
1

Learn-as-you-go with Megh:
Efficient Live Migration of Virtual Machines

Debabrota Basu, Xiayang Wang,Yang Hong, Haibo Chen, and Stéphane Bressan

Abstract—Cloud providers leverage live migration of virtual machines to reduce energy consumption and allocate resources efficiently
in data centers. Each migration decision depends on three questions: when to move a virtual machine, which virtual machine to move
and where to move it? Dynamic, uncertain, and heterogeneous workloads running on virtual machines make such decisions difficult.
Knowledge-based and heuristics-based algorithms are commonly used to tackle this problem. Knowledge-based algorithms, such as
MaxWeight scheduling algorithms, are dependent on the specifics and the dynamics of the targeted Cloud architectures and
applications. Heuristics-based algorithms, such as MMT algorithms, suffer from high variance and poor convergence because of their
greedy approach. We propose an online reinforcement learning algorithm called Megh. Megh does not require prior knowledge of the
workload rather learns the dynamics of workloads as-it-goes. Megh models the problem of energy- and performance-efficient resource
management during live migration as a Markov decision process and solves it using a functional approximation scheme. While several
reinforcement learning algorithms are proposed to solve this problem, these algorithms remain confined to the academic realm as they
face the curse of dimensionality. They are either not scalable in real-time, as it is the case of MadVM, or need an elaborate offline
training, as it is the case of Q-learning. These algorithms often incur execution overheads which are comparable with the migration time
of a VM. Megh overcomes these deficiencies. Megh uses a novel dimensionality reduction scheme to project the combinatorially
explosive state-action space to a polynomial dimensional space with a sparse basis. Megh has the capacity to learn uncertain
dynamics and the ability to work in real-time without incurring significant execution overhead. Megh is both scalable and robust.
We implement Megh using the CloudSim toolkit and empirically evaluate its performance with the PlanetLab and the Google Cluster
workloads. Experiments validate that Megh is more cost-effective, converges faster, incurs smaller execution overhead and is more
scalable than MadVM and MMT. An empirical sensitivity analysis explicates the choice of parameters in experiments.

Index Terms—Cloud computing, Reinforcement learning, Virtual machine, Live migration, Online algorithms, Markov decision process.

F

1 INTRODUCTION

INFRASTRUCTURE as a Service (IaaS) environments of
Cloud computing leverage virtualization technology [1]

to provide a shared platform of resources accessible at
any time and from anywhere through the Internet. Cloud
providers allocate Virtual Machine instances (VM) on a
cluster of Physical Machines (PM). VMs allow users to share
physical resources concurrently. Therefore, VMs enhance
utilization of resources and increase return on investment
for Cloud providers.

Making such an optimal allocation of resources is chal-
lenging not only in general-purpose IaaS Clouds [2] but
also in Clouds with specialised features like scientific com-
puting [3] or online transaction. A large number of users
accessing the Cloud, the diversity of applications, and the
heterogeneity of hardware yield significant variations in
performance. Furthermore, the uncertain dynamics of work-
loads creates abrupt and unpredictable changes in resource
utilization. Thus, dynamic allocation of VMs in Clouds is
indispensable. In order to avoid disruption due to dynamic
allocation, [4] and [5] proposed the idea of a live migration
scheme. During live migration, pages from the memory of
the migrating VM are copied to the destination machine

• D. Basu and S. Bressan are with the Department of Computer Science,
School of Computing, National University of Singapore, Singapore.
E-mail: see http://www.comp.nus.edu.sg/∼deb-basu/contact.html

• X. Wang, Y. Hong and H. Chen are with the Institute of Parallel and
Distributed Systems, Shanghai Jiao Tong University, Shanghai, China.

while it keeps on running on its present host. If properly
carried out, live migration causes minimal downtime and
minimal noticeable effect from the user end. Live migration
raises three questions to the Cloud administrator: which VM
to move, where, i.e, to which physical host to move, and when
to move?

These resource management decisions during live migra-
tion drastically affect the energy consumption of the Cloud
data centers. As energy consumption contributes almost
75% of the operation cost of a data center [?], from the
Cloud provider side it is the most important metric for
live migration. Migration events may also cause significant
deterioration of the Quality of Service (QoS) promised by
the Cloud providers and can violate the Service Level Agree-
ments (SLAs) [6]. These agreements also define monetary
penalties for the Cloud providers when violated. In this
work, we develop cost models for the SLA violations and the
energy consumption during a live migration and aggregate
them to construct an operation cost.

Energy- and performance-efficient resource management in
Cloud data centers is difficult as the workloads running
on the corresponding VMs are uncertain, dynamic and
heterogeneous. Figures 1(a) and 1(b) reasserts this nature
of the workloads in Cloud data centers. While Figure 1(a)
illustrates the workloads to have long duration but high
variance, Figure 1(b) depicts workloads to have wide range
of durations that does not follow a standard probability
distribution. These observations emphasize the need of

2

0 500 1000 1500 2000

Time (in 5 minutes)

0

10

100

W
or

kl
oa

ds
 (

in
 %

 C
P

U
 u

til
iz

at
io

n)

Mean

Maximum

10 percentile

90 percentile

(a) PlanetLab Workload

0 0.5e+6 1.0e+6 1.5e+6 2.0e+6 2.5e+6

Job duration (in seconds)

0

1

2

3

4

5

6

7

8

Pr
ob

ab
ilit

y
of

 o
cc

ur
re

nc
e

10 -13

(b) Google Cluster workload

Figure 1. Dynamics of PlanetLab workloads and distribution of task durations in Google Cluster.

learning the workload on-the-go than estimating them with
a specific model in order to formulate a generic algorithm.

