrary policy π0 and a cost model C0

2: Repeat till convergence
3: V

πt−1 ← approximate using a linear projection over φ(s)
4: Ct−1 ← approximate using a linear projection over η(s, q̂t)
5: πt ← argmins∈S′

(
Ct−1 + γV

πt−1(s)
)

6: End

Instead, we apply the basic framework shown in Algorithm 1. The initial
policy π0 and cost model C0 can be initialized arbitrarily or using some intelligent
heuristics. In line 5 of Algorithm 1, we have tried to overcome the issues at
the root of the curse of dimensionality by juxtaposing the original problem
with approximated per-stage cost and cost-to-go function. Firstly, we map a

configuration to a vector of associated feature φ(s). Then, we approximate the
cost-to-go function by a linear model θTφ(s) with parameter θ. It is extracted
from a reduced subspace S′ of configuration space S that makes the search for
optimal policy computationally cheaper. Finally, we learn the per-stage cost
C(s, s′, q̂) by a linear model ζT η(s, q̂) with parameter ζ. This method does not
need any prior knowledge of the cost model, rather it learns the model iteratively.
Thus, we have resolved shortcomings of policy iteration and the need of predefined
cost model for the performance tuning problem in our algorithm. These methods
are depicted and analysed in the following sections.

4.2 Reducing the Search Space

In order to reduce the size of search space in line 5 of Algorithm 1, we filter the
configurations that satisfy certain necessary conditions deduced from an optimal
policy.

Proposition 1. Let s be any configuration and q̂ be any observed query. Let π∗ be
an optimal policy. If π∗(s, q̂) = s′, then cost(s, q̂)− cost(s′, q̂) > 0. Furthermore,
if δ(s, s′) > 0, i.e., if the configurations certainly change after a query, then
cost(s, q̂)− cost(s′, q̂) > 0.

Proof. Since π∗(s, q̂) = s′, we have

δ(s, s′) + cost(s′, q̂) + γV (s′)

6 cost(s, q̂) + γV (s)

= cost(s, q̂) + γE
[
min
s′′

(δ(s, s′′) + cost(s′′, q̂) + γV (s′′))
]

6 cost(s, q̂) + γδ(s, s′) + γV (s′),

where the second inequality is obtained by exploiting triangle inequality δ(s, s′′) 6
δ(s, s′) + δ(s′, s′′), as δ is a quasi-metric on S.

This infers that

cost(s, q̂)− cost(s′, q̂) > (1− γ)δ(s, s′) > 0.

The assertion follows.

By Proposition 1, if π∗ is an optimal policy and s′ = π∗(s, q̂) 6= s, then
cost(s, q̂) > cost(s′, q̂). Thus, we can define a reduced subspace as

Ss,q̂ = {s′ ∈ S | cost(s, q̂) > cost(s′, q̂)}.

Hence, at each time t, we can solve

πt = argmin
s∈Sst−1,q̂t

(
δ(st−1, s) + cost(s, q̂t) + γV

πt−1
(s)
)
. (3)

Next, we design an algorithm that converges to an optimal policy through
searching in the reduced set Ss,q̂.

4.3 Modified Policy Iteration with Cost Model Learning

We calculate the optimal policy using the least square policy iteration (LSPI) [18].
If for any policy π, there exists a vector θ such that we can approximate V π(s) =
θTφ(s) for any configuration s, then LSPI converges to the optimal policy. This
mathematical guarantee makes LSPI a useful tool to solve the MDP as defined
in Section 3. But the LSPI algorithm needs a predefined cost model to update
the policy and evaluate the cost-to-go function. It is not obvious that any form
of cost model would be available and as mentioned in Section 1, pre-defined cost
models may be critically wrong. This motivates us to develop another form of the
algorithm, where the cost model can be equivalently obtained through learning.

Assume that there exists a feature mapping η such that cost(s, q) ≈ ζTη(s, q)
for some vector ζ. Changing the configuration from s to s′ can be considered as
executing a special query q(s, s′). Therefore we approximate

δ(s, s′) = cost(s, q(s, s′)) ≈ ζTη(s, q(s, s′)).

The vector ζ can be updated iteratively using the well-known recursive least
squares estimation (RLSE) [45] as shown in Algorithm 2, where ηt = η(st−1, q̂t)
and ε̂t = (ζt−1)Tηt−cost(st−1, q̂t) is the prediction error. Combining RLSE with
LSPI, we get our cost-model oblivious algorithm as shown in Algorithm 3.

Algorithm 2 Recursive least squares estimation.

1: procedure RLSE(ε̂t, Bt−1
, ζt−1,ηt)

2: γt ← 1 + (ηt)TB
t−1

ηt

3: B
t ← B

t−1 − 1
γt
(B

t−1
ηt(ηt)TB

t−1
)

4: ζt ← ζt−1 − 1
γt
B
t−1

ηtε̂t

5: return B
t
, ζt.

6: end procedure

In Algorithm 3, the vector θ determines the current policy. We can make a
decision by solving the equation in line 6. The values of δ(st−1, s) and cost(s, q̂t)
are obtained from the approximation of the cost model. The vector θt is used to
approximate the cost-to-go function following the current policy. If θt converges,
then we update the current policy (line 14–16).

Instead of using any heuristics we initialize policy π0 as initial configuration
s0 and the cost-model C0 as 0, as shown in the lines 1–3 of Algorithm 3.

Proposition 2. If for any policy π, there exists a vector θ such that V π(s) =
θTφ(s) for any configuration s, Algorithm 3 will converge to an optimal policy.

Proof. Let V : S → R be a set of bounded, real-valued functions. Then V is a
Banach space with the norm ‖v‖ = ‖v‖∞ = sup |v(s)| for any v ∈ V.

Algorithm 3 Least squares policy iteration with RLSE.
1: Initialize the configuration s0.
2: Initialize θ0 = θ = 0 and B0 = εI.
3: Initialize ζ0 = 0 and B0

= εI.
4: for t=1,2,3,. . . do
5: Let q̂t be the just received query.
6: st ← argmin

s∈Sst−1,q̂t

(ζt−1)Tη(st−1, q(st−1, s)) + (ζt−1)Tη(s, q̂t) + γθTφ(s)

7: Change the configuration to st.
8: Execute query q̂t.
9: Ĉt ← δ(st−1, st) + cost(st, q̂t).
10: ε̂t ← (ζt−1)Tη(st−1, q̂t)− cost(st−1, q̂t)

11: Bt ← Bt−1 − Bt−1φ(st−1)(φ(st−1)−γφ(st))TBt−1

1+(φ(st−1)−γφ(st))TBt−1φ(st−1)
.

12: θt ← θt−1 +
(Ĉt−(φ(st−1)−γφ(st)T θt−1)Bt−1φ(st−1)

1+(φ(st−1)−γφ(st))TBt−1φ(st−1)
.

13: (B
t
, ζt)← RLSE(ε̂t, B

t−1
, ζt−1,ηt)

14: if (θt) converges then
15: θ ← θt.
16: end if
17: end for

If we redefine our problem in the reduced search space, we get:

argmin
π∈U

E

[∞∑
t=1

γt−1 (δ(st−1, st) + cost(st, q))

]
such that : st = π(st−1, q), st ∈ Sst−1,q, for t > 1

(4)

Then Algorithm 3 is analogous to LSPI over the reduced search space. For this
new problem given by Equation (4), Algorithm 3 converges to a unique cost-to-go
function Ṽ ∈ V. We need to show that V ∗ = Ṽ . That means we need to prove
the cost-to-go function estimate by Algorithm 3 is the optimal one.

Let us define the process of updating policy as a mapping M : V→ V. Now
based on Equation (2), it can be expressed as

Mv(s) = E
[

min
s′∈Ss,q

(δ(s, s′) + cost(s′, q) + γv(s′))
]
.

