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ABSTRACT

We propose a generic, Bayesian, information geometric approach to
the exploration–exploitation trade-off in multi-armed bandit prob-
lems. Our approach, BelMan, uniformly supports pure exploration,
exploration–exploitation, and two-phase bandit problems. The knowl-
edge on bandit arms and their reward distributions is summarised by
the barycentre of the joint distributions of beliefs and rewards of the
arms, the pseudobelief-reward, within the beliefs-rewards manifold.
BelMan alternates information projection and reverse information

projection, i.e., projection of the pseudobelief-reward onto beliefs-
rewards to choose the arm to play, and projection of the resulting
beliefs-rewards onto the pseudobelief-reward. It introduces a mech-
anism that infuses an exploitative bias by means of a focal distribu-

tion, i.e., a reward distribution that gradually concentrates on higher
rewards. Comparative performance evaluation with state-of-the-art
algorithms shows that BelMan is not only competitive but can also
outperform other approaches in specific setups, for instance involv-
ing many arms and continuous rewards.

KEYWORDS

Multi-armed bandit; Statistical manifolds; Bayesian bandit; Alter-
nating information projection

1 INTRODUCTION

Multi-armed bandits [33] are a class of sequential decision-making
problems [15] where an agent with incomplete information learns
about a set of statistical populations and decides to sample from
one of them depending on its goal. Such problems are found in a
wide variety of real-life applications, from design of ethical clinical
trials [37] to task assignment in crowdsourcing markets [21].

In the classical version, a gambler comes across a slot machine
with multiple arms. Each arm has a probability distribution of re-
wards. She plays an arm at a time and receives a reward sampled
from the arm’s distribution. The goal of the gambler is to find a strat-
egy that will let her decide the arm to pull to maximise cumulative
reward. In the literature, this setup is known as the stochastic ban-

dit [3]. This is a simple, archetypal setting of reinforcement learn-
ing [35]. We refer to it in this paper as the exploration–exploitation

bandit. In another variant of the bandit problem, the gambler plays
in order to accumulate more information about the arms rather than
to maximise cumulative reward. This is called the pure exploration
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bandit [8]. This is linked to efficient identification of the best set of
arms [7] and to scenarios where information accumulation has ex-
ternal constraints [10]. We elaborate on both problems in Section 2.

Thus, bandit problems deal with two issues [29]: accumulation
of information to reduce uncertainty of decision making (explo-

ration) and leveraging present knowledge to gain higher rewards
(exploitation). Since the agent starts with incomplete information
about the stochastic reward structure and gradually discovers more
through actions, exploration is necessary. Investigating the pure ex-
ploration problem allows us to focus on these aspects, equally sig-
nificant for exploration–exploitation bandits. On the other hand, in
the exploration–exploitation problem, exploration alone is not suffi-
cient: the gambler has to exploit available information to draw the
optimal arm. The trade-off between exploration and exploitation
emerges as a central question.

Frequentist algorithms with optimism in the face of uncertainty

such as UCB [3] and KL-UCB [18] are state-of-the-art for the exploration–
exploitation setup. Though these algorithms work considerably well,
their frequentist nature prevents assimilation of a priori knowledge
about the arms or the underlying process. Such prior can improve
performance in applications where an underlying model for the re-
ward distributions can be constructed [25]. Bayesian algorithms,
such as Thompson sampling [36] and Bayes-UCB [23], leverage a
prior distribution that summarizes the a priori knowledge. Though
Thompson sampling is popular due to its generality and simplicity,
it does not shed any light on the pure exploration problem and thus
fails to unify both the variants of bandits [24]. The same holds for
Bayes-UCB. Indeed, [24] states that formulation of a Bayesian al-
gorithm for pure exploration is yet to be satisfactorily solved. We
propose here a unified Bayesian approach (Section 3) to model this
underlying uncertainty and use it to address both pure exploration
and exploration–exploitation bandits. Our approach leverages ele-
ments of information geometry [1] to address the questions of infor-
mation representation, accumulation, and exploration–exploitation
trade-off.

We maintain a joint distribution over the parameter of the reward
distribution and the reward itself. We refer to the distribution over
the parameter as the belief distribution, and to the joint one as the
belief-reward distribution. It quantifies the total uncertainty of the
underlying process. We further investigate the belief-reward mani-

fold of all possible belief-reward distributions. This statistical man-
ifold structure enables information-theoretic and geometric analy-
sis of bandit problems. As rewards are accumulated, belief-reward
distributions are updated using Bayes’ theorem. This amounts to a
displacement in the belief-reward space.

Exploiting this structure to update the belief-reward distribution
of the arms would lead to an effective estimate of the reward distri-
bution of the most played arm but would get myopically stuck in it.
Thus, efficient exploration requires a collective representation of the
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knowledge accumulated by the agent.We propose a pseudobelief-

reward as the geometric representation of this collective knowledge-
base. It is a distribution that belongs to the convex hull created by
the belief-reward distributions of all arms and minimises the sum of
KL-divergences. We show the pseudobelief-reward is a weighted
barycentre of the belief-reward distributions of the arms. Though
pseudobelief-reward deals with exploration, in the exploration–exploitation
problem, it is essential to exploit the present knowledge of rewards
and to gradually increase exploitation in order to achieve higher
cumulative reward [29]. We construct a focal distribution in the re-
ward space that incrementally focuses on higher rewards with each
iteration. This evolution towards higher values of reward depends
on a time-variant factor, called exposure. Exposure decreases with
time and its variation decides the exploration–exploitation trade-off.

We develop an algorithm, BelMan, based on alternating informa-

tion projection [12]. BelMan alternates information (I-) and reverse

information (rI-) projections between the set of belief-reward distri-
butions of the arms and the pseudobelief-focal distributions. Thus,
BelMan iteratively updates its knowledge about the reward distribu-
tions of the arms and decides the arm to be explored to maximise
the cumulative reward as well as the information. By convergence
of alternating information projection [12], BelMan asymptotically
estimates the ‘true’ reward distributions for the arms and converges
to the choice of the optimal arm. Since BelMan solves both pure ex-
ploration and exploration–exploitation bandit problems, it provides
a single framework to deal with representation of underlying un-
certainty, accumulation of observables and information, pure explo-
ration, and exploration–exploitation trade-off.

Though the approach is independent of the family of probability
distributions, I- and rI-projections are unique and smoothly com-
putable for the very general exponential family of distributions [1].
Thus, in Section 4, we evaluate the performance of BelMan on two
reward distributions of the exponential family – Bernoulli and expo-
nential – on various numbers of arms and parameters. These exper-
iments validate the applicability of BelMan for both discrete and
continuous rewards. BelMan exhibits comparable and sometimes
better performance with respect to state-of-art bandit algorithms, in
both pure exploration and exploration–exploitation scenarios. We
also apply BelMan to the two-phase reinforcement learning prob-
lem [32], demonstrating its flexibility.

2 PROBLEM FORMULATION

We fix a finite number, say k > 1, of independent real-valued statisti-
cal populations {Xj }kj=1. Each of the populations is specified by cor-

responding probability density functions { f j
θ
(x)}kj=1 with respect to

a base measure ν . We assume that the form of the probability distri-
bution f · is known but the parametrization θ ∈ Θ ⊆ Rd is unknown.
For example, for Bernoulli bandits fθ (x) , θx (1 − θ)(1−x ). We
call each of the populations an arm and the corresponding density
function the reward distribution of the arm. Following the bandit
literature [28], we assume the expectation of the reward distribu-
tion µ(θ) ,

∫ ∞
−∞x fθ (x)dν (x) well-defined and finite. Sequentially

drawing the arms return a sequence of rewards [xn ]n>0. The agent
specifies a policy or strategy that will sequentially draw a set of
arms depending on her previous actions, observations and intended
goal.