Knowledge-based and heuristics-based algorithms are
applied to solve the resource management problem.
Knowledge-based algorithms, such as MaxWeight schedul-
ing algorithms [7] or [8] for video streaming data centers,
are oblivious to the specifics and the dynamics of Cloud
architectures and applications that do not belong to their
knowledge-base. Heuristics like dynamic consolidation al-
gorithms [9], [10] do not use such specific knowledge base.
They save the power by greedily accumulating a majority
of VMs on a smaller number of servers. Heuristics-based
algorithms improve the performance by taking cost-effective
VM migration decisions from under- or over-utilized serv-
ers. These heuristics may become unstable while tackling
uncertain dynamics and may make suboptimal decisions
due to their myopic and greedy nature.

The shortcomings of knowledge-based and heuristics-
based algorithms has motivated us to look into reinforce-
ment learning (RL) [11]. RL is a paradigm of machine
learning. In RL, an agent operating in an uncertain envir-
onment takes optimal decisions by learning more about
the dynamics of its surroundings as-it-goes. If we consider
the Cloud administrator system as a learning agent and the
user workloads operating on the Cloud with corresponding
resource distribution as the uncertain environment, our
problem manifests as an RL problem. The system takes
optimal live migration decisions as-it-goes by learning the
dynamics of the workload and adapting accordingly. A
policy or a sequence of decisions made by RL is optimal if it
does live migration and resource management of data center
with minimum operation cost. RL achieves such optimality
by predicting as-it-goes the optimal decisions based on
immediate costs. As the number of ways the VMs can be
allocated to the hosts or PMs is combinatorially large, it
creates a huge state space and also makes RL intractable.
This problem of exploding state space is called curse of
dimensionality in RL. Curse of dimensionality restricts the
applicability of recently proposed learning algorithms in
real-life scenarios. These algorithms are either not scalable
in real-time, as it is the case of MadVM [12], or need an
elaborate offline training, as it is the case of Q-learning [11].
We propose an online RL algorithm, called Megh, to solve
this problem as-it-goes. Megh uses a functional approxim-
ation framework that uses a set of sparse basis functions

to efficiently and effectively estimate the long-term effect of
a migration decision. Megh projects the state space into a
smaller vector space spanned by sparse basis functions and
learns the dynamics of the workloads without assuming any
model or prior knowledge. Megh is a robust algorithm to
learn the uncertainty and diversity of workloads as-it-goes.
At each step, the sparsity of the projected space is leveraged
to act effectively without creating any significant overhead
in the course of live migration. The data structure exploiting
this sparsity makes Megh time-efficient and therefore, a
contending real-time solution for energy- and performance-
efficient live migration.

Following the experimental setup of [9], [10], we eval-
uate the performance of Megh by simulating it using the
CloudSim toolkit [13] over workload data extracted from
PlanetLab [14] and Google Cluster [15]. We compare Megh
with state-of-the-art dynamic consolidation based Minimum
Migration Time (MMT) algorithms: THR-MMT, IQR-MMT,
MAD-MMT, LR-MMT, and LRR-MMT [9], [10]. We also test
the performance of Megh against MadVM [12], which is the
most recent RL-based algorithm for dynamic resource man-
agement in a data center. Experiments prove the efficiency
of Megh as it significantly reduces the total operation cost
and the number of VM migrations occurring over a period
of time with respect to the competing algorithms. Unlike
MadVM suffering from the curse of dimensionality, Megh
takes significantly smaller execution time (∼ 5 ms) than
MMT heuristics (∼ 4000 ms) even for large data center con-
figurations. The results validate the robustness, efficiency,
fast convergence, and real-time execution of Megh to cost-
effectively decide live migrations under uncertain workload
dynamics. A comparative scalability analysis also demon-
strates Megh’s better scalability than THR-MMT. Experi-
ments also show the Q-table of Megh to grow sublinearly
with the number of PMs and VMs. A sensitivity analysis
empirically explicate our choices of parameters controlling
the exploration-exploitation trade-off of Megh.

Our contribution. Here, we summarise the main contri-
butions of this paper.

– We propose an online reinforcement learning al-
gorithm, Megh, to solve the problem of energy- and
performance-efficient live VM migration where the
workload dynamics is not known a priori, or mod-
elled explicitly.

3

– We develop a sparse projection scheme that ap-
proximates the value function uniquely (Theorem 1).
While the projection scheme reduces the complexity
of Megh and practically resolves the curse of di-
mensionality, Megh asymptotically converges to the
optimal policy (Theorem 2).