For a particular configuration s and query q, let

a∗s,q(v) = arg min
s′∈Ss,q

(δ(s, s′) + cost(s′, q) + γv(s′)) .

Assume that Mv(s) > Mu(s). Then

0 6 Mv(s)−Mu(s)

= E
[
δ(s, a∗s,q(v)) + cost(a∗s,q(v), q) + γv(a∗s,q(v))

]
− E

[
δ(s, a∗s,q(u)) + cost(a∗s,q(u), q) + γu(a∗s,q(u))

]
6 E

[
δ(s, a∗s,q(u)) + cost(a∗s,q(u), q) + γv(a∗s,q(u))

]
− E

[
δ(s, a∗s,q(u)) + cost(a∗s,q(u), q) + γu(a∗s,q(u))

]
= γE

[
v(a∗s,q(u))− u(a∗s,q(u))

]
6 γE [‖v − u‖] = γ‖v − u‖.

Thus we can conclude, |Mv(s)−Mu(s)| 6 γ|v(s)− u(s)| for all configuration
s ∈ S. From the definition of our norm, we can write

sup
s∈S
|Mv(s)−Mu(s)| = ‖Mv −Mu‖ 6 γ‖v − u‖.

This means that if 0 6 γ < 1, M is a contraction mapping. By [29, Proposition
3.10.2], there exists a unique v∗ such that Mv∗ = v∗, such that for an arbitrary
v0, the sequence vn generated by vn+1 = Mvn converges to v∗. By the property
of convergence of LSPI [18], v∗ = Ṽ . From Proposition 1, the optimal cost-to-
go function V ∗ also satisfies MV ∗ = V ∗. Hence V ∗ = Ṽ and the property of
convergence of LSPI is preserved in Algorithm 3.

5 Adaptive Database Tuning with Regularized
Cost-Model Learning

In the results that we will present in Section 7.3, we will observe a higher variance
of Algorithm 3 for index tuning than that of the state-of-art WFIT algorithm [40].
This high variance is caused mainly due to the absence of the cost model. As
Algorithm 3 decides the policy depending on the estimated cost model, any error
in the cost model causes instability in its outcome.

The process of cost-model estimation by accumulating information of incoming
queries is analogous to approximating a function online from its incoming samples.
Here, the function is the per-stage cost model C : S×S× Q̃→ R. Here, Q̃ is the
extended set of queries given by Q ∪ {q(s, s′) | s, s′ ∈ S}. We obtain this Q̃ by
considering configuration updates as special queries, as explained in Section 4.3.
Now, the per-stage cost function can be defined as

C(st−1, st, q̂t) = cost(st−1, q(st−1, st)) + cost(st, q̂t)

This equation shows that if we consider changing the configuration from s to s′ as
executing a special query q(s, s′), approximating the function cost : S × Q̃→ R
in turn approximates the per-stage cost.

As explained in the previous section, we approximate cost online using linear
projection to the feature space of the observed state and query. At each step we

obtain some vector ζ such that cost(s, q) ≈ ζTη(s, q). Here, η(s, q) is the feature
vector corresponding to state s and query q. In order to obtain the optimal
approximation, we initialize with an arbitrary ζ and then recursively improve
our estimate of ζ using recursive least squares estimation (RLSE) algorithm [45].
But the issues with RLSE are:

i. It tries to minimize the square error per step

ε̂2t =
(
(ζt−1)Tηt − cost(st−1, q̂t)

)2
which is highly sensitive to outliers. If RLSE faces some query or configuration
update which is very different from the previously observed queries, the
estimation of ζ can change drastically.

ii. The algorithm becomes unstable if the components of η(s, q) are highly
correlated. This may happen when the algorithm passes through a series of
related queries.

As the reinforcement learning algorithm uses the estimated cost model to
decide policies and to evaluate them, error or instability in the estimated cost
model at any step affects its performance. Specifically, large deviations arise in
the estimated cost model due to the queries which are far from the previously
learned distribution. This costs the learning algorithm some time to adapt. It
also affects the policy and evaluation of the present state and action. We thus
propose to use a regularized cost-model estimator instead of RLSE, which is less
sensitive to outliers and relatively stable, so as to improve the performance of
Algorithm 3 and decrease its variance.

5.1 Regularized Cost-Model Estimator

In order to avoid the effect of outliers, we can penalize high variance of ζ by
adding a regularization term with the squared prediction error of RLSE. Thus at
time step t, the new estimator will try to find

ζt = argmin
ζ

P t given ε̂t, B
t−1

, ζt−1,ηt (5)

such that:

P t := ε̂2t + λ‖ζt−1‖22
=
(
〈ζt−1,ηt〉 − cost(st−1, q̂t)

)2
+ λ〈ζt−1, ζt−1〉.

Here, λ > 0 is the regularization parameter. Square of L2-norm, ‖ζ‖22, is the
regularization function. ηt := η(st−1, q̂t) is the feature vector of state st−1 and
query q̂t. We call this squared error the loss function Lt defined at time t for a
given choice of ζt. Thus,

Lt(ζ
t) :=

(
〈ζt,ηt〉 − cost(st−1, q̂t)

)2
.

The dual of this problem can be considered as picking up such an ζt inside an n-
dimensional Euclidean ball Bnλ of radius s(λ) that minimizes the error ε̂2t . From an
optimization point of view, we choose ζt inside Bnλ :=

{
ζ | ‖ζ‖22 6 s(λ) and ζ ∈ Rn

}
rather than searching for it in the whole space Rn. This estimator penalizes any
drastic change in the cost model due to some outlier query. If some query tries to
pull ζt out of Bnλ, this estimator regularizes ζt at the boundary. It also induces
sparsity in the components of estimating vector ζ that eliminates the instability
due to highly correlated queries.

Algorithm 4 Regularized cost-model estimation.
1: Initialize ζ0 = 0 and R0 = εI.
2: for t=1,2,3,. . . do
3: ε̂t ← (ζt−1)Tηt − cost(st−1, q̂t)
4: γt ← λ+ (ηt)TRt−1ηt

5: Rt ← Rt−1 − 1
γt
(Rt−1ηt(ηt)TRt−1)

6: ζt ← ζt−1 − 1
γt
Rt−1ηtε̂t

7: return Rt, ζt

8: end for

The online penalized cost-model estimation algorithm obtained from this
formulation is shown in Algorithm 4. Generally, the optimal values of ε and λ
are decided using a cross-validation procedure. In Section 6.4, we are going to
derive the optimal value of ε and a probable estimation for λ for the index tuning
problem. This will decide optimal values of the hyper-parameters for a given set
of workload with theoretical performance bounds.

5.2 Performance Bound

We can depict this online cost-model estimation task as a simple game between a
decision maker and an adversary [36]. In database tuning, the decision maker is
our cost-model estimating algorithm and the adversary is the workload providing
an uncertain sequence of queries. Then, we can formulate the game as Algorithm 5.

Algorithm 5 Cost-model Estimation Game.
1: Initialize ζ0 = 0.
2: for t=1,2,3,. . . , T do
3: Algorithm 4 picks ζt ∈ Bnλ according to Equation (5)
4: Adversary picks (ηt, ct)
5: Algorithm suffers loss Lt(ζt)
6: end for

We can define the regret of this game after time step T as,

RegT :=

T∑
t=1

Lt(ζ
t)−

T∑
t=1

Lt(ζ
OPT) (6)

where ζOPT is the solution picked up by an offline expert that minimizes the
cumulative loss after time step T . RegT is the difference between cumulative
sum of errors up to time T obtained using Algorithm 4 and the optimal offline
algorithm. This regret term captures deviation of the cost-model estimated by
the Algorithm 5 from the computable optimal cost model.