Exploration–exploitation bandit problem. In exploration–exploitation
bandits, the agent searches for a policy that maximises the expected
value of cumulative reward Sn ,

∑n
i=1 xi as n → ∞. A policy is

asymptotically consistent [33] if it asymptotically tends to choose
the arm with maximum expected reward, i.e.,

lim
n→∞

1

n
Eθ [Sn] = µ∗(θ ) ∀θ ∈ Θ

k (1)

where µ∗(θ ) , max16j6k µ(θj ). The cumulative regret Rn(θ ) [28]
is the amount of extra reward the agent can obtain if it follows the
optimal policy rather than the present sequence:

Rn(θ ) , nµ∗(θ ) − Eθ [Sn] =
∑
j

[
µ∗(θ ) − µ(θj )

]
Eθ [Tn, j ],

where Tn, j is the number of times arm j is pulled till the nth iter-
ation. [28] proved that for all algorithms satisfying Rn(θ ) = o(na)
for a non-negative a and given θ , the cumulative regret increases
asymptotically in Ω(logn). Such algorithms are called asymptoti-

cally efficient. Based on this bound, [3] extensively studied the up-
per confidence bound (UCB) family of algorithms. Later on, this
family of algorithms was analysed and improved to propose algo-
rithms such as KL-UCB [18].

Frequentist approaches implicitly assume an optimal parametriza-
tion θ∗. In contrast, Bayesians model the uncertainty on the pa-
rameter using another probability distribution B(θ ) [15, 34], the
belief distribution. We begin with a prior B0(θ ) over the parame-
ters and eventually try to find out a posterior distribution such that
the Bayesian sum of rewards

∫
Eθ [Sn]dB(θ ) is maximised or the

Bayesian risk
∫
Rn(θ )dB(θ ) is minimised. Though there exists an

optimal algorithm for discounted Bayesian bandits based on the
Gittins index [20], explicit computation of the indices is not always
tractable and does not provide clear insights into what they look like
and how they change as sampling proceeds [30].

Thus, researchers developed approximation algorithms [27] and
sequential sampling schemes like Thompson sampling [36]. At any
iteration, the latter samples k parameter values from the belief dis-
tributions and chooses the arm that has maximum expected reward
for them. [23] also proposed a Bayesian analogue of the UCB algo-
rithm. Unlike the original, it uses belief distributions to keep track
of arm uncertainty and update them using Bayes’ theorem, com-
putes UCBs for each arm using the belief distributions, and chooses
the arm accordingly.

Pure exploration bandit problem. In this variant of the bandit
problem, the agent aims to gain more information about the arms.
[8] formulated this notion of gaining information as minimisation
of the simple regret rather than cumulative regret. Simple regret

rn(θ ) is the expected difference between the maximum achievable
reward µ∗(θ ) and the achieved reward Eθ [xn ]. Unlike cumulative re-
gret, minimising simple regret depends only on exploration and the
number of available rounds to do so. [8] proved that, for Bernoulli
bandits, if an exploration–exploitation algorithm achieves an upper-
bounded regret, it cannot reduce the expected simple regret by more
than a fixed lower bound. This establishes the fundamental differ-
ence between exploration–exploitation bandits and pure exploration
bandits. Existing frequentist algorithms [2, 7, 24] do not provide
an intuitive and rigorous explanation of how a unified framework
would work for both the pure exploration and the exploration–exploitation
scenario. As discussed in Section 1, both Thompson sampling and
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Bayes-UCB also lack this feature of constructing a single successful
structure for both pure exploration and exploration–exploitation.

3 METHODOLOGY

In this section, we formulate the bandit problem in terms of belief-
reward distributions and define the belief-reward manifold. Follow-
ing this, we propose an alternating information projection scheme,
BelMan, on the belief-reward manifold. In this context, we con-
struct pseudobelief-reward and focal distributions. Finally, we in-
stantiate BelMan to the exponential family of reward distributions.

3.1 The Belief-Reward Manifold

As mentioned in Section 2, the probabilistic nature of the reward
corresponding to the jth arm is represented using reward distribu-

tions f
j
θ
(x). In the parametric setting, we assume them to have the

same form but vary on the parametrisation θj ∈ R. Thus, f j
θ
(x) ≡

fθ j (x). For a given smooth probability density function f ·, the space
of all reward distributions constructs a k-dimensional smooth sta-
tistical manifold [1] R. We call R the reward manifold. Since the
agent plays with partial information, the ‘true’ parameter vector of
the arms, θ = [θ1, . . . ,θk ] is not certainly known. The uncertainty
over θ is represented using another probability distribution B(θ ).
We call B(θ ) the belief distribution.

In the Bayesian bandit process, the agent starts with a prior be-
lief distribution B0(θ ). This structure of prior distribution is flexible,
both to be uninformative or to carry some a priori information [22].
The agent sequentially chooses an arm an at each time step n. The
agent samples a reward xn from fθan with expected value µan . The
actions taken and rewards obtained by the player till time n create
the history of the bandit process, Hn , [(a1,x1), (a2, x2), . . . , (an−1, xn−1)].
This history Hn sequentially constructs the belief distribution over
the parameter vector as Bn(θ ) , P(θ | Hn ). We define the space
consisting of all such distributions over θ as the belief space B.
This space B for a smooth probability density function B is a (k×d)-
dimensional statistical manifold, where d is the dimension of the pa-
rameter space Θ. We call B the belief manifold of the multi-armed
bandit process. In order to consider uncertainties of partial infor-
mation along with the stochastic nature of reward using a single
representation, we define belief-reward distributions.

Definition 1 (Belief-reward distribution). The joint distribution
on reward and parameter for the jth arm the nth iteration as Pjn(x, θ)
is defined as the belief-reward distribution.

P
j
n(x, θ) ,

b
j
n(θ)fθ (x)∫

x ∈R

∫
θ ∈Θ

b
j
n(θ)fθ (x)dθdx

=

1

Z
b
j
n(θ)fθ (x).

LEMMA 2. The set of belief-reward distributions P(x,θ ) defines

a manifold BR, such that BR = B ×R. We call it the belief-reward

manifold.

Following the trend of the bandit literature and Bayesian meth-
ods, we construct our work by assuming arm independence and a
Bayesian evolution of belief distribution.

ASSUMPTION 1 (INDEPENDENCE OF ARMS). The parameters

{θj }16j6k are drawn independently from k belief distributions {b jn (.)}16j6k ,

such that

Bn(θ ) =
k∏
j=1

b
j
n(θj ) ,

k∏
j=1

P(θj | Hn ).

This implies that the belief manifold B is a product of k mani-
folds B j , {b j (θj )}. Here, B j is the statistical manifold of belief
distributions for the jth arm. Due to the common parametrization,
the B j ’s can be represented by a single manifold Bθ . Thus, we op-
erate on BθR and represent the belief-reward distribution of each
arm as a point in that space. We slightly misuse the terminology to
call each BθR also a belief-reward manifold. Though Assumption 1
is followed throughout this paper, it is not essential to develop this
framework. It is assumed to make calculations easier.

ASSUMPTION 2 (BAYESIAN EVOLUTION). When conditioned

over {θj }16j6k and the choice of arm, the sequence of rewards

[x1, . . . ,xn ] is jointly independent.