– The projection scheme and the proposed online
transition operator update induce two significant
improvements in Megh’s performance. Firstly, Megh
is oblivious to the training phase. Megh learns the
workload dynamics on-the-go while optimizing the
decisions simultaneously. Secondly, each iteration of
Megh incurs small execution time proportional to
the number of VM migrations happening at that
iteration.

– In order to verify these outcomes, we discuss a
system model and the cost model inspired by [9],
[12] (Section 3). Though Megh is applicable for even
complex cost models, we use this model for further
experimentation.

– We experimentally verify the performance of Megh
for workload traces of PlanetLab and Google Cluster
that differ significantly in nature and dynamics. Com-
parative performance evaluation validates that Megh
reduces 14% and 8% operational cost with respect to
THR-MMT and MadVM respectively, while Megh’s
execution time is 86% and 0.0001% of that of the
THR-MMT and MadVM.

Structure of the paper. The rest of this paper is organ-
ised as follows. In Section 2, we review the related work.
In Section 3, we depict the system model and build up
the mathematical formulation to calculate costs of energy
consumption and SLA violation. We introduce the problem
of cost-optimal live migration as a reinforcement learning
problem and formulate it mathematically in Section 4. Fol-
lowing that in Section 5, we propose an algorithm Megh to
solve it in real-time. In Section 6, we elaborate the detailed
experimental set-up and also evaluate the performance of
Megh. We discuss the future research directions and con-
clude the paper in Section 7.

2 RELATED WORKS

While Megh tries to perform energy and performance efficient
live VM migrations for resource management, the form of
the problem it solves and the way it solves are based on
reinforcement learning. Here, we review the related works in
these two areas.

2.1 Dynamic VM Consolidation

A profitable strategy for Cloud vendors is the dynamic
consolidation of underutilized virtual machines to fewer
physical servers to save hardware, to reduce energy con-
sumption [16] and to eliminate hotspots [17]. Due to the
dynamic nature of Cloud workloads, there have been many
studies in the field to investigate an optimal dynamic VM
provisioning plan. One key requirement of dynamic VM
consolidation is to pack VMs tightly while preserving SLAs.
Mann et al. [18] recently presented an extensive survey of
the problem models and optimization algorithms. Wang et
al. [19] consider the dynamic network bandwidth demand

for real workloads and model the VM consolidation into a
Stochastic Bin Packing problem. Song et al. [20] similarly
applied a variant of the relaxed on-line bin packing model,
which was shown to work well on a small-scale cluster.
Maguluri et al. [7] further modelled VM consolidation us-
ing a stochastic model where jobs arrive according to a
stochastic process, and described MaxWeight algorithms, a
family of frame-based non-pre-emptive VM configuration
policies to improve overall throughput. Compared to exist-
ing models and algorithms, Megh makes no a priori assump-
tion on the workload arriving pattern or load distribution,
which may be adapted to various scenarios while requiring
a small number of migration requests and thus having little
impact on running workloads.

In the existing literature, the Minimum Migration Time
(MMT) family of algorithms [9], [10] function without any
assumption on the workload model like Megh and perform
in real-time. Due to this general structure and online mode
of operation, we have compared Megh’s performance with
them. These algorithms are heuristics designed for energy
and performance efficient dynamic consolidation of VMs
in Clouds. They start migrating a VM when its utilization
crosses a certain threshold. The threshold can be fixed (for
THR-MMT) or determined adaptively (for IQR-MMT, MAD-
MMT, LR-MMT and LRR-MMT) from the summary statist-
ics of workloads’ history. The VM is migrated to a different
host such that the migration time is minimum. These meth-
ods are greedy heuristics that suffer from high variation
and instability like other heuristic-based algorithms, while
Megh, being a learning algorithm, does not.

2.2 Reinforcement Learning Algorithms
Reinforcement learning (RL) [11] is a paradigm of machine

learning. In RL, an agent aims at taking optimal decisions
by developing an understanding of the constantly evolving
environment around it. Markov decision processes (MDP) [21]
are a model for RL. MDPs assume that it is sufficient to
remember the present state of the system to decide the next
decision or action, while rewards of state-action pairs carry
the relevant information of system’s history. The agent tries
to fix a policy or a sequence of decisions that will maximize
the cumulative sum of rewards acquired.

[22], [23] apply Q-learning [24] for energy–efficient
resource management in Clouds. [25] uses it for automatic
reconfiguration of resource sharing VMs. Q-learning is an
offline algorithm. We have to go through computationally
expensive training periods of a few hundred iterations
before using it in an online setup like the one addressed.
But there is no reliable guarantee on the optimality of Q-
learning for online learning setup for any approximated
value function [26]. The general efficient VM migration prob-
lem may consist of cases where the algorithm encounters
a significant variance in the real-life workload than the
training one due to change in user base or their applications.
Under such conditions, Q-learning has a high probability to
break down or perform sub-optimally.We have done a com-
parative performance analysis with respect to Q-learning.
We omit an elaborate description of that in this article due
to Q-learning’s dependence on offline training and presence
of a recent, on-line approach called MadVM that performs
better than the Q-learning in testing phase.