As the loss function L(ζ) is the square of the error between estimated and
actual values of cost at time t, it is a convex function over the set of ζ. According
to the analysis given in [36], we can canonically describe our estimation model as
a scheme to develop a Legendre potential function Φ(ζOPT) with time t for the
given workload, where the initial value of potential is given by:

Φ0(ζ
OPT) := ‖ζOPT‖2

and its value at time t is updated as

Φt(ζ
OPT) := Φt−1(ζ

OPT) +
1

λ
Lt(ζ

t).

Now, we can re-write Equation (5) as:

ζt = argmin
ζ∈Bnλ

[
DΦ0

(ζOPT, ζt−1) +
1

λ
(∇Lt−1(ζt−1))

T
ζt−1

]
(7)

Here, DΦ0
(ζOPT, ζt−1) is the Bregman divergence [26] between ζOPT and ζt−1

along the potential field Φ0(ζ
OPT). This term in Equation (7) inclines Algorithm 4

to choose such a ζ which is nearest to optimal ζOPT on the ‖ζ‖2 manifold. Also,
∇Lt−1(ζt−1)

T ζt−1 is the change of the loss function in the direction of ζt−1.
Minimization of this term is equivalent to selection of such a ζt that minimizes
the corresponding loss. Thus, the ζt picked up by the Algorithm is the one that
minimizes a linear combination of these two terms weighted by λ. From this
formulation we can obtain the following lemma for the regret bound.

Lemma 1. After time step T , the upper bound of the regret of Algorithm 4 can
be given by

RegT 6 λ‖ζOPT‖2 + 1

λ

T∑
t=1

ε̂t
2(ηt)TRtηt. (8)

Proof. Applying Theorem 1 of [43] on Equation (7) we get the inequalities,

RegT 6 λ

[
DΦ0

(ζOPT, ζ0)−DΦT (ζOPT, ζT+1) +

T∑
t=1

DΦt(ζ
t, ζt+1)

]

6 λ

[
DΦ0

(ζOPT, ζ0) +

T∑
t=1

DΦt(ζ
t, ζt+1)

]
.

From the definition of the Legendre potential we get:

Φt(ζ) = Φt−1(ζ) +
1

λ
Lt(ζ)

= ‖ζ‖2 +
T∑
t=1

(
〈ζ,ηt〉 − cost(st−1, q̂t)

)2
= ζT

(
I +

1

λ

T∑
t=1

ηt(ηt)T

)
ζ − ζT

(
1

λ

T∑
t=1

cost(st−1, q̂t)η
t

)
+

T∑
t=1

cost(st−1, q̂t)
2

= ζT (RT)−1ζ − ζT bT + CT

where bT =
∑T
t=1 c

tηt and CT =
∑T
t=1 cost(st−1, q̂t))

2. Thus, the dual of the
potential can be given by

Φ∗t (ζ) = ζ
TRT ζ − 2ζTRT bT + (bT)

TRT bT

Now, from the definition of Φ0 and properties of Bregman divergence,

DΦ0
(ζOPT, ζ0) = D‖ζOPT‖2(ζ

OPT, ζ0)

= ‖ζOPT‖2

and

DΦt(ζ
t, ζt+1) = DΦ∗t

(
∇Φt(ζt+1),∇Φt(ζt)

)
= DΦ∗t

(
0,∇Φt(ζt)

)
= DΦ∗t

(
0,

1

λ
∇Lt(ζ

t)

)
=

1

λ2
(
∇Lt(ζ

t)
)T
Rt
(
∇Lt(ζ

t)
)

=
1

λ2
(
〈ζ,ηt〉 − cost(st−1, q̂t)

)2
(ηt)TRtηt

=
1

λ2
ε̂t

2(ηt)TRtηt.

By replacing these results in the aforementioned inequality we get:

RegT 6 λ‖ζOPT‖2 + 1

λ

T∑
t=1

ε̂t
2(ηt)TRtηt.

Lemma 2. If R0 ∈ Rn×n and invertible,

(ηt)TRtηt = 1− det(Rt)

det(Rt−1)
∀t = 1, 2, . . . , T (9)

Proof. From [19], we get if there exists an invertible matrix B ∈ Rn×n such that
A = B + xxT , where x ∈ Rn, then

xTA−1x = 1− det(B)

det(A)
(10)

As, per Algorithm 4, R0 = εI, it is invertible. Since (Rt)−1 = (Rt−1)−1+ηt(ηt)T ,
by the Sherman–Morrison formula, all Rt’s are invertible for t > 0. Thus, simply
replacing A by (Rt)−1 and B by (Rt−1)−1 in Equation (10), we obtain

(ηt)TRtηt = 1− det((Rt−1)−1)

det((Rt)−1)
= 1− det(Rt)

det(Rt−1)

since, det((Rt)−1) = 1
det(Rt) .

Using Lemmas 1 and 2, we finally derive the regret bound for the regularized
cost-model estimator in the following theorem.

Theorem 1. If we consider the error as a bounded function such that 0 6 ε̂t
2 6

Emax and ‖ηt‖∞ 6 δ,

RegT 6 λ‖ζOPT‖2 + Emax

λ

[
nln

(
1 +

εδ2T

n

)
− (n− 1)ln(ε)

]
(11)

where R0 = εI.

Proof. Let us assume the squared error has an upper bound Emax for a given
workload. Under this assumption, we get from Equations (8) and (9),

RegT 6 λ‖ζOPT‖2 + Emax

λ

T∑
t=1

(
1− det(Rt)

det(Rt−1)

)

6 λ‖ζOPT‖2 − Emax

λ

T∑
t=1

ln

(
det(Rt)

det(Rt−1)

)
= λ‖ζOPT‖2 + Emax

λ
ln

(
det(R0)

det(RT)

)
= λ‖ζOPT‖2 + Emax

λ

[
ln(ε)− ln(det(RT))

]
= λ‖ζOPT‖2 + Emax

λ

[
ln(ε) + ln

(
det

(
1

ε
I +

T∑
t=1

ηt(ηt)T

))]

= λ‖ζOPT‖2 + Emax

λ

[
n∑
k=1

ln (1 + ελk)− (n− 1) ln(ε)

]
.

Because

det

(
1

ε
I +

T∑
t=1

ηt(ηt)T

)
= ε−ndet

(
I + ε

T∑
t=1

ηt(ηt)T

)
= ε−n

n∏
k=1

(1 + ελk)

where λ1, . . . , λn are eigenvalues of the matrix
∑T
t=1 η

t(ηt)T . As the eigenvalues
of
∑T
t=1 η

t(ηt)T are equal to the eigenvalues of its Gram matrix Gij = (ηi)Tηj ,

we can write

n∑
k=1

λk = Trace(G) =

T∑
t=1

(ηt)Tηt 6 δ2T

where ‖ηt‖∞ 6 δ, that is, the maximum value of any component of η is bounded
by δ. In the above inequality, the equality holds if and only if λ1 = λ2 = . . . =

λn = δ2T
n . By applying this condition, we get the regret bound as

RegT 6 λ‖ζOPT‖2 + Emax

λ

[
nln

(
1 +

εδ2T

n

)
− (n− 1)ln(ε)

]
.

This theorem shows that our estimation of the cost model using Algorithm 4
is always upper bounded by a constant value depending on the optimal solution
added with a term that increases with time logarithmically. This shows that
the regret, which is the cumulative deviation of the cost model computed by
Algorithm 4 with respect to the optimal one, increases very slowly with time.
That means the error of estimation in each and every time step is considerably
small.