Thus, the Bayesian update at the nth iteration is given by:

b
j
n+1(θan ) ∝ fθan (xn )b

j
n(θj ) (2)

if the jth arm is drawn and a reward xn is obtained. For all other
arms, the belief remains unchanged. We can then deduce the belief
update after each of the iteration as a movement on the belief mani-
fold from a point Bn to another point Bn+1 with maximum informa-

tion gain. Thus, the process of bandit games and the evolution of
belief-reward distributions creates a set of trajectories on the belief-
reward manifold. The goal of such trajectories is to reach the points
in the belief-reward manifold which resembles the ‘true’ reward dis-
tributions well enough either to estimate the true distributions well
or to decrease the regrets accumulated in the path as much as possi-
ble.

3.2 BelMan: An Alternating Projection Scheme

Now, the central puzzle is how to represent exploration and exploita-
tion on the belief-reward manifold and how to incentivise it to form
an algorithm.

Pseudobelief: Summarising the explored knowledge. The agent
aims to establish a collective knowledge on the arms via explo-
ration. In the belief-reward manifold, we represent this using the
pseudobelief-reward distribution.

Definition 3 (Pseudobelief-reward distribution). A pseudobelief-

reward distribution P̄(x, θ) is a point in the belief-reward manifold
that minimises the sum of KL-divergences from the belief-reward
distributions Pj (x, θ) of all the arms.

P̄(x, θ) , argmin
P∈Bθ R

k∑
j=1

DKL

(
Pj (x, θ) ‖ P(x, θ)

)
. (3)

Since the belief-reward distribution of each arm is a point on the
belief-reward manifold, the pseudobelief-reward is the barycentre
of their convex hull with respect to KL-divergence. Since any point
inside a polygon in a flat space is representable as a linear combi-
nation of the vertices, we take these individual distributions as a
basis of our representation, and introduce coefficients (λj )16j6k

for the pseudobelief-reward. Since KL-divergence is e-flat i.e., lin-
ear with respect to scalars in exponent, we express pseudobelief-
reward as a log-linear combination of them. Thus, log P̄(x, θ) ,
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Figure 1: Evolution of the focal distribution over x ∈ [0, 1] for

τ (n) = 1, 0.5, 0.33 and 0.25.∑k
j=1 λj logP

j
n(x, θ), where λj ∈ [0, 1], and

∑k
j=1 λj = 1. This im-

plies that P̄(x, θ) = ∏k
j=1 P

j
n(x, θ)λj . For λj = 0, the pseudobelief-

reward becomes oblivious to arm j. For λj = 1, the pseudobelief-
reward coincides with the belief-reward distribution of arm j.

∑k
j=1 λj

= 1 keeps the pseudobelief-reward normalised. These constraints
keep the pseudobelief-reward a summary of belief-reward distribu-
tions of all arms.

Focal distribution: Infusing exploitative bias. Creating a succinct
pseudobelief-reward is essential for both pure exploration and exploration–
exploitation but not sufficient for minimising the cumulative regret
in exploration–exploitation. Thus, we introduce the focal distribu-
tion that gradually focuses on higher rewards and infuses a bias
towards choosing the optimal arm.

Definition 4 (Focal distribution). A focal distribution is a reward

distribution of the form Ln(x) ∝ exp
(

x
τ (n)

)
, where τ (n) is a de-

creasing function of n > 1. We call τ (n) the exposure of the focal
distribution.

The focal distribution gradually concentrates on higher rewards
as the exposure τ (n) decreases with time. We see this feature in
Figure 1. Thus, it constrains using KL-divergence to choose dis-
tributions with higher rewards and infuses the exploitive bias. Fol-
lowing the bounds obtained in [18], we set the focal distribution to
τ (n) , [log(n) + C × log(log(n))]−1 with C a constant (we choose
the valueC = 15 in the experimental evaluation) for the exploration–
exploitation bandit problem. In the pure exploration setup, we sim-
ply take τ (n) = ∞ to remove any bias towards exploitation.

We amalgamate the pseudobelief-reward and the focal distribu-
tion to form the pseudobelief-focal distribution

Q̄(x, θ) , 1

Z̄n
P̄(x, θ) exp

(
x

τ (n)

)
.

Here, Z̄n =
∫
x ∈R

∫
θ ∈Θ P̄(x, θ) exp

(
x

τ (n)

)
dθdx is a normalisation

factor. We use the pseudobelief-focal distribution as the representa-
tive of explored knowledge and exploitation bias in our algorithm.
Following Equation (3), we define the pseudobelief-focal as Q̄(x, θ) ,
argminQ

∑k
j=1 DKL

(
Pj (x,θ ) ‖Q(x, θ)

)
.

An Alternating Projection Scheme. The main idea of BelMan is
to alternately minimise the KL-divergence DKL(. ‖ .) [26] between

the belief-reward distributions of the arms and the pseudobelief-
focal distribution.

[13] introduced the concept of minimisation of KL-divergence
with respect to a participating distribution as a projection to the set
of the other distribution.

Definition 5 (I-projection). The information projection (or I-projection)
of a distribution q ∈ Q onto a non-empty, closed, convex set P
of probability distributions on a fixed support set is defined by the
probability distribution p∗ ∈ P that has minimum KL-divergence
to q: p∗ , argminp ∈P DKL(p ‖ q).

Since DKL(p(s) ‖ q(s)) = −h(p(s))+H (p(s),q(s)), we observe that
the I-projection p∗ is the distribution in P that maximises the en-
tropy h(p) of P, while minimising the mutual information H (p,q):
it is the distribution in P which is most similar to q. This implies
that the I-projection p∗ captures at least the first moment, i.e., the
expectation of the fixed distribution q.

Definition 6 (rI-projection). The reverse information projection

(or rI-projection) of a distribution p ∈ P onto Q, which is also a
non-empty, closed, convex set of probability distributions on a fixed
support set, is defined by the distribution q∗ ∈ Q that has minimum
KL-divergence from p: q∗ , argminq∈Q DKL(p ‖ q).

The rI-projection finds the distribution q� from a space of can-
didate distributions Q that encodes maximum information of the
distribution p. If the set of candidate distributions is engendered by
a statistical model, the rI-projection of the empirical distribution
formed from samples to the model is equivalent to finding the max-

imum likelihood estimate. Since rI-projection aims to maximise the
complete likelihood rather than finding a distribution with similar
entropy, q∗ also captures higher moments of the fixed distribution p.
Thus, it is computationally more demanding but more informative
than I-projection.

Due to the underlying minimisation operation, if we begin from
p0 ∈ P and q0 ∈ Q and alternately perform I-projection and reverse
I-projection, it will lead to two distributions p∗ and q∗ for which the
KL-divergence between sets P and Q are minimum. [13]

We now present BelMan (Algorithm 1), which implements this
idea of alternate projection for the bandit problems. We are work-
ing with distributions in the belief-reward manifold. On the one
hand, the algorithm constructs empirical belief-reward distributions
Pn(x,θ ) by accumulation of rewards. Thus, here the set of all such
empirical distributions forms P ⊂ BR. On the other hand, it com-
putes and updates a representation of knowledge and exploitative
bias in the form of the pseudobelief-focal distributions Q̄n (x,θ ).
The set of all pseudobelief-focal distributions constitutes Q ⊂ BR.

The algorithm is initially provided (Line 1) with a prior belief dis-
tribution B0(θ ) and reward distributions { fθ j (x)}kj=1 for each of the

arms. They form the initial empirical point P0(x,θ ) ,
∏k

j=1 b
j
0(θ)fθ j (x)

in P. Similarly, we begin with Q̄0(x, θ ) as the initial point of Q.
Following the initialisation step, Algorithm 1 processes iteratively,
with each iteration formed of three functional parts.