4

MadVM [12] models the energy-efficient dynamic re-
source management of VMs in a data center as an approx-
imate MDP. This algorithm assumes no prior knowledge of
workload and uses value iteration [27] algorithm to solve the
problem. At each step, MadVM tries to select decisions that
simultaneously maximize the expected cumulative rewards
of each of the VMs. This algorithm is indirect as it does not
try to optimize directly over a policy space but rather rely
exclusively on value function approximation, that hopefully
returns a near-optimal policy. Due to the combinatorially
large state space of the problem, MadVM also faces the
curse of dimensionality of RL approach. This leads to a key
state selection procedure to connect the policy space and the
value functions. This procedure for dimensionality reduc-
tion, however, is computationally expensive. MadVM tries
to simultaneously optimize the utility functions of each of
the VMs. Simultaneous optimization requires bookkeeping
of transition functions and evaluation of key states for each
of them. This computational burden makes MadVM poorly
scalable for real-time applications.

Furthermore, MadVM is a critic based RL algorithm
whereas Q-learning is an actor based RL algorithm. Actor
based algorithms suffer from high variance due to its sensit-
ivity to the estimates of the gradient. Critic based algorithms
are stable but usually needs a discretized version of the
state-action space. Discretization may lead to suboptimal
results. Megh relies on the actor-critic [28] framework of RL
and a functional approximation scheme for computation.
The actor tries to estimate the policy as an incremental
functional approximation problem. The critic leverages this
estimated policy for approximating and updating value
function using samples collected as-it-goes. This feedback
ensures better convergence property and stability. In our
paper, we use such an off-policy actor-critic framework of
least-square policy iteration (LSPI) algorithm [29] as the
skeleton. We utilize the projection based dimensionality
reduction techniques and sparsity-based improved data
structures described in Section 5 to construct our real-time
learner Megh.

3 THE CLOUD DATA CENTER: SYSTEM AND COST
MODELS

In the following subsections, we describe the system model
of a data center used by Megh and formulate cost models
for energy consumption and SLA violations. We use these
cost models in Section 4 in the problem formulation, and in
Section 6 for further experimentation.

3.1 System Model

In IaaS environments Cloud providers serve the users with
virtualized computing resources over the Internet. In order
to model such a system, we consider a data center consisting
of M heterogeneous physical machines (PMs) or hosts. Each
of these PMs is characterized on the basis of the number
of CPUs, the number of cores, the amount of RAM and
the network bandwidth. Here, the performance of a CPU is
defined in Millions Instructions Per Second (MIPS). In our
paper, we consider all of the CPUs belonging to the same PM
as a single-core CPU with the cumulative MIPS performance

of all of them. Independent users submit requests for pro-
visioning of computing resources to the Cloud and are as-
signed to N heterogeneous VMs hosted by M PMs. Each of
the VMs is allocated CPU performance, memory size, RAM,
and network bandwidth as per the users’ requirements. We
assume no a priori knowledge of the applications, workload
dynamics and the time of provisioning of VMs. This allows
us to deal with both general-purpose and specialised setting
of mixed workloads with uncertain dynamics that utilize
the resources of a PM concurrently. In some of the research
works [30], [31], [32], [33], authors assume the distribution
of incoming jobs in a workload to be a Poisson distribution
and model the allocation of resources to jobs in the form
of VMs as a queueing system. They are proved to be
useful for systems where network dependent constraints
dictate the relation between VM allocation and incoming
workload though there is no discussion about effect of such
workload model on energy efficiency. Since our main goal
is to investigate energy efficiency of VM migration, and we
do not want to assume such a distribution for the workload,
or any specific network model rather we want to learn the
workload dynamics and its effect on live VM migration on-
the-go.

The proposed reinforcement learning algorithm, Megh,
is implemented as a part of the global resource manager of
the Cloud. This global manager acts as an interface between
users’ workloads and requirements, and the virtualization
layer. The Virtual Machine Managers (VMMs) operating at
each of the physical nodes act as the continuous monitoring
systems. They send the workload dynamics of each VM and
the resources utilized by them to the global manager. The
global manager acts as the learning agent in Megh. The
global manager accumulates the information and allocates
the resources such that the energy consumption as well as
the SLA violation will be minimized. Following this, the
decision is sent to VMMs as a resource map and VMs
are migrated and consolidated accordingly. Megh may mi-
grate the VMs allocated in an underloaded PM to another
PM with potential capacity and put the first PM down
to sleep. Similarly, if a PM gets overloaded, some of the
VMs operating on it are migrated to another PM such that
the expenditure for energy consumption and SLA violation
remains minimal.

Following previous works on energy–efficient live mi-
gration in Clouds [9], [10], [12], we consider CPU utilization
data as the key metric of characterizing the workloads. We
are aware of the importance of bandwidth and memory as
resources and research works [34], [35] accounting available
bandwidth and network traffic as principal decision vari-
ables for VM migration. One can build cost models for these
resources and add them as additional modules in the cost
calculation without modifying Megh algorithmically.