6 Case Study: Index Tuning

In this section we present COREIL (for Cost-model Oblivious REInforcement
Learning algorithm) and its regularized version, rCOREIL. COREIL and rCOR-
EIL instantiate Algorithm 3 taking as cost-model estimators Algorithms 2 and 4
respectively. Both of them tune the configurations differing in their secondary
indexes and handle the configuration changes corresponding to the creation
and deletion of indexes. COREIL uses reinforcement learning approach to solve
the index tuning problem on-the fly. It projects index tuning as an MDP and
applies Algorithm 3 to solve it. On the other hand, rCOREIL uses the regularized
cost-model estimator, described in Section 5.1; rCOREIL’s regularized estimator
affords it to leverage the fact that if we serve the learning algorithm with a better
cost-model to evaluate its policy better, it will perform better. In this section,
we also define the feature mappings φ and η for both COREIL and rCOREIL.
They are used to approximate the cost-to-go function V and the cost function
respectively. At the end of this section we prove tighter performance bounds
for Algorithm 4 in case of index tuning. We also derive optimal values of the
parameters λ and ε for a given workload.

6.1 Reducing the Search Space

Let I be the set of indexes that can be created. Each configuration s ∈ S is an
element of the power set 2I . For example, 7 attributes in a schema of R yield a
total of 13699 indexes and a total of 213699 possible configurations. Such a large
search space invalidates a naive brute-force search for the optimal policy.

For any query q̂, let r(q̂) be a function that returns a set of recommended
indexes. This function may be already provided by the database system (e.g., as
with IBM DB2), or it can be implemented externally [1]. Let d(q̂) ⊆ I be the set
of indexes being modified (update, insertion or deletion) by q̂. We can define the
reduced search space as

Ss,q̂ = {s′ ∈ S | (s− d(q̂)) ⊆ s′ ⊆ (s ∪ r(q̂))}. (12)

Deleting indexes in d(q̂) will reduce the index maintenance overhead and creating
indexes in r(q) will reduce the query execution cost. Note that the definition
of Ss,q̂ here is a subset of the one defined in Section 4.2 which deals with the
general configurations.

Note that for tree-structured indexes (e.g., B+-tree), we could further consider
the prefix closure of indexes for optimization. For any configuration s ∈ 2I , define
the prefix closure of s as

〈s〉 = {i ∈ I | i is a prefix of an index j for some j ∈ s}. (13)

Thus in Equation (12), we use 〈r(q̂)〉 to replace r(q̂) for better approximation.
The intuition is that in case of i /∈ s but i ⊆ 〈s〉 we can leverage the prefix index
to answer the query.

6.2 Defining the Feature Mapping φ

Let V be the cost-to-go function following a policy. As mentioned earlier, Algo-
rithm 3 relies on a proper feature mapping φ that approximates the cost-to-go
function as V (s) ≈ θTφ(s) for some vector θ. The challenge lies in how to define
φ under the scenario of index tuning. Both in COREIL and rCOREIL, we define
it as

φs′(s) :=

{
1, if s′ ⊆ s
−1, otherwise

for each s, s′ ∈ S. Let φ = (φs′)s′∈S . Note that φ∅ is an intercept term since
φ∅(s) = 1 for all s ∈ S. The following proposition shows the effectiveness of φ
for capturing the values of the cost-to-go function V .

Proposition 3. There exists a unique θ = (θs′)s′∈S which approximates the
value function as

V (s) =
∑
s′∈S

θs′φs′(s) = θ
Tφ(s). (14)

Proof. Suppose S = {s1, s2, . . . , s|S|}. Note that we use superscripts to denote
the ordering of elements in S.

Let V = (V (s))Ts∈S and M be a |S| × |S| matrix such that

Mi,j = φsj (s
i).

Let θ be a |S|-dimension column vector such that Mθ = V . If M is invertible
then θ =M−1V and thus Equation (14) holds.

We now show that M is invertible. Let ψ be a |S| × |S| matrix such that

ψi,j =Mi,j + 1.

We claim that ψ is invertible and its inverse is the matrix τ such that

τi,j = (−1)|s
i|−|sj |ψi,j .

To see this, consider

(τψ)i,j =
∑

16k6|S|

(−1)|s
i|−|sk|ψi,kψk,j

=
∑

sj⊆sk⊆si

(−1)|s
i|−|sk|.

Therefore (τψ)i,j = 1 if and only if i = j. By the Sherman-Morrison formula, M
is also invertible.

However, for any configuration s, θ(s) is a |2I |-dimensional vector. In order
to reduce the dimensionality, the cost-to-go function can be approximated by
V (s) ≈

∑
s′∈S,|s′|6N θs′φs′(s) for some integer N . Here we assume that the

collaborative benefit among indexes could be negligible if the number of indexes
exceeds N . In particular when N = 1, we have

V (s) ≈ θ0 +
∑
i∈I

θiφi(s). (15)

where we ignore all the collaborative benefits among indexes in a configuration.
This is reasonable since any index in a database management system is often of
individual contribution for answering queries [32]. Therefore, we derive φ from
Equation (15) as φ(s) = (1, (φi(s))

T
i∈I)

T . By using this feature mapping φ, both
COREIL and rCOREIL approximate the cost-to-go function V (s) ≈ θTφ(s) for
some vector θ.

6.3 Defining the Feature Mapping η
A good feature mapping for approximating functions δ and cost must take into
account both the benefit from the current configuration and the maintenance
overhead of the configuration.

To capture the difference between the index set recommended by the database
system and that of the current configuration, we define a function β(s, q̂) =
(1, (βi(s, q̂))

T
i∈I)

T , where

βi(s, q̂) :=

0, i /∈ r(q̂)
1, i ∈ r(q̂) and i ∈ s
−1, i ∈ r(q̂) and i /∈ s.

If the execution of query q̂ cannot benefit from index i then βi(s, q̂) always equals
zero; otherwise, βi(s, q̂) equals 1 or -1 depending on whether s contains i or
not. For tree-structured indexes, we could further consider the prefix closure of
indexes as defined in Equation (13) for optimization.

On the other hand, to capture whether a query (update, insertion or deletion)
modifies any index in the current configuration, we define a function α(s, q̂) =
(αi(s, q̂))i∈I where

αi(s, q̂) =

{
1, if i ∈ s and q̂ modify i
0, otherwise.

Note that if q̂ is a selection query, α trivially returns 0.
By combining β and α, we get the feature mapping η = (βT ,αT)T used in

both of the algorithms. It can be used to approximate the functions δ and cost
as described in Section 4.3.

6.4 Performance Bounds for Regularized COREIL

rCOREIL applies Algorithm 4 for cost-model estimation, while COREIL uses
RLSE for this. If we follow Algorithm 3, on line 13 rCOREIL calls the regularized
cost-model estimator with arguments ε̂t, Rt−1, ζt−1,ηt instead of RLSE. Following
Theorem 1 and the construction of the feature map in Section 6.3, Proposition 4
gives a tighter regret bound for the cost-model estimation of rCOREIL.

Proposition 4. If we consider the error as a bounded function such that 0 6
ε̂t

2 6 Emax:

RegrCOREILT 6 λ‖ζOPT ‖2 + Emax

λ
[2nlnT − nlnn] (16)

and the optimal value for ε is given by:

ε∗ =
n2 − n
T

.

Proof. From Section 6.3, ‖ηt‖∞ 6 1. Equation (11) transforms into

RegrCOREILT 6 λ‖ζOPT ‖2 + Emax

λ

[
nln

(
1 +

εT

n

)
− (n− 1)ln(ε)

]
.

Now, we determine the optimal value of ε by minimizing the RHS of above
inequality as this will impose tighter limit on the bound. Thus,[

∂(RHS)
∂ε

]
ε∗=0

= 0.

By solving this, we get ε∗ = n2−n
T . Substituting this value in the previous

inequality gives us the regret bound for regularized COREIL algorithm as

RegrCOREILT 6 λ‖ζOPT ‖2 + Emax

λ
[2nln(T)− nln(n)] .