In the first part (Lines 3–4), it decides which arm to pull by an
I-projection of the pseudobelief-focal onto the beliefs-rewards of
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Algorithm 1 BelMan

1: Input: Time horizonT , Number of arms k , Prior on parameters
B0, Reward function f , Exposure τ (n).

2: for n = 1 to T do

3: /∗ I-projection ∗/
4: Draw arm an such that

an = argmin
j

k∑
j=1

DKL

(
P
j
n(x, θ) ‖ Q̄n−1(x, θ)

)
. (4)

5: /∗ Accumulation of observables ∗/
6: Sample a reward xn out of fθan .
7: Update the belief-reward distribution of an using Bayes’ the-

orem.
8: /∗ Reverse I-projection ∗/
9: Update the pseudobelief-reward distribution to

Q̄n(x, θ) = argmin
Q̄∈Bθ R

k∑
j=1

DKL

(
P
j
n(x, θ) ‖ Q̄(x, θ)

)
. (5)

10: end for

each of the arms. It amounts to computing

an , argmin
j

k∑
j=1

DKL

(
P
j
n(x,θ ) ‖ Q̄n−1(x, θ)

)

= argmin
j

k∑
j=1

(E
P
j
n (x,θ )

[
−x
τ (n)

]
+ DKL

(
b
j
n(θ) ‖ bη̄n (θ)

)
).

The first term symbolises the expected reward of arm j. Maximis-
ing this term alone is analogous to greedily exploiting the present
information about the arms. The second term quantifies the amount
of uncertainty that can be decreased if arm j is chosen on the basis
of the present pseudobelief. The exposure τ (n) of the focal distribu-
tion keeps a weighted balance between exploration and exploitation.
Increasing 1

τ (n) increases the exploitation with time which is quite
an intended property of an exploration–exploitation algorithm.

In the next part (Line 5–7), the agent plays the chosen arm an
and samples a reward xn . This observation is incorporated in the
belief of the arm using Bayes’ rule of Equation (2).

In the last part (Lines 8–9), the updated beliefs are used to obtain
the pseudobelief-focal distribution using rI-projection. If we substi-
tute the log-linear form of pseudobelief in Equation (5), we observe
that computing Q̄n is equivalent to finding argmaxλ1, ...,λk

∑k
j=1(1−

λj )h(b jn). Thus, we compute such a vector of λj ’s that allows the up-
dated pseudobelief to encode as much information as possible from
all the belief distributions. The normalisation factor that depends
on τ (n) creates additional constraints in this minimisation. Here,
BelMan is infusing the exploitative bias. It keeps the pseudobelief-
focal distribution away from the ‘actual’ barycentre of the belief-
reward distributions and pushes it towards the arms with higher ex-
pected reward. Increasing exploitative bias eventually merges the
pseudobelief-focal distribution to the ‘true’ reward distribution of
the optimal arm that has the highest expected reward.

THEOREM 7 (ASYMPTOTIC CONSISTENCY). For a large n, Bel-

Man will asymptotically converge to choosing the optimal arm. Math-

ematically,

lim
n→∞

1

n
Eθ [Sn] = µ∗(θ ) (6)

where µ∗(θ ) , max16j6k µ(θj ).

PROOF. Without loss of generality, let us consider there exists
at least one optimal arm and it is identified as the arm 1. At the
I-projection, we choose the arm that has minimum KL-divergence
DKL(Pjn(x, θ) ‖ Q̄(x, θ)) from the pseudobelief–lens distribution. Thus,
we have to prove that for largen,DKL(P1n(x, θ) ‖ Q̄(x, θ))−DKL(Pan(x, θ) ‖ Q̄(x, θ))
is non-positive for any a , 1. We begin as follows,

DKL(P1n(x, θ) ‖ Q̄(x, θ)) − DKL(Pan(x, θ) ‖ Q̄(x, θ))
=

[
h(Pan(x, θ)) − h(P1n(x, θ))

]
︸                             ︷︷                             ︸

T1

+

∫
x

∫
θ

[
Pan(x, θ) − P1n(x, θ)

]
log Q̄(x, θ)dθdx

︸                                                    ︷︷                                                    ︸
T2

The first term T1 is the difference in entropy in two of the arms.

T1 =EP1n (x,θ )−Pan(x,θ ) [log P1(x, θ)] − DKL(Pan(x, θ) ‖ P1n(x, θ))

6
(a)

sup
x,θ

[
P1n(x, θ) − Pan(x, θ)

]
log(1 − ε) − DKL(Pan(x, θ) ‖ P1n(x, θ))

6
(b )

log(1 − ε)

√
DKL(Pan(x, θ) ‖ P1n(x, θ))

2
− DKL(Pan(x, θ) ‖ P1n(x, θ))

6
(c)

log(1 − ε)
√
0.5DKL(Pan(x, θ) ‖ P1n(x, θ)).

Since we consider that all the distributions has well-defined, non-
empty supports, we have 1 > Pan(x, θ) > 0 for all a,x, θ . Let us
assume the maximum of all such values is 1 − ε ∈ (0, 1). This gives
us inequality (a). Inequality (b) is derived from Pinsker’s inequal-
ity [11]. (c) is valid due to the non-negativity of Kl-divergence. Sim-
ilarly, we get for the second term T2:

T2 =

∫
x

∫
θ

[
Pan(x, θ) − P1n(x, θ)

]
log Q̄(x, θ)dθdx)

=

∫
x

∫
θ

[
Pan(x, θ) − P1n(x, θ)

]
log

©«
∏
j

P
j
n(x, θ)

λ
j
n ª®
¬
dθdx

− 1

τ (n)EP1n(x,θ )−Pan(x,θ ) [x] + log Z̄nEP1n (x,θ )−Pan(x,θ ) [1]

6
(d )

log(1 − ε)
√
0.5DKL(Pan(x, θ) ‖ P1n(x, θ)) −

∆
a
n

τ (n) .

Here, ∆an = µ1n − µan i.e, the deviation of expected reward of the arm
a from the optimal arm. Inequality (d) is obtained if we apply AM-
GM inequality, inequality (a) and (b) in sequence. Thus, T1+T2 6

log(1− ε)
√
2DKL(Pan(x, θ) ‖ P1n(x, θ)) − ∆a

τ (n) and it is non-positive if

1

τ (n) > log(1 − ε)
√
2

√
DKL(Pan(x, θ) ‖ P1n(x, θ))

∆
a
n

.
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RHS tends to
√
DKL(Pa (x,θ ) ‖ P1(x,θ ))

∆a
, as n → ∞ and both the arms

gather more samples. Thus, RHS is a finite value for a given setup.
Hence for any n greater than N that satisfies the equality in above in-
equality BelMan would always choose the optimal arm. This proves
that BelMan is asymptotically consistent for any bounded bandit
problem. �

This lower bound on 1
τ (N ) being inversely proportional to ∆

a

indicates that we have to induce higher exploitative bias to reach
higher rewards if the difference between the optimal and the subop-
timal arm is minute. It is intuitive as the algorithm would need more
samples to distinguish between the optimal and the suboptimal sim-
ilar to it.

We can also intuitively validate this claim. We know the KL-
divergence between belief-reward of any arm and the pseudobelief-
reward DKL(Pjn(x, θ) ‖ Q̄(x, θ)) = (1−λj )h(b jn)− 1

τ (n) µ
j
n . As n → ∞,

the entropy of belief on each arm reduces to a constant dependent on
its internal entropy. Thus, when 1

τ (n) exceeds the entropy term for
a large n, BelMan greedily chooses the arm with highest expected
reward. Hence, BelMan is asymptotically consistent for bounded
finite arm bandits.

