
Learn-as-you-go with Megh:
Efficient Live Migration of Virtual Machines

Debabrota Basu∗, Xiayang Wang†, Yang Hong†, Haibo Chen†, Stéphane Bressan∗
∗School of Computing, National University of Singapore, Singapore

†Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University, Shanghai, China

Abstract—We propose a reinforcement learning algorithm,
Megh, for live migration of virtual machines that simultaneously
reduces the cost of energy consumption and enhances the per-
formance. Megh learns the uncertain dynamics of workloads as-
it-goes. Megh uses a dimensionality reduction scheme to project
the combinatorially explosive state-action space to a polynomial
dimensional space. These schemes enable Megh to be scalable
and to work in real-time. We experimentally validate that Megh
is more cost-effective and time-efficient than the MadVM and
MMT algorithms.

I. INTRODUCTION

Infrastructure as a Service (IaaS) environments of Cloud
computing allocate Virtual Machine instances (VM) on a cluster
of physical machines to provide a shared platform of resources.
The uncertain dynamics of workloads, creating abrupt and
unpredictable changes in resource utilization, requires dynamic
allocation of VMs. In order to avoid such disruption of
service, [1] proposed the idea of a live migration scheme. Each
migration decision depends on three questions: when to move
a virtual machine, which virtual machine to move and where
to move it? Dynamic, uncertain and heterogeneous workloads
running on virtual machines and large-scale of data centers
make such decisions difficult. Knowledge-based and heuristics-
based algorithms are commonly used to tackle this problem.
Knowledge-based algorithms, such as MaxWeight scheduling
algorithms, are dependent on the specifics and the dynamics of
the targeted Cloud architectures and applications. Heuristics-
based algorithms, such as MMT algorithms [2], suffer from
high variance and poor convergence because of their greedy
approach. We propose a reinforcement learning [3] approach.
This approach does not require prior knowledge. It learns the
dynamics of the workload as-it-goes. We formulate the problem
of energy- and performance-efficient resource management
during live migration as a Markov decision process. While
several learning algorithms are proposed to solve this problem,
these algorithms remain confined to the academic realm as they
face the curse of dimensionality. They are either not scalable in
real-time, as it is the case of MadVM [4], or need an elaborate
offline training, as it is the case of Q-learning. We propose,
Megh to overcome these deficiencies. Megh uses a novel
dimensionality reduction scheme to project the combinatorially
explosive state-action space to a polynomial dimensional space
with a sparse basis. Megh has the capacity to learn uncertain
dynamics in real-time. Amalgamation of the projection scheme
with learning enables Megh to be both scalable and robust. A
detailed description of the methodology and the experiments
is available in [5].

II. LIVE MIGRATION AS A DECISION PROBLEM

A Cloud data center consists of a number of physical
machines. They host a certain number of VMs depending
on their specifications and capacities. Each VM allocates
certain physical resources according to the requirement of
each user. The energy consumed by each of the physical
machines is proportional to the total CPU performance, memory
and disk storage used by the VMs allocated to it. We
utilize the SPECpower benchmark [2] to model the energy
consumption. Live migration aids to dynamically allocate and
update the resources to VMs. But live migration may cause
service disruption by incurring downtime and migration time.
Through the service level agreements the Cloud provider legally
promises not to cross, a predefined threshold of downtime and
migration time. The performance is modelled by imposing
penalties if the service level agreements are violated.

Leveraging this cost structrure, we model efficient live
migration as a Markov decision process [3]. In this model,
states are the configurations of VMs operating on a set of
physical machines and their corresponding workloads. Since
the workloads vary continuously and are uncertain, the state
space becomes infinite dimensional and introduces uncertainty
in state transitions. An action is defined as migration of a VM
from one physical machine to the other. The cost of evolving
from one configuration to the other by migrating a VM is given
by sum of the costs of energy consumption and SLA violation
in this time interval. In order to quantify the uncertainty, we
need to define a transition function that returns the probability
to reach a state from a given state if a certain migration is
performed. But in our problem, the transition function is not
known a priori and has to be learned. If the transition function
is known a priori, then the future effect of an action is expressed
using the expectation of its discounted cumulative cost. The
effect of an action on the future configurations decays by a
discount factor with each time step. Thus, if we have a policy
that determines what action to take from a given configuration,
the cost-to-go function of following that policy from an initial
state. The cost-to-go function is given by the expected sum of
the discounted costs of the migrations from the beginning to
an infinite horizon. Thus, the problem manifests in finding the
optimal policy that minimizes the cost-to-go function.

III. MEGH AND LEARNING AS-YOU-GO

The intuitive approach to find the optimal policy is to start
with an initial policy and to update it gradually using dynamic
programming. This scheme is called policy iteration [3]. But it



Table I
PERFORMANCE EVALUATION FOR PLANETLAB

Algorithms THR-MMT IQR-MMT MAD-MMT LR-MMT LRR-MMT Megh

Total cost (SGD) 1347 1504 1367 1392 1392 1155
#VM migrations 325299 444624 331304 324079 324079 2309

#Active physical machines 666 684 682 692 692 203
Execution time (ms) 2016 3077 2226 1924 2080 1426

is not practical to search through the whole state-action space
that consists of all possible configurations of VMs on all the
physical machines. This curse of dimensionality of state-action
space makes the computation expensive and almost infeasible
to perform in real-time. The expectation for cost-to-go function
is also infeasible to calculate because the stochastic nature
of workloads, their correlation with VM configurations and
their transitions are not known a priori. Since restricting this
workload dynamics to a specific transition function breaks the
robustness and universality of learning approach, we avoid it.