0 500 1,000 1,500 2,000 2,500 3,000
0

1,000

2,000

3,000

4,000

5,000

Query #

T
im

e
(m

s)

COREIL
WFIT

Fig. 1. Evolution of the efficiency (total time per query) of the two systems from the
beginning of the workload (smoothed by averaging over a moving window of size 20)

Similarly, we can also find out the optimal value of λ that will make the upper
bound tightest.

Corollary 1. If the value of optimal solution ζOPT can be predicted beforehand,
the optimal value of λ is given by

λ∗ =
Emax

‖ζOPT ‖2
[2nln(T)− nln(n)]

where the stopping time T is given.

Proof. As an optimal λ will minimize the RHS of Equation (16), we get it by
setting the partial derivative of the RHS with respect to λ as zero. This simply
gives us, λ∗ = Emax

‖ζOPT ‖2 [2nln(T)− nln(n)].

Substituting the optimal value of λ in Equation (16) for a given T and ζOPT ,
we get

RegrCOREILT 6 ‖ζOPT ‖2 + Emax [2nln(T)− nln(n)] .
For large n and comparatively smaller T , [2nln(T)− nln(n)] is a negative number
that makes the plausible error in cost-model estimation much smaller than even
the magnitude of the optimal ζ vector. This shows the guarantee on the quality
of the cost-model estimated by rCOREIL once the parameters are properly set.

7 Performance Evaluation

In this section, we present an empirical evaluation of COREIL and rCOREIL
through two sets of experiments. In the first set of experiments, we implement

COREIL WFIT
100

200

300

400

500

600

700

800

T
im

e
(m

s)

Fig. 2. Box chart of the efficiency (total time per query) of the two systems. We show
in both cases the 9th and 91th percentiles (whiskers), first and third quartiles (box)
and median (horizontal rule).

a prototype of COREIL in Java. We compare its performance with that of the
state-of-the-art WFIT algorithm [40] (briefly described in Section 7.2). In the
results, we can see that COREIL shows competitive performance with WFIT but
has higher variance. This validates the efficiency of the reinforcement learning
approach to solve the index tuning problem on the fly. This shows that, even
without any assumption of a pre-determined cost model, it is possible to perform
at the level of the state-of-the-art.

In the second set of experiments, we evaluate the performance of rCOREIL
with respect to COREIL. The results show enhancements in performance by
rCOREIL as reasoned in Section 5. This validates the claim in Section 5 that the
higher variance of COREIL is due to suboptimal use of the RLSE algorithm. It
also establishes the fact that if we serve the learning algorithm with an enhanced
estimation of cost-model, it improves the performance substantially. In these
experiments, we also check the sensitivity of rCOREIL with respect to the
parameter λ and cross-validate the optimal value for the given workload.

7.1 Dataset and Workload

The dataset and workload is conforming to the TPC-C specification [31] and
generated by the OLTP-Bench tool [15]. The 5 types of transactions in TPC-C
are distributed as NewOrder 45%, Payment 43%, OrderStatus 4%, Delivery 4%
and StockLevel 4%. Each of these transactions are associated with 3 ∼ 5 SQL
statements (query/update). The scale factor used throughout the experiments
is 2. We do not leverage any repetition or periodicity of the workload in our
approach; still for robustness there may be up to 10% of repetition of queries.

0 500 1,000 1,500 2,000 2,500 3,000
0

500

1,000

1,500

Query #

T
im

e
(m

s)

COREIL
WFIT

Fig. 3. Evolution of the overhead (time of the optimization itself) of the two systems
from the beginning of the workload (smoothed by averaging over a moving window of
size 20)

Note that [40] additionally uses the dataset NREF in its experiments. However,
this dataset and workload are not publicly available.

7.2 WFIT: Brief Description

WFIT is proposed in [40] as a method of semi-automatic index tuning. This
algorithm keeps the database administrator “in the loop” by generating recom-
mendations. These recommendations are generated through a feedback loop
originating from the administrator’s preferences. This process is based on the
Work Function Algorithm [8]. In order to determine the change of configura-
tion, WFIT considers all the queries observed in the past. Then it solves a
deterministic problem of minimizing the total processing cost. However, while
doing so, it assumes the existence of a pre-determined cost model served by the
database system or administrator. Due to use of a pre-defined cost model for all
the datasets and workloads it faces the problems discussed in the Introduction.
Results documented in the following sections will show the importance of a
reinforcement learning approach to make the process generic and cost-model
oblivious.

7.3 COREIL: Experiments and Results

Experimental Set-up We conduct all the experiments on a server running
IBM DB2 10.5. The server is equipped with Intel i7-2600 Quad-Core @ 3.40 GHz
and 4 GB RAM. We measure wall-clock times for execution of all components.

0 500 1,000 1,500 2,000 2,500 3,000
0

5,000

10,000

15,000

20,000

Query #

T
im

e
(m

s)

COREIL
WFIT

Fig. 4. Evolution of the time taken by configuration change (index creation and destruc-
tion) of the two systems from the beginning of the workload; no configuration change
happens past query #700. All values except the vertical lines shown in the figure are
zero.

Specially, for execution of workload queries or index creating/dropping, we
measure the response time of processing corresponding SQL statement in DB2.
Additionally, WFIT uses the what-if optimizer of DB2 to evaluate the cost. In
this setup, each query is executed only once and all the queries were generated
from one execution history.

Efficiency Figure 1 shows the total cost of processing TPC-C queries for online
index tuning of COREIL and WFIT. Total cost consists of the overhead of
corresponding tuning algorithm, cost of configuration change and that of query
execution. Results show that, after convergence, COREIL has lower processing
cost most of the time. But COREIL converges slower than WFIT, which is
expected since it does not rely on the what-if optimizer to guide the index
creations. 4 With respect to the whole execution set, the average processing cost
of COREIL (451 ms) is competitive to that of WFIT (452 ms). However, if we
calculate the average processing cost of the 500th query forwards, the average
performance of COREIL (357 ms) outperforms that of WFIT (423 ms). To obtain
further insight from these data, we study the distribution of the processing time
per query, as shown in Figure 2. As can be seen, although COREIL exhibits
larger variance in the processing cost, its median is significantly lower that that

4 By convergence we mean the first stable patch in Figure 1 after the series of high
spikes, around the 500th query. The convergence point is qualitatively chosen by
observing characteristics of the curve.

0 500 1,000 1,500 2,000 2,500 3,000

101

102

103

Query #

T
im

e
(m

s)

COREIL
WFIT

Fig. 5. Evolution of the effectiveness (query execution time in the DBMS alone) of the
two systems from the beginning of the workload (smoothed by averaging over a moving
window of size 20); logarithmic y-axis

of WFIT. All these results confirms that COREIL has better efficiency than
WFIT under a long term execution.

Figures 3 and 4 show analysis of the overhead of corresponding tuning
algorithm and cost of configuration change respectively. By comparing Figure 1
with Figure 3, we can see that the overhead of the tuning algorithm dominates
the total cost and the overhead of COREIL is significantly lower than that of
WFIT. In addition, WFIT tends to make costlier configuration changes than
COREIL, which is reflected in a higher time for configuration change. This would
be discussed further in the micro-analysis. Note that both methods converge
rather quickly and no configuration change happens beyond the 700th query.

A possible reason for the comparatively smaller overhead of COREIL with
respect to WFIT, in addition to not relying on a possibly costly what-if optimizer,
is the MDP structure. In MDPs, all the history of the system is assumed to be
summarized in the present state and the cost-function. Thus, COREIL has to do
less book-keeping than WFIT.