3.3 BelMan for Exponential Family Distributions

The exponential family [6] is a class of probability distributions
which can be defined using a set of natural parameters ω(θ) and
a given natural sufficient statisticsT (x) as follows:

fθ (x) , h(x) exp (〈ω(θ),T (x)〉 −A(θ)) .

Here, h(x) is the base measure on reward x and A(θ) is called the
log-partition function. The exponential family includes the majority
of the distributions found in the bandit literature such as Bernoulli,
beta, Gaussian, Poisson, exponential, and chi-squared.

We choose the exponential family to instantiate our framework
not only because of its wide range and applicability but also due
to its well behaving Bayesian and information geometric properties.
From a Bayesian point of view, the most useful property of the expo-
nential family is the existence of conjugate distributions which also
belong to this family [6]. Two parametric distributions fθ (x) and
bη (θ ) are conjugate if the posterior distribution P(θ |x) formed by
multiplying them has the same form as bη (θ ). Thus, if the reward
distribution belongs to the exponential family, the belief distribu-
tion is represented as: bη (θ) , h(θ) exp (〈η,T (θ)〉 −A(η)) with the
natural parameters η.

Since exponential family distributions are flat with respect to
KL-divergence [1], both I-and rI-projections in BelMan are well-
defined and unique. Thus, at each iteration, we obtain an optimal
and unambiguous choice of the arm and pseudobelief respectively.
[1] also stated that the necessary and sufficient condition for a para-
metric probability distribution to have an efficient estimator is that
the distribution belongs to the exponential family and has an ex-
pectation parametrization. Thus, working with exponential family
distributions implicitly supports the well-defined nature and possi-
bility of getting an efficient estimation. Being a member of the ex-
ponential family, the belief distributions bη (θ) construct a statistical
manifold with local co-ordinatesη [1]. Thus, we identify each of the

arm’s belief distributions as points η1, . . . ,ηk and the pseudobelief
as η̄ =

∑k
j=1 λjηj .

4 EXPERIMENTAL EVALUATION

Exploration–exploitation bandit problem. We evaluate the per-
formance of BelMan for two exponential family distributions – Bernoulli
and exponential. They represent two instances of discrete and con-
tinuous rewards respectively. We use the pymaBandits library [9]
for implementation of all the algorithms except ours, and run it on
MATLAB 2013a. We plot the evolution of the mean and the 75 per-
centile of cumulative regret and number of suboptimal draws. For
each instance, we run experiments for 25 runs each consisting of
1000 iterations.

We run experiments for BelMan on two instances of Bernoulli
bandits (Figures 2 and 3). We compare the performance of Bel-
Man with frequentist methods like UCB [3] and KL-UCB [18],
and Bayesian methods like Thompson sampling [36] and Bayes-
UCB [23]. We compare with Gittins index [20] which is the opti-
mal algorithm for Markovian finite arm independent bandits with
discounted rewards. Though we are not interested in the discounted
case, but the algorithm is indeed transferable to the finite horizon
setting with slight manipulation. Though it is often computationally
intractable, we use it as the optimal baseline for Bernoulli bandits.
We also plot performance of the uniform sampling method (Ran-

dom), as a naïve baseline.
For the 2-arm bandit of Figure 2 (θ1 = 0.8,θ2 = 0.9), we ob-

serve that at the very beginning the cumulative regret of BelMan
grows linearly and then transitions to a state of slow growth. This
initial linear growth of suboptimal draws followed by a logarithmic
growth is an intended property of any optimal bandit algorithm as
can be seen in the performance of competing algorithms and also
pointed out by [19]: an initial phase dominated by exploration and
a second phase dominated by exploitation. The phase change indi-
cates the ability of the algorithm to reduce uncertainty after a cer-
tain number of iterations and to find a trade-off between exploration
and exploitation. BelMan performs comparatively well with respect
to the contending algorithms, achieving the phase of exploitation
faster than others, with significantly less variance.

Figure 3 depicts similar features of BelMan for 20-arm bandits
(with means 0.25, 0.22, 0.2, 0.17, 0.17, 0.2, 0.13, 0.13, 0.1, 0.07,
0.07, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.01, 0.01, and 0.01). Since
more arms ask for more exploration and more iterations drawing the
suboptimal arms, all algorithms show higher regret values. We note
that on all experiments performed, BelMan behaved competitively
w.r.t. competing approaches.

We have also run the experiments 50 times with horizon=50000
for the 20 arms to verify the asymptotic behaviour of BelMan. Fig-
ure 5 shows that BelMan’s regret gradually becomes linear with
respect to the logarithmic axis. Thus, Figure 5 empirically validates
BelMan to reach logarithmic regret like its competitors which are
theoretically proven to reach logarithmic regret bound.
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Figure 2: Evolution of cumulative regret (top), and number of suboptimal draws (bottom) for 2-arm Bernoulli bandit. The dark black

line shows the average over 25 runs. The grey area shows the 75 percentile.
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Figure 3: Evolution of cumulative regret (top), and number of suboptimal draws (bottom) for 20-arm Bernoulli bandit.
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Figure 4: Evolution of cumulative regret (top), and number of suboptimal draws (bottom) for 5-arm bounded exponential bandit.
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Figure 5: Evolution of (mean) cumulative regret for exploration

–exploitation 20-arm Bernoulli bandits with horizon=50,000.

We also test BelMan on exponential bandits: 5 arms with ex-
pected rewards {0.2, 0.25, 0.33, 0.5, 1.0}. Figure 4 shows that Bel-
Man performs more efficiently than state-of-the-art methods for ex-
ponential distributions: Thompson sampling, UCBtuned [3], KL-
UCB, and KL-UCB-exp, a method tailored for exponential distri-
bution of rewards [18]. This validates BelMan’s applicability to dif-
ferent reward structures.

Two-Phase reinforcement learning. Two-phase reinforcement learn-
ing problems append the pure exploration and the exploration–exploitation
problems together. In this family of problems, the agent gets a first
phase of a given window for pure exploration. In this phase, the
agent collects more information about the underlying reward dis-
tributions. Following this, the agent goes through the exploration–
exploitation phase. In this phase, it solves the exploration–exploitation
problem and focuses on maximising the cumulative reward. This
setup is perceivable as an initial online model building or ‘train-
ing’ phase followed by an online problem solving or ‘testing’ phase.
This problem setup often emerges in applications [16] where the de-
cision maker explores for an initial phase to create a knowledge
base and another phase to take decisions by leveraging this pre-
build knowledge base. Thus, two-phase reinforcement learning gives
us a middle ground between model-free and model-dependent ap-
proaches in decision making which is often the path taken by a
practitioner.

Formally, this knowledge base is a prior distribution built from
the agent’s experience. Since Bayesian methods naturally accom-
modate and leverage prior distributions, our Bayesian formulation
adopts this problem without any modification. [32] approached this
problem with a technique amalgamating a sampling technique, PSPE,
and an extension of Thompson sampling, PSRL [31], for episodic
fixed horizon Markov decision processes (MDPs) [14]. PSPE uses
Bayesian update to create a posterior distribution for the reward dis-
tribution of a policy. Then, it samples from the distribution in order
to evaluate the policies. These two steps are performed iteratively
for the initial pure exploration phase. PSRL [31] is an extension
of Thompson sampling for episodic MDPs. Unlike Thompson sam-
pling, they also use Markov chain Monte Carlo method for creating
the posteriors corresponding to each of the policies. Though the
amalgamation of these two methods for the two phase problems in
episodic MDPs perform reasonably, they lack a reasonable unified
structure attacking the problem and a natural cause to pipeline them.
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Figure 6: Evolution of (mean) cumulative regret for two-phase

20-arm Bernoulli bandits.