3.2 Energy Consumption Cost
Energy consumption cost of the Cloud data center can be
considered as a function of time Cp(t), such that

Cp(t) = cp

∫ t

0
P (θ)dθ, ∀t ≥ 0. (1)

Here, cp denotes the cost of consuming 1 Watt of power
for 1 second. It is a fixed constant according to the place

5

where the data center is built up, whereas P (θ) is the
function representing the amount of power (in Watts) con-
sumed by the data center at time θ (in seconds). This
function does not only depend on the workload dynam-
ics of VMs but also on the CPU performance, memory
size, disk storage and cooling system of the PMs installed
in the data center [36]. Following the works by [10], we
leverage the power consumption data provided by the
SPECpower_ssj R⃝2008 benchmark [37], [38] rather than
moving our focus to precisely modelling P (θ). This is a cer-
tified industry-standard benchmark to evaluate the power
and performance characteristics of server-class computer
equipments. SPECpower_ssj R⃝2008 is tested on a wide vari-
ety of operating systems and hardware architectures to re-
move extensive dependence on data center infrastructure for
power–performance characteristics calculations. This bench-
mark spec2014 provides energy consumption level y for a
collection of servers with different CPU architectures under
a workload of x% working on its CPU, as shown later in
Table 1. Now, if we assume that the Cloud management
system extracts the workload dynamics at a certain interval,
say τ > 0, we can model the cost of energy consumption up
to time t as

Cp(T) = cp

T∑
k=0

M∑
i=1

yi(kτ)τ, ∀T ≥ 0 (2)

where, T ≜ ⌈ tτ ⌉ represents the discretized version of time t,
yi(kτ) is the power consumed by the ith PM at time kτ and
M denotes the total number of PMs operating in the data
center.

3.3 SLA Violation Cost

Though energy consumption covers the major part of
the Cloud provider’s expenditure, Quality of Service (QoS)
provided by the Cloud is a concern from the user’s side.
Specifically, QoS is negotiated using a legal agreement
between the user and the Cloud provider, called Service
Level Agreement (SLA). SLAs provided by companies like
Amazon, Microsoft and Google confirm that service pro-
viders promise to pay users certain monetary penalties if the
QoS degrades below certain levels. We also observe that QoS
is defined as the uptime percentage of the user. Uptime is the
percentage of total access time for which the user can utilize
the Cloud services without any interruption. Downtime is
the percentage of total access time for which the user cannot
utilize the Cloud services due to the interruption. Some
of the Cloud providers do not consider any continuous
downtime below 5 minutes as a degradation of QoS to
provide the system privilege. In this paper, we consider
the exact downtime without such bias. Thus, SLA violation
cost at time t for a Cloud with M PMs and N VMs can be
expressed as,

Cv(t) =
N∑
j=1

cjv(t), ∀t ≥ 0 (3)

Here, cjv(t) is the SLA violation cost for VM j until time t.
cjv(t) can be defined as

cjv(t) =

cv1, if user’s downtime percentage up to t

∈ (0.05%, 0.10%]

cv2, if user’s downtime percentage up to t

> 0.10%

0, otherwise

as the system model considers each VM is used to virtually
assign computing resources to each of the users.

As we allocate and manage the resources by migrating
the VMs from one machine to another, we face two cases
of QoS degradation. In the first case, when one or multiple
VMs are allocated to a PM, it faces a sudden rise of workload.
The PM gets overloaded. Overloading happens when VMs
try to use more resources than the capacity of the host PM.
Overloading creates a scenario where we need to migrate
VMs from that host to another. Due to discretized time of
observations by the global learning agent and the inherent
delay of the host system to react and adapt to the scenario,
some time is lost before the migration decision is made
and executed. During this period, the VMs working on
that host remain suspended or their performance degrades
substantially. This phenomenon introduces a downtime in
each of the VMs working on that host and is termed as the
overloading time. In this paper, we denote the overloading
time of host PM i at time t as Toit . Toit represents the total
time during which the host i has experienced the utilization
of greater than β% leading to overloading. If the active time
Tait of the PM i is the total time for which it is serving the
users, we define the percentage of overloading time as

Oi(t) ≜ Toit

Tait
. (4)

In the second case, the downtime is caused by the live
migration process itself. Though the live migration transfers
a VM from a host PM to another destination PM without
suspending the running application, it still causes a down-
time. The migration time is defined as the time required to
copy all the pages of a VM from its present host memory
to the destination memory. If Mjt is the amount of memory
used by VM j right before initiating the migration at time t,
and, Bjt is the available bandwidth of the network, expected
migration time of VM j is expressed as TM jt ≜ Mjt

Bjt
. Thus,

the downtime of VM j during live migration is estimated
as the time for which its estimated CPU utilization ûj(t)
will be less than a certain threshold. This threshold is
introduced as a given α% > 0 of the workload uj(t) that
is demanded from the VM by the user. Thus, we estimate
the live migration downtime of VM j at time t as

Tdjt ≜
∫ t+TM jt

t
1 (ûj(θ) < αuj(θ)) dθ,

where uj(t) is the CPU utilization by VM j at that moment
and 1 is the indicator function defined as

1 (ûj(t) < αuj(t)) ≜
{
1, ûj(t) < αuj(t)

0, otherwise
, ∀t ≥ 0.