Effectiveness To verify the effectiveness of indexes created by the tuning
algorithms, we extract the cost of query execution from the total cost. Figure 5
(note the logarithmic y-axis) indicates that the set of indexes created by COREIL
shows competitive effectiveness with that created by WFIT, though WFIT is
more effective in general and exhibits less variance after convergence. Again, this
is to be expected since COREIL does not have access to any cost model for the
queries. As previously noted, the total running time is lower for COREIL than

COREIL λ300 λ350 λ400 λ450 λ500

1,700

1,800

1,900

2,000

2,100
T
im

e
(m

s)

Fig. 6. Box chart of the efficiency (total time per query) of COREIL and its improved
version with different values of λ. We show in both cases the 9th and 91st percentile
(whiskers), first and third quartiles (box) and median (horizontal rule).

WFIT, as overhead rather than query execution dominates running time for both
systems.

We have also performed a micro-analysis to check whether the indexes created
by the algorithms are reasonable. We observe that WFIT creates more indexes
with longer compound attributes, whereas COREIL is more parsimonious in
creating indexes. For instance, WFIT creates a 14-attribute index as shown
below.

[S_W_ID, S_I_ID, S_DIST_10, S_DIST_09, S_DIST_08, S_DIST_07,
S_DIST_06, S_DIST_05, S_DIST_04, S_DIST_03, S_DIST_02,
S_DIST_01, S_DATA, S_QUANTITY]

The reason of WFIT creating such a complex index is probably due to multiple
queries with the following pattern.

SELECT S_QUANTITY, S_DATA, S_DIST_01, S_DIST_02, S_DIST_03,
S_DIST_04, S_DIST_05, S_DIST_06, S_DIST_07, S_DIST_08,
S_DIST_09, S_DIST_10

FROM STOCK
WHERE S_I_ID = 69082 AND S_W_ID = 1;

In contrast, COREIL tends to create shorter compound-attribute indexes.
For example, COREIL created an index [S_I_ID, S_W_ID] which is definitely
beneficial to answer the query above and is competitive in performance compared
with the one created by WFIT.

0 500 1,000 1,500 2,000 2,500 3,000

1,600

1,800

2,000

2,200

2,400

Query #

T
im

e
(m

s)

COREIL
rCOREIL

Fig. 7. Evolution of the efficiency (total time per query) of COREIL and rCOREIL
with λ = 400 from the beginning of the workload (smoothed by averaging over a moving
window of size 20)

7.4 rCOREIL: Experiments and Results

Experimental Set-up We run COREIL and rCOREIL, with a set of λ val-
ues 300, 350, 400, 450, and 500. The previous set of experiments have already
established competitive performance of COREIL with WFIT. In this set we
evaluate the basic idea of rCOREIL: providing regularized estimation of cost-
model enhances the performance of COREIL and also stabilizes it. We conduct
all the experiments on a server running IBM DB2 10.5 with scale factor and
time measure, mentioned in the previous set of experiments. But here the server
is installed on a 64 bit Windows virtual box with dual-core 2-GB hard disk.
It operates in an Ubuntu machine with Intel i7-2600 Quad-Core @ 3.40 GHz
and 4 GB RAM. This eventually makes both version of algorithms slower in
comparison to the previous physical machine installation.

Efficiency As the offline optimal outcome for this workload is unavailable
beforehand, we set an expected range of λ as [300, 600] depending on the other
parameters like the number of queries and the size of state space. Figure 6 shows
efficiency of COREIL and rCOREIL with different values of λ. As promised
by Algorithm 4, variations of rCOREIL are always showing lesser median and
variance of total cost. We can also observe from the boxplot, the efficiency is
maximum as well as the variance is minimum for λ = 400. As efficiency is the final
measure that controls runtime performance of the algorithm, we have considered
this as optimal value of λ for further analysis. This process is analogous to
cross-validation of parameter λ, where the proved bounds help us to set a range

0 500 1,000 1,500 2,000 2,500 3,000

1,600

1,800

2,000

2,200

2,400

Query #

T
im

e
(m

s)

COREIL
rCOREIL

Fig. 8. Evolution of the overhead (time of the optimization itself) of COREIL and
rCOREIL with λ = 400 from the beginning of the workload (smoothed by averaging
over a moving window of size 20)

of values for searching it instead of going through an arbitrary large range of
values. Though here we are validating depending upon the result obtained from
the whole run of 3,000 queries in the workload, the optimal λ would typically
be set, in a realistic scenario, after running first 500 queries of the workload
with different parameter values and then choosing the optimal one. Figure 7
shows that rCOREIL with λ = 400 outperforms COREIL. With respect to the
whole execution set, the average processing cost of rCOREIL is 1758 ms which is
significantly less than that of COREIL (1975 ms). Also the standard deviation
of rCOREIL is 90ms which is half of that of COREIL, 180ms. This enhanced
performance and low variance establishes the claim that if we serve the learning
algorithm with a better estimation of cost-model it will improve.

Figures 8 and 9 show analysis of the overhead of corresponding tuning
algorithms and cost of configuration change respectively. In this set of experiments
also, we can see that the overhead of the tuning algorithms dominates their total
cost. Here, the overhead of rCOREIL for each query is on an average 207ms lower
than that of COREIL. This is more than 10% improvement over the average
overhead of COREIL. In addition, rCOREIL (mean: 644ms) also makes cheaper
configuration changes than COREIL (mean: 858ms). rCOREIL also converges
faster than COREIL as the last configuration update made by rCOREIL occurs
at the 335thquery but the last two updates for COREIL occur at the 358th and
1940th queries respectively. If we look closely, the 358th and 1940th queries in
this particular experiment are:

SELECT COUNT(DISTINCT (S_I_ID)) AS STOCK_COUNT

0 500 1,000 1,500 2,000 2,500 3,000
0

1,000

2,000

3,000

4,000

Query #

T
im

e
(m

s)

COREIL
rCOREIL

Fig. 9. Evolution of the time taken by configuration change (index creation and de-
struction) of COREIL and rCOREIL with λ = 400 from the beginning of the workload;
no configuration change happens past query #2000. All values except the vertical lines
shown in the figure are zero.

FROM ORDER_LINE, STOCK
WHERE OL_W_ID = 2 AND OL_D_ID = 10 AND OL_O_ID < 3509

AND OL_O_ID >= 3509 - 20 AND S_W_ID = 2
AND S_I_ID = OL_I_ID AND S_QUANTITY < 20;

and

SELECT COUNT(DISTINCT (S_I_ID)) AS STOCK_COUNT
FROM ORDER_LINE, STOCK
WHERE OL_W_ID = 1 AND OL_D_ID = 8 AND OL_O_ID < 3438

AND OL_O_ID >= 3438 - 20 AND S_W_ID = 1
AND S_I_ID = OL_I_ID AND S_QUANTITY < 11;

In reaction to this, COREIL creates indexes [ORDER_LINE.OL_D_ID,ORDER_LINE.
OL_W_ID] and [STOCK.S_W_ID, STOCK.S_QUANTITY] respectively. It turns out
that such indexes are not of much use for most other queries (only 6 out of 3000
queries benefit of one of these indexes). COREIL makes configuration updates to
tune the indexes for such queries, while the regularized cost model of rCOREIL
does not make configuration updates due to rare and complex events, because
it regularizes any big change due to such an outlier. Instead, rCOREIL has a
slightly higher the overhead to find out the optimal indexes. For example, in
the window consisting of 10 queries after the 359th query average overhead of
rCOREIL increases from 1724ms to 1748ms.

0 500 1,000 1,500 2,000 2,500 3,000
100

101

Query #

T
im

e
(m

s)

COREIL
rCOREIL

Fig. 10. Evolution of the effectiveness (query execution time in the DBMS alone) of
COREIL and rCOREIL with λ = 400 from the beginning of the workload (smoothed
by averaging over a moving window of size 20); logarithmic y-axis

Effectiveness Like Section 7.3, here also we extract the cost of query execution
to verify the effectiveness of indexes created by the tuning algorithms. Figure 10
indicates that the set of indexes created by rCOREIL are significantly more
effective than those created by COREIL. We can see the average query execution
time of rCOREIL is less than that of COREIL almost by a factor of 10.