We approach the two-phase reinforcement learning from this point.
Following the trend of this paper, we focus on the two phase setup
of multi-armed bandits. Since our framework tackles both the pure
exploration and the exploration–exploitation problems, and stands
on a Bayesian framework inherently leveraging prior distributions,
it stands as a legitimate candidate to address the two phase prob-
lem. The two phase algorithm is exactly BelMan (Algorithm 1) with
1

τ (n) = 0 for an initial phase of length T followed by the increasing
function of n previously indicated. Thus, BelMan gives us a sin-
gle algorithm for three setup of bandit problem – pure exploration,
exploration–exploitation, and two-phase learning. We only have to
choose a different τ (n) depending on the problem we want to ad-
dress. This also supports BelMan’s claim as a generalised, unified
framework for bandit problems.

In this experiment, we simulate a two-phase setup, as in [32]: the
agent first does pure exploration for a fixed number of iterations,
then move to exploration–exploitation. This is possible since Bel-
man supports both modes and can transparently switch. The setting
is that of the 20-arm Bernoulli from Figure 3.

We observe a sharp phase transition in Figure 6. While the pure
exploration version acts in the designated window length, it ex-
plores almost uniformly to gain more information about the reward
distributions. We know for such pure exploration the cumulative
regret grows linearly with iterations. Following this, the growth
of cumulative regret decreases and becomes sublinear. If we also
compare it with the initial growth in cumulative regret and subop-
timal draws of BelMan in Figure 3, we observe that the regret for
the exploration–exploitation phase is less than that of regular Bel-
Man exploration–exploitation. Also, with increase in the window
length the phase transition becomes sharper as the growth in regret
becomes very small. In brief, there are two major lessons of this
experiment. First, Bayesian methods provide an inherent advantage
in leveraging a priori knowledge (here, from the first phase). Sec-
ond, a pure exploration phase helps in improving the performance
during the exploration–exploitation phase.

5 CONCLUSION

BelMan is a generic Bayesian approach for solving pure explo-
ration, exploration–exploitation, and two-phase bandit problems. Bel-
Man, when instantiated to rewards modelled by any distribution
of the exponential family, conveniently leads to analytical forms
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that allow to derive a well-defined and unique projection as well as
to devise an effective and fast computation. BelMan is asymptoti-
cally consistent. Proof of consistency indicates that growth of expo-
sure transforms the exploration–exploitation duel into pure exploita-
tion after accumulating large enough samples. We empirically, with
Bernoulli and exponential distributions, and comparatively, with the
state-of-the-art bandit algorithms, show that BelMan is not only
competitive but can also be leading on specific problem instances
involving many arms and continuous rewards. Experiments validate
that BelMan asymptotically achieves logarithmic regret. BelMan is
a Bayesian information geometric approach able to incorporate a

priori knowledge. Experiments for two-phase reinforcement learn-
ing problem explicate that BelMan not only spontaneously adapts
with but also leverages explored information to escalate performance
efficiency.

We are now trying and determining the form that exposure has
to satisfy as a time dependent function. We are investigating the
asymptotic efficiency and stability of BelMan. We are also inves-
tigating how BelMan can be extended to address the exploration–
exploitation dilemma for bandit problems involving non-parametric
domain, continuous or dependent arms, and problems as general as
MDPs.
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The Indian Journal of Statistics (1933–1960), 16(3/4):221–229, 1956.
[5] Jose M Bernardo. Algorithm AS 103: Psi (digamma) function. Journal of the

Royal Statistical Society. Series C (Applied Statistics), 25(3):315–317, 1976.
[6] L. D. Brown. Fundamentals of Statistical Exponential Families: With Applica-

tions in Statistical Decision Theory. Institute of Mathematical Statistics, 1986.
[7] Sébastian Bubeck, Tengyao Wang, and Nitin Viswanathan. Multiple identifica-

tions in multi-armed bandits. In ICML, pages 258–265, 2013.
[8] Sébastien Bubeck, Rémi Munos, and Gilles Stoltz. Pure exploration in multi-

armed bandits problems. In ALT, pages 23–37. Springer, 2009.
[9] Olivier Cappe, Aurelien Garivier, and Emilie Kaufmann. pymaBandits, 2012.

http://mloss.org/software/view/415/.
[10] Shouyuan Chen, Tian Lin, Irwin King, Michael R Lyu, and Wei Chen. Combina-

torial pure exploration of multi-armed bandits. In NIPS, pages 379–387, 2014.
[11] Thomas M Cover and Joy A Thomas. Elements of information theory. John

Wiley & Sons, 2012.
[12] I Csiszár and Gábor Tusnády. Information geometry and alternating minimization

procedures. Statistics and decisions, Supplement issue No. 1:205–237, 1984.
[13] Imre Csiszár. Sanov property, generalized I-projection and a conditional limit

theorem. The Annals of Probability, 12(3):768–793, 1984.
[14] Christoph Dann and Emma Brunskill. Sample complexity of episodic fixed-

horizon reinforcement learning. In NIPS, pages 2818–2826, 2015.
[15] Morris H DeGroot. Optimal statistical decisions, volume 82 of Wiley Classics

Library. John Wiley & Sons, 2005.
[16] Muhammad Faheem and Pierre Senellart. Adaptive web crawling through

structure-based link classification. In Proc. ICADL, pages 39–51, Seoul, South
Korea, December 2015.

[17] Victor Gabillon, Mohammad Ghavamzadeh, and Alessandro Lazaric. Best arm
identification: A unified approach to fixed budget and fixed confidence. In NIPS,
pages 3212–3220, 2012.

[18] Aurélien Garivier and Olivier Cappé. The KL-UCB algorithm for bounded sto-
chastic bandits and beyond. In COLT, pages 359–376, 2011.

[19] Aurélien Garivier, Pierre Ménard, and Gilles Stoltz. Explore first, exploit next:
The true shape of regret in bandit problems. arXiv preprint arXiv:1602.07182,
2016.

[20] John C Gittins. Bandit processes and dynamic allocation indices. Journal of the

Royal Statistical Society. Series B (Methodological), 41(2):148–177, 1979.

[21] Chien-Ju Ho and Jennifer Wortman Vaughan. Online task assignment in crowd-
sourcing markets. In AAAI, pages 45–51, 2012.

[22] Edwin T. Jaynes. Prior probabilities. IEEE Transactions on Systems Science and

Cybernetics, 4:227–241, 1968.
[23] Emilie Kaufmann, Olivier Cappé, and AurÃl’lien Garivier. On Bayesian upper

confidence bounds for bandit problems. In AISTATS, pages 592–600, 2012.
[24] Emilie Kaufmann and Shivaram Kalyanakrishnan. Information complexity in

bandit subset selection. In COLT, pages 228–251, 2013.
[25] Jaya Kawale, Hung H Bui, Branislav Kveton, Long Tran-Thanh, and Sanjay

Chawla. Efficient Thompson sampling for online matrix-factorization recom-
mendation. In NIPS, pages 1297–1305, 2015.

[26] Solomon Kullback. Information theory and statistics. Courier Corporation, 1997.
[27] T. L. Lai. Asymptotic solutions of bandit problems. In Wendell Fleming and

Pierre-Louis Lions, editors, Stochastic differential systems, stochastic control the-

ory and applications, pages 275–292. Springer, 1988.
[28] T.L Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules.