If Trjt is the total active time requested by the VM j till the
time t, we estimate the percentage of live migration downtime
of VM j as

Dj(t) ≜
Tdjt

Trjt
, (5)

Thus, the total downtime percentage for VM j up to time
t is defined as the sum of its downtime due to live migration

6

and the overloading time of the PMs, which got overloaded
while the VM was operating on it. Equations (4) and (5)
give us a concrete mathematical model to calculate the SLA
violation cost for each of the VMs. Though we develop and
use the aforementioned cost model for SLA violation, it
can be replaced with other cost models considering varying
market prices and various subtle factors [39] without further
modifying Megh.

4 LIVE MIGRATION AS A LEARNING PROBLEM

In this section, we formulate the problem of energy– and
performance–efficient resource management during live mi-
gration of VMs as a reinforcement learning problem.

Let us consider a Cloud data center with M PMs. Each
of the PMs has homogeneous CPU capacity h. Each of
the VMs is assigned to each of the users on the basis of
their requests. Thus, the maximum number of users that
the Cloud can handle is the maximum number of VMs it
can allocate. Though the workloads and requirements of
users may differ, the maximum CPU capacity that can be
allocated to a VM is a constant, say v. Under the worst
case scenario, when each of the VMs will ask for maximum
CPU capacity, the maximum number of VMs n that can
be allocated to a single PM is h

v . Furthermore, the total
number of VMs N that can be allocated to the data center
at any instance is Mn. The VMs are accessed by a large
volume of users with diverse requirements and applications,
and the dynamics of these workloads are also uncertain.
This may cause a sudden change in workloads of one or
multiple VMs and consequently overloading of hosts. Then
one of the VMs working on the overloaded host has to be
migrated to another destination PM such that cost for energy
consumption and SLA violation remains minimal. While
doing so the system has to decide which VM to move to
which destination host and when to start moving, so that
the penalty will be minimum ensuring maximum profit of
Cloud provider and also maximum QoS for users.

[40] proves that optimal scheduling of tasks in a multi-
processor system is impossible in the absence of any prior
knowledge of the deadline and the request distribution.
[41] states that resource allocation among even soft real-
time tasks under fully stochastic environment is analytically
intractable. Thus, online allocation of tasks in a data center
with unknown job request distribution and unknown job
durations is intractable, and learning the stochastic nature
of workload is essential for taking optimal decisions.

We model the process of live migration with uncertain
workloads as a Markov Decision Process [21]. In this model,
a state is a configuration of the VMs, with certain workloads,
operating on the PMs. Thus, the state space S is Cartesian
product of the set of all configurations of the VMs on the
PMs C, and the workloads operating on the VMs at any
instance W . At a certain instance, W is an array of N
elements, where an element represents the CPU usage of
a VM at that instance. Since W varies continuously and
stochastically, it makes the state space infinite dimensional
and introduces uncertainty in state transitions. The action
space A corresponds to migration of any of the VMs from
one PM to another depending on the operating workloads.
Each action is represented by a pair (j, k), where j is the
migrating VM, and k is the destination PM. In order to

capture the uncertainty of workloads, we define transition
function f : S×A→ P(S), where P is a probability measure
over state space. Given the present state and an action, f
returns the probability to reach another state. In the problem
addressed in this paper, it is not known a priori and has to
be learned. The cost of changing a configuration st−1 of VMs
to another configuration st is given by
C(st−1, st) = △Cp(st−1, st)+△Cv(st−1, st), t ∈ [1, T] (6)

where, △Cp(st−1, st) and △Cv(st−1, st) are the costs of en-
ergy consumption and SLA violation in the interval (t− 1, t].
Here, Cp and Cv are defined by Equations (2) and (3)
respectively. We observe △Cp(st−1, st) is always positive
as the system will always consume some energy whether
any migration happens or not, whereas △Cv(st−1, st) ≥ 0.
The equality holds if and only if there is no SLA violation in
that interval.

This formulation reduces the problem to finding the
sequence of configurations that minimizes the sum of future
per-stage costs. Unlike MadVM that assumes an average
cost structure and computationally considers the effect of
a migration is limited to a fixed future time horizon, we
assume an infinite horizon [11] formulation of MDP. Infinite
horizon means an action will affect all the future states
and actions of the system. This formulation makes the
cumulative sum of future per-stage costs infinite. In order
to circumvent this problem a discount factor γ ∈ [0, 1) is
introduced. Mathematically, γ makes the cumulative sum of
per-stage costs convergent. Physically, γ let the effect of a
past action decay with each passing instance. The discount
factor inclines the system to give more importance to imme-
diate costs than to costs distant in the future, which follows a
practical intuition. Now, the problem translates into finding
the sequence of configurations that minimizes a discounted
cumulative cost. Under Markov assumption, a configuration
change depends on its present state only. Given the current
configuration and workloads, i.e the current state st, a policy
π : S → A determines the next decision at. We define the
cost-to-go function V π for a policy π as