At a micro-analysis level, we observe rCOREIL creates only one index with
two combined attributes, all other indexes being single-attribute. On the other
hand, COREIL creates only one index with a single attribute whereas all other
indexes have two attributes. This observation shows that though COREIL creates
parsimonious and efficient indexes, rCOREIL shows even better specificity and
effectiveness in doing so.

7.5 Analysis of Cost Estimator

In order to examine the quality of the three cost estimators used by WFIT, COR-
EIL, and rCOREIL to predict the actual cost of query executions or configuration
updates, we observe the actual execution time, the estimated cost, and that
returned by the what-if optimizer during every run of experiments for COREIL
and rCOREIL, respectively. The scatter plot of Figure 11 shows that the what-if
cost has significantly less correlation (0.013) with the actual execution time than
COREIL (0.1539) Again, the scatter plot of Figure 12 shows the regularized cost
estimated by rCOREIL has significantly higher positive correlation (0.1558) than
that predicted by the what-if optimizer. This proves that the execution time
estimated by COREIL and rCOREIL are significantly more reliable than the

0 100 200 300

0

200

400

600

800

Execution time (ms)

C
O
R
E
IL

es
ti
m
at
ed

co
st

0 100 200 300

100

101

102

103

104

Execution time (ms)

W
ha

t-
if
es
ti
m
at
ed

co
st

Fig. 11. Scatter plot of the estimated cost by COREIL and the what-if optimizer vs
execution time. Left shows correlation between cost estimated by COREIL and actual
execution time (in ms). Right shows (on a log y-axis) correlation between the cost
estimated by the what-if optimizer and the actual execution time (in ms) in the same
run.

ones estimated by what-if optimizer. It can also been observed that rCOREIL
provides better estimations: visually, there are many more points at the middle
of Figure 12 (left) with positive inclination.

Finally, Figure 13 shows that the regularized cost model estimator of rCOREIL
gives a more stable estimation of the cost model than that of COREIL, as the cost
model estimated by COREIL (averaged over 20 queries) shows higher variance
and also sensitivity to changes in types of queries.

8 Conclusion

We have presented a cost-model oblivious solution to the problem of performance
tuning. We first formalized the problem as a Markov decision process. Then we
devised and presented a solution, which addresses both issues of the curse of
dimensionality and of over-fitting. We instantiated the problem to the case of index
tuning. For this case, we implemented and evaluated the COREIL and rCOREIL
algorithms, with and without regularization, respectively. Experiments show
competitive performance with respect to the state-of-the-art WFIT algorithm,
despite our approach being cost-model oblivious. We also show that as our cost-
model estimation becomes crisp and stable the performance of learner improves
significantly. Beyond the material presented in this paper, we continue studying
the universality and robustness of the COREIL and rCOREIL approaches.

Specially for rCOREIL, it is an interesting problem to determine the optimal
regularization parameter on the go or to adapt it with the dynamics of workload.
Though now this process causes us only a one-time up-front cost, following the

0 200 400 600
0

0.5

1

Execution Time (ms)

rC
O
R
E
IL

E
st
im

at
ed

C
os
t

0 200 400 600

101

102

103

104

Execution Time (ms)

W
ha

t-
if
E
st
im

at
ed

C
os
t

Fig. 12. Scatter plot of the estimated cost by rCOREIL and the what-if optimizer vs
execution time. Left shows correlation between cost estimated by rCOREIL and actual
execution time (in ms). Right shows (on a log y-axis) correlation between the cost
estimated by the what-if optimizer and the actual execution time (in ms) in the same
run.

flavour of our approach we would like to perform it online. One possible method
is to run COREIL for the first 500 queries and to calculate the costs for different
set of regularization parameter values simultaneously for that period. Following
that, we can choose the parameter value that causes minimum average estimation
of the cost function.

We are now running further empirical performance evaluation tests with other
datasets such as TPC-E, TPC-H and dedicated benchmarks for online index
tuning [38]. For completeness from an engineering perspective, we are considering
concurrent access, which was ignored in the algorithm and experiments presented
in this paper for the sake of simplicity. We are also going to look at the favourable
case of predictable workload such as periodic transactions. Furthermore, we
are extending the solution to other aspects of database configuration, including
partitioning and replication. For each of these aspects, we need to devise specific
and non-trivial heuristics that help curb the combinatorial explosion of the
configuration space as well as specific intelligent initialization techniques.

Finally, note that a critical assumption in our approach is that queries arrive
sequentially and that nothing is known ahead of time about the workload. Both
assumptions do not held in a number of realistic settings: queries can be submitted
concurrently to the database, and a workload may often be predictable (such as
when it consists of similar transactions, repeated on different data items). We
leave for further work the adaptation of rCOREIL to such settings.

0 500 1,000 1,500 2,000 2,500 3,000

10−3

10−2

10−1

100

101

102

103

Query #

E
st
im

at
ed

C
os
t

COREIL
rCOREIL

Fig. 13. Evolution of the estimated costs of COREIL and rCOREIL with λ = 400 from
the beginning of the workload (smoothed by averaging over a moving window of size
20); logarithmic y-axis

Acknowledgement

We thank Prof. Haibo Chen for valuable feedback on this work. This research is
funded by the National Research Foundation Singapore under its Campus for
Research Excellence and Technological Enterprise (CREATE) programme with
the SP2 project of the Energy and Environmental Sustainability Solutions for
Megacities – E2S2 programme.

References

1. Agrawal, S., Chaudhuri, S., Narasayya, V.R.: Automated selection of materialized
views and indexes in sql databases. In: Proceedings of the 26th International
Conference on Very Large Data Bases (VLDB’00). pp. 496–505 (2000)

2. Agrawal, S., Narasayya, V., Yang, B.: Integrating vertical and horizontal partitioning
into automated physical database design. In: Proceedings of the 2004 ACM SIGMOD
International Conference on Management of Data (SIGMOD’04). pp. 359–370 (2004)

3. Alagiannis, I., Idreos, S., Ailamaki, A.: H2o: A hands-free adaptive store. In:
Proceedings of the 2014 ACM SIGMOD International Conference on Management
of Data (SIGMOD’14) (2014)

4. Audibert, J.Y., Munos, R., Szepesvári, C.: Exploration-exploitation tradeoff using
variance estimates in multi-armed bandits. Theoretical Computer Science 410(19)
(2009)

5. Azefack, S., Aouiche, K., Darmont, J.: Dynamic index selection in data warehouses.
CoRR abs/0809.1965 (2008), http://arxiv.org/abs/0809.1965

http://arxiv.org/abs/0809.1965

6. Basu, D., Lin, Q., Chen, W., Vo, H.T., Yuan, Z., Senellart, P., Bressan, S.: Cost-
model oblivious database tuning with reinforcement learning. In: Proc. DEXA. pp.
253–268. Valencia, Spain (Sep 2015)

7. Benedikt, M., Bohannon, P., Bruns, G.: Data cleaning for decision support. In: Pro-
ceedings of the 1st International VLDB Workshop on Clean Databases (CleanDB’06)
(2006)

8. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press (1998)

9. Bouchakri, R., Bellatreche, L., Hidouci, K.W.: Advances in Databases and Infor-
mation Systems: 16th East European Conference, ADBIS 2012, Poznań, Poland,
September 18-21, 2012. Proceedings, chap. Static and Incremental Selection of Multi-
table Indexes for Very Large Join Queries, pp. 43–56. Springer Berlin Heidelberg,
Berlin, Heidelberg (2012), http://dx.doi.org/10.1007/978-3-642-33074-2_4