In order to tackle the curse of dimensionality, we project
the state-action space to a space of, the number of physical
machines times the number of VMs, dimensions. Each basis
vector of this space corresponds to the migration of a VM to a
specific physical machine. Thus, all the configuration changes
can be represented using these basis vectors or combinations
of them. The basic rationale behind this projection is that
while transitioning from one state to the other, we can reach
only the states that are one action away from the present state.
Thus rather than searching over the whole state space in each
step, it is sufficient to search among the states reachable from
the present one. Now, we approximate the cost-to-go function
to a linear projection on this space. Still the expectation of
the cost-to-go function is not computable due to lack of any
prior knowledge of the transition function. Thus, we construct
a transition operator that accumulates the possibility of to
migrate from the present configuration to the other depending
on the nature of workload and the corresponding changes.
We begin with a transition operator that allows the system
to migrate any of the VMs to any of the machines without
bias. As the system extract information of the workload and
VM configurations with time, it decides an action according
to the policy. Thus, we update the operator to incorporate the
effect of present state and action and its discounted influence in
future action. Megh plugs in these two schemes to Least-Square
Policy Iteration algorithm [6]. Thus, Megh first constructs a
projection-based estimation of cost-to-go function by least-
square estimation and then updates the policy such that it
maximizes the estimate.

IV. PERFORMANCE EVALUATION

We validate effectiveness and efficiency of Megh using the
CloudSim toolkit. CloudSim contains workloads extracted from
the CoMoN project which was monitoring the geo-distributed
computing platform, PlanetLab [7]. We use the standard price
of Singapore EMA, 0.18675 SGD/kWh, to calculate the energy
consumption cost. We assume that Cloud providers would pay
back 16.7% and 33.3% of user’s money depending on whether
the performance degradation is less than or greater than 0.10%.
Though it is a bit costlier than reality, it does not harm the
analysis. Table I depicts that Megh outperforms the MMT

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

Time (in 5 minutes)

   
P

e
r−

st
e

p
 C

o
st

 (
in

 S
G

D
)

 

 

THR−MMT

Megh

(a) THR-MMT vs. Megh

0 100 200 300 400 500 600 700 800

0.07

0.071

0.072

0.073

0.074

0.075

0.076

0.077

0.078

0.079

0.08

Time (in 5 minutes)

  P
e

r−
st

e
p

 C
o

st
 (

in
 S

G
D

)

 

 

MadVM

Megh

(b) MadVM vs. Megh
Figure 1. Comparative per-step cost (in SGD) performance analysis.

algorithms on a week-long trace of PlanetLab. Since MadVM
fails to scale-up for the complete PlanetLab in our experimental
facilities, we choose two random sets of 150 workloads running
on 100 physical machines for 3 days of PlanetLab trace.
Figure 1(a) shows Megh reaches the almost stable cost per-
step in around 100 steps because of the initial learning phase.
Being a greedy heuristics, THR-MMT faces high variance and
instability even after the initial convergence. Figure 1(b) shows
MadVM and Megh, being reinforcement learning algorithms,
have similar trends of convergence. But Megh reduces the
expenditure by 14.25% and 4.3% with respect to that of
THR-MMT and MadVM respectively. It validates the cost-
effectiveness, robustness and stability of Megh for optimal
resource management for a diverse set of workloads with
respect to other heuristics. Megh also speeds up 1.41 times
with respect to THR-MMT. Megh executes an iteration in 7ms
whereas MadVM does the same in approximately 4143ms.
Four second is almost as same as the migration time of a
VM of 0.5GB RAM in the PlanetLab set-up. The curse of
dimensionality and bookkeeping of a huge transition matrix
make reinforcement learning algorithms, like MadVM, too slow
to work in real-time. This empirically proves the efficiency of
Megh not only as an effective learning algorithm but also as
an eligible real-time resource management system in Clouds.

ACKNOWLEDGEMENT

This research project is supported by the National Research
Foundation, Prime Minister’s Office, Singapore under its
Campus for Research Excellence and Technological Enterprise
(CREATE) programme.

REFERENCES

[1] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield, “Live migration of virtual machines,” in Proceedings of
the NSDI-Volume 2, 2005, pp. 273–286.

[2] A. Beloglazov and R. Buyya, “Optimal online deterministic algorithms
and adaptive heuristics for energy and performance efficient dynamic
consolidation of virtual machines in cloud data centers,” Concurr. Comput.
: Pract. Exper., vol. 24, no. 13, pp. 1397–1420, Sep. 2012.

[3] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 1998.

[4] Z. Han, H. Tan, G. Chen, R. Wang, Y. Chen, and F. C. M. Lau, “Dynamic
virtual machine management via approximate markov decision process,” in
IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference
on Computer Communications, April 2016, pp. 1–9.

[5] D. Basu, X. Wang, Y. Hong, H. Chen, and S. Bressan, “Learn-as-you-
go with megh: Efficient live migration of virtual machines,” School of
Computing, NUS, Tech. Rep. TRA4/17, April 2017.

[6] M. G. Lagoudakis and R. Parr, “Least-squares policy iteration,” The
Journal of Machine Learning Research, vol. 4, pp. 1107–1149, 2003.

[7] K. Park and V. S. Pai, “Comon: a mostly-scalable monitoring system for
planetlab,” ACM SIGOPS Operating Systems Review, vol. 40, no. 1, pp.
65–74, 2006.