Adv. Appl. Math., 6(1):4–22, March 1985.
[29] William G Macready and David H Wolpert. Bandit problems and the explo-

ration/exploitation tradeoff. IEEE Transactions on evolutionary computation,
2(1):2–22, 1998.

[30] José Nino-Mora. Computing a classic index for finite-horizon bandits. INFORMS

Journal on Computing, 23(2):254–267, 2011.
[31] Ian Osband, Dan Russo, and Benjamin Van Roy. (More) efficient reinforcement

learning via posterior sampling. In NIPS, pages 3003–3011, 2013.
[32] Sudeep Raja Putta and Theja Tulabandhula. Pure exploration in episodic fixed-

horizon Markov decision processes. In AAMAS, pages 1703–1704, 2017.
[33] Herbert Robbins. Some aspects of the sequential design of experiments. Bull.

Amer. Math. Soc., 58(5):527–535, 09 1952.
[34] Steven L Scott. A modern Bayesian look at the multi-armed bandit. Applied

Stochastic Models in Business and Industry, 26(6):639–658, 2010.
[35] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.

MIT Press, 1998.
[36] William R. Thompson. On the likelihood that one unknown probability exceeds

another in view of the evidence of two samples. Biometrika, 25(3–4):285, 1933.
[37] Sofía S Villar, Jack Bowden, and James Wason. Multi-armed bandit models for

the optimal design of clinical trials: benefits and challenges. Statistical science:

a review journal of the Institute of Mathematical Statistics, 30(2):199, 2015.

http://mloss.org/software/view/415/


Draft, January, 2018. Debabrota Basu, Pierre Senellart, and Stéphane Bressan

A SUPPLEMENTARY MATERIAL FOR SECTION 2 (PROBLEM FORMULATION)

Exploration–exploitation bandit. The Lai–Robbins bound can be mathematically formulated, for policies with Rn (θ ) = o(na), as

lim inf
n→∞

Rn (θ )
logn

>

∑
j :µ ∗(θ )>µ (θ j )

[
µ∗(θ ) − µ(θj )

]
inf j DKL(fθ j (x) ‖ fθ ∗ (x)) , (7)

where fθ ∗ (x) is the reward distribution of the optimal arm. This states that the best we can achieve is a logarithmic growth of cumulative regret.
It also implies that this optimality is harder to achieve as the minimal KL-divergence between the optimal arm and any other arm decreases.
This is intuitive because in such scenario the agent has to explore these two arms more to distinguish between them and to choose the optimal
arm. [28] have also shown policies satisfying this lower bound will also satisfy the asymptotic property of Equation (1). [28] also showed that
for specific families of distributions, the expected number of draws of any suboptimal arm j satisfies

T
j
n(θ ) 6

(
1

inf j DKL(fθ j (x) ‖ fθ ∗ (x)) + o(1)
)
logn. (8)

Equation (7) and (8) together claim that the best achievable number of draws of suboptimal arms is Θ(logn).

Another variation of the Bayesian formulation was introduced by [4] with a discounted reward setting. Unlike Sn ,the discounted sum of
rewards Dγ ,

∑∞
j=0

[
γ jxj+1

]
ensures convergence of the sequential sum for γ ∈ [0, 1). Intuitively, the discounted sum implies the effect of

an action decay with each time step by the discount factor γ . This setting assumes k independent priors on each of the arms and also models
the process of choosing the next arm as a Markov process. Thus, we can reformulate the bandit problem as maximising∫

. . .

∫
Eθ [Dγ ]db1(θ1) . . . dbk (θk )

where, b j is the independent prior distribution on θj for j = 1, . . . ,k . [20] showed the agent can have an optimally indexed policy by sampling
from the arm with largest Gittins index

G j (s j ) , sup
τ >0

E

[
τ∑

n=0
γnx j (S jn) | S

j
0 = s j

]

E

[
τ−1∑
n=0

γn | S j0 = s j
]

where s j is the state of arm j and τ is referred to as the stopping time i.e, the first time when the index is no greater than its initial value.

Pure exploration bandit. [2] identified the pure exploration problem as best arm identification and proposed the Successive Rejects algo-
rithm under fixed budget constraints. [7] extended this algorithm for finding m-best arms and proposed the Successive Accepts and Rejects
algorithm. In another endeavour to adapt the UCB family to pure exploration scenario, the LUCB family of frequentist algorithms are pro-
posed [17, 24]. In the beginning, they sample all the arms. Following that, they sample both the arm with maximum expected reward and the
one with maximum upper-confidence bound till the algorithm can identify each of them separately.

B SUPPLEMENTARY MATERIAL FOR SECTION 3 (METHODOLOGY)

B.1 KL-divergence on the Manifold.

Kullback-Liebler divergence (or KL-divergence) [26] is a premetric measure of dissimilarity between two probability distributions.

Definition 1 (KL-divergence). If there exist two probability measures P and Q defined over a set S and P is absolutely continuous with
respect to Q , we define the KL-divergence between them as

DKL(P ‖Q) ,
∫
S
log

dP

dQ
dP .

dP
dQ

is the Radon-Nikodym derivative of P with respect to Q .

Since it represents the expected information lost if P is encoded using Q , it is also called relative entropy. Depending on the applications,
P acts as the representative of ‘true’ underlying distribution obtained from observations or data or natural law, and Q represents the model or
approximation of P . For two probability density functions p(s) and q(s) defined over a set S , the KL-divergence can be rewritten as

DKL(p(s) ‖ q(s)) =
∫
s ∈S

p(s) log p(s)
q(s)ds = −h(p(s))+ H (p(s),q(s)). (9)

Here, h(p(s)) is entropy of p and H (p(s),q(s)) is the mutual information between p and q. Thus, from an information-theoretic perspective,
we perceive KL-divergence as the natural divergence function on the belief-reward manifold when we analyse the dynamics of the entropy
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function on it. Except that, any general α-divergence function on the statistical manifold is a convex combination of ±1-divergences. Mathe-
matically, for α ∈ (−1,+1),

D(α )(p ‖ q) , 1 + α

2
D(+1)(p ‖ q) + 1 − α

2
D(−1)(p ‖ q)

=

1 + α

2
DKL(q ‖ p) +

1 − α

2
DDKL(p ‖ q).

(10)

From a manifold perspective, it seems that the divergence function for the ±1-connections on the belief-reward manifolds and a convex mixture
of DKL divergences form the general notion of movement on any such space. Thus, KL-divergence between two belief-reward distributions is
an effective and natural quantifier of movement, and also of information accumulation during Bayesian update. Hence, for updating the beliefs
in an almost optimal manner to decrease the uncertainty and to improve the reward, we have to express the observations and a representation of
knowledge-base and exploiting scheme using the belief-reward distributions, and to minimise the KL-divergence between these distributions
with each iteration. This allows us to conclude our query about the notion of optimal accumulation of information for precise estimation of
arms’ distributions is by mapping them into KL-divergence and alternately minimizing it. If P are the candidate belief-reward distributions
of the arms formed by accumulation of actions and rewards, and Q are the pseudobelief or pseudobelief-focal distributions, the alternating
minimisation scheme looks for the most succinct representation Q of the knowledge or the exploitation bias while choosing such arms whose
belief-reward distributions resemble their true reward distributions as much as possible.

B.2 Condition for Existence of Alternating Projection Scheme

Both I- and rI-projections are valid and well-defined if the KL-divergence between any two distributions in P and Q is defined and finite.