10. Bruno, N., Chaudhuri, S.: An online approach to physical design tuning. In: Pro-
ceedings of the 23th IEEE International Conference on Data Engineering (ICDE’07).
pp. 826–835 (2007)

11. Bruno, N., Chaudhuri, S.: Constrained physical design tuning. Proceedings of the
VLDB Endowment 1(1), 4–15 (2008)

12. Bruno, N., Chaudhuri, S.: Interactive physical design tuning. In: Proceedings of the
26th IEEE International Conference on Data Engineering (ICDE’10). pp. 1161–1164
(2010)

13. Bruno, N., Nehme, R.V.: Configuration-parametric query optimization for physical
design tuning. In: Proceedings of the 2008 ACM SIGMOD International Conference
on Management of Data (SIGMOD’08). pp. 941–952 (2008)

14. Chaudhuri, S., Narasayya, V.: Autoadmin: What-if index analysis utility. In: Pro-
ceedings of the 1998 ACM SIGMOD International Conference on Management of
Data (SIGMOD’98). pp. 367–378 (1998)

15. Difallah, D.E., Pavlo, A., Curino, C., Cudre-Mauroux, P.: Oltp-bench: An exten-
sible testbed for benchmarking relational databases. Proceedings of the VLDB
Endowment 7(4), 277–288 (2013)

16. Gouriten, G., Maniu, S., Senellart, P.: Scalable, generic, and adaptive systems for
focused crawling. In: Proceedings of the 25th ACM Conference on Hypertext and
Social Media (HT’14). pp. 35–45 (2014)

17. Hammer, M., Niamir, B.: A heuristic approach to attribute partitioning. In: Pro-
ceedings of the 1979 ACM SIGMOD International Conference on Management of
Data (SIGMOD’79). pp. 93–101 (1979)

18. Lagoudakis, M.G., Parr, R.: Least-squares policy iteration. The Journal of Machine
Learning Research 4, 1107–1149 (2003)

19. Lai, T.L., Wei, C.Z.: Least squares estimates in stochastic regression models with
applications to identification and control of dynamic systems. The Annals of
Statistics pp. 154–166 (1982)

20. LeFevre, F., Sankaranarayanan, J., Hacigumus, H., Tatemura, J., Polyzotis, N.,
Carey, M.J.: Exploiting opportunistic physical design in large-scale data analytics. In:
Proceedings of the 2014 ACM SIGMOD International Conference on Management
of Data (SIGMOD’14) (2014)

21. Li, L., Gruenwald, L.: Self-managing online partitioner for databases (smopd):
A vertical database partitioning system with a fully automatic online approach.
In: Proceedings of the 17th International Database Engineering and Applications
Symposium (IDEAS’13). pp. 168–173 (2013)

http://dx.doi.org/10.1007/978-3-642-33074-2_4

22. Lightstone, S., Bhattacharjee, B.: Automated design of multidimensional clustering
tables for relational databases. In: Proceedings of the 30th International Conference
on Very Large Data Bases (VLDB’04). pp. 1170–1181 (2004)

23. Lohman, G.M.: Is query optimization a “solved” problem? http://wp.sigmod.org/
?p=1075 (2014)

24. Luhring, M., Sattler, K.U., Schmidt, K., Schallehn, E.: Autonomous management of
soft indexes. In: Proceedings of the 2nd International Workshop on Self-Managing
Data Bases (SMDB’07). pp. 450–458 (2007)

25. Malik, T., Wang, X., Dash, D., Chaudhary, A., Ailamaki, A., Burns, R.: Adaptive
physical design for curated archives. In: Proceedings of the 21st International
Conference on Scientific and Statistical Database Management (SSDBM’09). pp.
148–166 (2009)

26. Nielsen, F., Bhatia, R.: Matrix information geometry. Springer (2013)
27. Papadomanolakis, S., Dash, D., Ailamaki, A.: Efficient use of the query optimizer

for automated physical design. In: Proceedings of the 33rd International Conference
on Very Large Data Bases (VLDB’07). pp. 1093–1104 (2007)

28. Papadomanolakis, S., Dash, D., Ailamaki, A.: Efficient use of the query optimizer
for automated physical design. In: Proceedings of the 33rd International Conference
on Very Large Data Bases (VLDB’07). pp. 1093–1104 (2007)

29. Powell, W.B.: Approximate Dynamic Programming: Solving the Curses of Dimen-
sionality. Wiley-Interscience (2007)

30. Puterman, M.L.: Markov decision processes: discrete stochastic dynamic program-
ming, vol. 414. John Wiley & Sons (2009)

31. Raab, F.: TPC-C - the standard benchmark for online transaction processing
(OLTP). In: Gray, J. (ed.) The Benchmark Handbook. Morgan Kaufmann (1993)

32. Ramakrishnan, R., Gehrke, J., Gehrke, J.: Database management systems, vol. 3.
McGraw-Hill New York (2003)

33. Rao, J., Zhang, C., Megiddo, N., Lohman, G.: Automating physical database design
in a parallel database. In: Proceedings of the 2002 ACM SIGMOD International
Conference on Management of Data (SIGMOD’02). pp. 558–569 (2002)

34. Rasin, A., Zdonik, S.: An automatic physical design tool for clustered column-
stores. In: Proceedings of the 16th International Conference on Extending Database
Technology (EDBT’13). pp. 203–214 (2013)

35. Rieser, V., Robinson, D.T., Murray-Rust, D., Rounsevell, M.: A comparison of
genetic algorithms and reinforcement learning for optimising sustainable forest
management. GeoComputation (2011)

36. Rockafellar, R.T.: Convex analysis. Princeton university press (2015)
37. Rösch, P., Dannecker, L., Färber, F., Hackenbroich, G.: A storage advisor for

hybrid-store databases. Proceedings of the VLDB Endowment 5(12), 1748–1758
(2012)

38. Schnaitter, K., Polyzotis, N.: A benchmark for online index selection. In: 2009 IEEE
25th International Conference on Data Engineering. pp. 1701–1708 (March 2009)

39. Schnaitter, K., Abiteboul, S., Milo, T., Polyzotis, N.: On-line index selection for
shifting workloads. In: Proceedings of the 2nd International Workshop on Self-
Managing Data Bases (SMDB’07). pp. 459–468 (2007)

40. Schnaitter, K., Polyzotis, N.: Semi-automatic index tuning: Keeping dbas in the
loop. Proceedings of the VLDB Endowment 5(5), 478–489 (2012)

41. Stillger, M., Lohman, G.M., Markl, V., Kandil, M.: LEO – DB2’s LEarning Opti-
mizer. In: VLDB (2001)

42. Sutton, R.S., Barto, A.G.: Reinforcement Learning. MIT Press (1998)

http://wp.sigmod.org/?p=1075
http://wp.sigmod.org/?p=1075

43. Warmuth, M.K., Jagota, A.K.: Continuous and discrete-time nonlinear gradient
descent: Relative loss bounds and convergence. In: Electronic proceedings of the
5th International Symposium on Artificial Intelligence and Mathematics. Citeseer
(1997)

44. White, D.J.: Markov decision processes. John Wiley & Sons New York, NY (1993)
45. Young, P.: Recursive least squares estimation. In: Recursive Estimation and Time-

Series Analysis, pp. 29–46. Springer Berlin Heidelberg (2011)
46. Zilio, D.C., Zuzarte, C., Lightstone, S., Ma, W., Lohman, G.M., Cochrane, R.,

Pirahesh, H., Colby, L.S., Gryz, J., Alton, E., Liang, D., Valentin, G.: Recommending
materialized views and indexes with IBM DB2 design advisor. In: Proceedings of
the 1st International Conference on Autonomic Computing (ICAC’04). pp. 180–188
(2004)

	Regularized Cost-Model Oblivious Database Tuning with Reinforcement Learning