V π(s) ≜ Ef

[∞∑
t=1

γt−1C(st−1, st)

]
(7)

such that the initial state s0 = s, and st is the state reached
from state st−1 through an action π(st−1)). The value of
V π(s) represents the expected cumulative cost for following
the policy π from the current configuration s. Thus, V π(s)
allows us to optimize the long-term effect of migration de-
cisions, unlike greedy MMT algorithms that try to minimize
the present cost only. Let U be the set of all policies for the
given set of VMs on the cluster of PMs. Now, the problem
can be phrased as

π∗ ≜ argmin
π∈U

V π(s0). (8)

i.e, to find the optimal policy π∗ that minimizes the expected
cumulative cost.

5 MEGH: LEARN TO MIGRATE AS-YOU-GO

Depending on the cost model developed in Section 3 and the
problem formulation in Section 4, we propose in thi section
an online reinforcement algorithm, Megh. Megh answers
three basic questions of the VM migration problem: when

7

to start migrating the VM, which VM to migrate, and where
i.e, to which PM to migrate it.

Megh answers these questions by solving the minimiz-
ation problem of Equation (8). This equation shows that
optimal decision making is analogous to computing the
optimal function π∗ that minimizes the cost-to-go function.
This is a sequential functional approximation problem over
the space of policies U. In order to do so, we begin with
an initial guess of the policy π0. Following that as we gain
more information about the configuration of VMs and also
the dynamics of workloads on them, we improve our ap-
proximation consequently such that the current estimation
of cost-to-go function remains minimal. In RL literature, this
strategy is known as policy iteration [11].

If transition function f i.e, the stochastic nature of work-
load and its effect on migration, is known a priori, we can
apply Bellman’s dynamic programming technique [42] to
update the estimate of cost-to-go function at every time step
using the following formula,

V πt(s) = Ef

[
C(s, s′) + γV πt−1(s′)

]
. (9)

Thus, the updated policy would be πt = argminπt∈U V πt(s).
The algorithm terminates when there is no or very small
change in the policy. Policy iteration has strong optimality
and convergence properties [43].

In live VM migration problem, policy iteration suffers
from two main issues. Firstly, to update the cost-to-go
function in Equation (9) and to find the optimal policy, we
have to search through the whole state-action space. The
state space consists of all possible configurations of VMs on
all the PMs and is combinatorially large. As computation
of an estimate of the cost-to-go function involves search-
ing through the state space S, high dimensionality of S
makes the policy update expensive and almost impossible
to perform in real-time. This exponential blow-up in com-
putation due to the huge state space is called the curse of
dimensionality [43]. Secondly, the expectation in Equation (9)
is not computable as the stochastic nature of workload,
its correlation with VM configurations, and transition of
configurations are not known a priori. In order to conserve
the robustness and universality of Megh, we do not restrict
this workload dynamics to a specific model. Indeed that
would narrow down the applications and the hardware
architectures the algorithm can deal with. Megh solves both
the issues.

In order to solve the curse of dimensionality, Megh
projects the state-action space to a d = N ×M dimensional
space X . X is spanned with d basis vectors {ϕjk}N,M

j=0,k=0.
Each of the basis ϕjk corresponds to an action (j, k) such
that the jkth element of it is one, and all other elements are
zero. All the actions or configuration changes in the Cloud
are represented using these basis vectors or linear combin-
ations of them. The basic rationale behind this projection
is during transition from a state to another the accessible
subspace is constructed by the states which are one action
away from the present state. Instead of searching over the
whole state space in each and every step it is logical to search
in a subspace X that contains all the states s′ reachable from
s by actions ϕjk or linear combinations of them. Thus, the
combinatorially explosive state-action space of VM config-
urations is projected to a polynomial dimensional vector

Algorithm 1
1: function MEGH(S, A, γ, ϵ, Temp0)
2: Initialize δ ← d,B0 ← 1

δ Id×d, ϕ0 ← 0d,
3: θ0 ← 0d, π(s0)← 0d, z0 ← 0d, C0 ← 0
4: while t ≥ 1 do
5: at ← argmaxa∈A πt(st)
6: Take action at.
7: Observe state st+1.
8: Ct+1 ← Calculate cost using Equation (6).
9: Bt+1 = T−1

t+1 update using Equation (10).
10: zt+1 ← zt + ϕatCt+1

11: θt+1 ← Bt+1zt+1

12: π(st+1)← PolicyCalculator(ϕat , θt+1)
13: end while
14: end function

space with a sparse basis. Hence Megh approximates the
cost-to-go function as V (st+1) = θTϕat , where at = πt(st)
is the action taken at time t. This enable Megh to update
the cost-to-go function effectively in real-time. Theorem 1
proves that this design of basis vectors is not ad hoc rather
leads to a unique projection vector to approximate the cost-
to-go function.

Theorem 1. There exists a unique projection vector θ ∈ Rd that
approximates the cost-to-go function as V (s) = θTϕπ(s) for all
states s ∈ S and policy π ∈ U.