ASSUMPTION 3 ((ABSENCE OF SINGULARITIES)). The distribution families P and Q are defined over the sets Supp(P) , {a : p(a) >
0,∀p ∈ P} and Supp(Q) , {a : q(a) > 0,∀p ∈ P} respectively. Moreover, none of the supports are empty and Supp(P) ⊆ Supp(Q).

Assumption 3 avoids any singularity in both I- and reverse I- projections and keep them finite.

B.3 BelMan for Exponential Family Distributions

Bernoulli Bandits. In the case of Bernoulli bandits, we assume that drawing an arm returns the rewards 1 and 0 with probability θ and
1−θ respectively. Thus, the reward distribution of the jth arm is fθ j (x) , Ber(θj ). Following the Bayesian approach, we choose the conjugate

prior to begin with. Thus, we keep the prior belief over each arm as a beta distribution with shape parameters {α j }kj=1 and {β j }kj=1. After

n-iterations the prior over the probability of success of the jth arm is

b
j
n(θj ) , Beta(θj ;α jn , β

j
n) =

1

B(α jn , β
j
n)
θ
α
j
n−1

j (1 − θj )β
j
n−1,

for α jn , β
j
n > 0 and θj ∈ (0, 1). Here, α jn and β

j
n are the number of successes and failures, respectively, for the arm j till iteration n. We begin

with both α
j
0 and β

j
0 to be 1 for all arms. This amounts to the uniform distribution over 0 and 1. This initialization allows us to choose all the

arms with equal probability and without any initial bias. We update this belief eventually as we further draw the arms and compute it using
BelMan. Under this specific setting of beta prior and Bernoulli reward, we compute the targeted KL-divergence of BelMan as

k∑
j=1

DKL

(
P
j
n(x, θ) ‖ Q̄n−1(x, θ)

)
=

k∑
j=1

[− 1

τ (n)
α
j
n

N
j
n

− log
(
B

(
α
j
n , β

j
n

))
+ (α jn − ᾱn−1)Ψ(α jn) + (β

j
n − β̄n−1)Ψ(β jn)

− (N j
n − N̄n−1)Ψ(N j

n)] + k log
(
ᾱn−1 exp( 1

τ (n) ) + β̄n−1
N̄n−1

)
+ k log

(
B

(
ᾱn−1, β̄n−1

) )
.

Here, N j
n = α

j
n + β

j
n is the total number of times the jth arm is played till the nth iteration, N̄ = ᾱ + β̄ and Ψ is the digamma function [5]

defined as the derivative of the logarithm of gamma function, i.e. d
da

(log Γ(a)).
In Line 4 of Algorithm 1, we first perform the I-projection to decide which arm an to draw to minimize the KL-divergence. Following

this, we update the pseudobelief using I-projection in Line 9 of Algorithm 1. In order to perform this update, we find out such ᾱ and β̄ that
minimize the objective and update the pseudobelief accordingly. The presence of pseudobelief offers BelMan a chance to explore the less
successful arms to minimize the entropy, while the Focal distribution creates the scope of exploiting the present information of the best arm.

Exponential Bandits. The exponential distribution is another member of the exponential family. For a given positive rate parameter θj , the
reward distribution of arm j of exponential bandit is fθ j (x) , θj exp(−θjx) for x ∈ [0,∞). Following the structure of Sections 3.3 and the

previous Bernoulli case, we obtain the gamma distribution, another member of the exponential family, as the conjugate prior. After the nth
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Figure 7: Evolution of cumulative regret (top), and number of suboptimal draws (bottom) for 500 iterations for 2-arm Bernoulli

bandit with means 0.45 and 0.55. The dark line shows the average over 25 runs. The grey area shows 75 percentile.

iteration, the belief distribution corresponding to jth arm is expressed as

b
j
n(θj ) , Gamma(θj ;α jn , β

j
n) =

β
j
n
α
j
n

Γ(α jn )
θj

α
j
n−1 exp(−θjβ jn),

for both shape and rate parameters α
j
n , β

j
n > 0. Here, α jn and β

j
n are, respectively, the number of times the arm j is played and sum of

the rewards obtained by playing the arm till iteration n. As we update using Equation (2), we get gamma distributions with parameters
α
j
n+1 = α

j
n + 1, and β

j
n+1 = β

j
n + xn if the arm j is played and a reward xn is obtained. Under this specific setting of gamma prior and

exponential reward, we compute the targeted KL-divergence of BelMan as

k∑
j=1

DKL

(
P
j
n(x, θ) ‖ Q̄(x, θ)

)
=

k∑
j=1

[− 1

τ (n)
α
j
n

β
j
n

− log
(
Γ

(
α
j
n

))
+ (α jn − ᾱn−1)Ψ(α jn ) −

α
j
n

β
j
n

(β jn − β̄n−1)

+ ᾱn−1 log β
j
n] + k log Z̄n + k log (Γ (ᾱn−1)) − kᾱn−1 log β̄n−1.

We incorporate this analytical form in Algorithm 1 and update it as mentioned in the Bernoulli case.

C SUPPLEMENTARY MATERIAL FOR SECTION 4 (EXPERIMENTAL EVALUATION)

C.1 Exploration–Exploitation Setup.

We also experimented on another 2-arm bandit scenario with means 0.45 and 0.55. Figures 7 depicts the evolution of cumulative regret and
suboptimal draws for BelMan and the other competing algorithms. Similar to Figure 7, we observe the cumulative regret of BelMan grows
at first linearly and then it transits to a state of slow growth. Except showing this ideal behaviour, BelMan performs competitively with the
contending algorithms. This shows its efficiency as a candidate solution to the exploration–exploitation bandit.

Figure 8 shows performance for 10-arm Bernoulli bandit. For this setup, BelMan outperforms other algorithms. We also observe though
the number of arms increases from Figure 7 to Figure 8 that performance of all algorithms is comparatively better in the first case. This is
explainable from the fact that hardness of minimising cumulative regret increases as the number of arms increases. Beside that, as more arms
with identical or almost identical distributions appear, the algorithm requires more exploration to separate them and to determine which one
is optimal. The difference in performance between Figure 7 and 2 indicates this.

We finally tested BelMan on an exponential bandit consisting of 5-arms with expected rewards {0.2, 0.25, 0.33, 0.5, 1.0}. We compare
performance of BelMan with state-of-the-art frequentist method tailored for exponential distribution of rewards, called KL-UCBExp [18].
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Figure 8: Evolution of cumulative regret (top), and number of suboptimal draws (bottom) for 500 iterations for 10-arm Bernoulli

bandit with means {0.1, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.01, 0.01, 0.01}. The dark black line shows the average. The grey area shows 75

percentile.

We also compare it with Thompson sampling, UCBtuned and uniform sampling method (Random). The results are shown in Figure 9 and 10.
Since the formulation is oblivious to boundedness of the distribution, we choose to validate also on unbounded rewards. In Figure 9, it
outperforms all the other algorithms. In Figure 10, though KL-UCBexp performs the best, performance of BelMan is still competitive with it.

These results validate BelMan’s claim as a generic solution to a wide range of bandit problems.
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Figure 9: Evolution of cumulative regret (top), and number of suboptimal draws (bottom) for 1000 iterations for 5-arm unbounded

exponential bandit with parameters {0.2, 0.25, 0.33, 0.5, 1.0}.
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Figure 10: Evolution of cumulative regret (top), and number of suboptimal draws (bottom) for 1000 iterations for 5-arm unbounded

exponential bandit with parameters {1, 2, 3, 4, 5}.
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