While the projection scheme resolves curse of dimen-
sionality, the expectation of cost-to-go function is still not
computable due to lack of prior knowledge about work-
load dynamics, and how it affects the VM configurations
and their transitions. In order to capture this notion, we
create a stochastic operator T . T is updated on-the-go in
a frequentist fashion. T accumulates the possibility of using
an action to move to another configuration from the present
one depending on the nature of workload and the changes
caused by them. In this work, we begin with T0 = 1

δ Id,
where δ is a large positive number and Id is an identity
matrix of order d. Here, we have considered δ as d. It implies
that initially, there is no bias and the system can migrate
any of the VMs to any of the PMs equally probably. As
the system extract information of the workload and VM
configurations at each time step t, it decides an action at
according to the policy πt. Using this information, we can
update the operator T as

Tt+1 = Tt + ϕat

[
ϕat − γϕπt(st+1)

]T
. (10)

where, ϕπt(st+1) represents the probable action at time t+ 1,
if the policy πt is followed at the next time instance. Thus,
Equation (10) captures the effect of present state and action
and its influence in future action with a discount γ.

In Megh, we plug in these two schemes of polynomial
size projection space X and incremental update of the
operator T to Least-Square Policy Iteration algorithm [29].
As described in Section 2.2, Least-Square Policy Iteration is
a functional approximation algorithm that implements in
an actor-critic framework. Megh first tries to find out an
estimation of cost-to-go function by least-square estimation
in the actor format and then to update the policy such that
it maximizes the estimate in the critic format. The pseudo-
code of Megh is depicted in Algorithm 1. We begin with a
random policy that allocates equal probability to all possible

8

Table 1
Power Consumption of servers in Watts for different level of workload [37], [38]

Server Type 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
HP ProLiant G4 86 89.4 92.6 96 99.5 102 106 108 112 114 117
HP ProLiant G5 93.7 97 101 105 110 116 121 125 129 133 135

actions. The cost of any action is initiated from 0, and
the transition matrix is initiated as a diagonal matrix with
elements 1

d .
Theorem 2 shows that Algorithm 1 asymptotically con-

verges to an optimal policy π∗ that minimises the cost-to-go
function while learning as-it-goes.

Theorem 2. If there exists a unique vector θ such that
Vπ(s) = θTϕπ(s) for any configuration s and for any policy
π ∈ U, Algorithm 1 asymptotically converges to an optimal
policy.

5.1 Inducing Exploration in Action Selection

Instead of greedily choosing the action with minimum
V πt(st+1), we use Boltzmann exploration [44] as the on-
policy mechanism [11]. Adaptation of Boltzmann mechan-
ism with decreasing temperature parameter for Megh is
shown in Algorithm 2. Boltzmann exploration compares
the goodness of an action with respect to the others by
assigning exponentially weight to each action. It allows
the off-policy algorithm explore more with a bias towards
the actions yielding less cost. The temperature parameter
controls the trade-off between the bias towards the actions
with less cost and the exploration of other actions. Here,
we have started with an initial temperature value Temp0

and decay it consequently with a factor exp(−ϵ). Initially,
the large Temp means rather than choosing the maximum
greedily it is trying to explore more. As Temp decreases
with time, PolicyCalculator becomes the greedy selection of
the minimum. Thus, Boltzmann exploration allows to adapt
the exploration and greedy selection of actions with time.

Algorithm 2
1: function POLICYCALCULATOR(ϕat , θt+1)
2: Tempt+1 ← Temptexp(−ϵ)
3: for all i = 1, . . . , d do
4: Q(st+1, ai)← ϕT

ai
θt+1

5: end for
6: MIN_Q← minaQ(st+1)
7: for all i = 1, . . . , d do
8: π(st+1)i ← exp

[
−Q(st+1,ai)+MIN_Q

Tempt+1

]
9: end for

10: end function

5.2 Managing the Complexity Bottleneck

Algorithm 1 has space complexity of O(d2) and time com-
plexity of O(d3). Though this algorithm is computationally
cheaper and faster than the actual combinatorially explosive
problem scenario, still it can be slow enough for a real-
time system operating over a large number of VMs and
PMs. The space complexity bottleneck is storing the d × d
matrix B. The time complexity bottleneck is computing the
inverse of the operator T to update B at each time-step,
as shown in Line 9 in Algorithm 1. If we use the Gauss-
Jordan elimination process [45] provided by linear algebra
packages [46], inversion of T costs time complexity of O(d3).

In order to compute the inverse incrementally at every step,
we use Sherman-Morrison Formula [47] on Equation (10)
given by,

Bt+1 = Bt −
Btϕat

[
ϕat − γϕπt(st+1)

]T
Bt

1 +
[
ϕat − γϕπt(st+1)

]T
Btϕat

. (11)

Thus, the time complexity of every step is reduced to O(d2).
We reduce the complexity further by leveraging the

sparsity of the basis vectors ϕai ’s. Since all the zero entries
are redundant in the calculation of product, we store only
the non-zero entries of the matrix B and vector ϕai as a
triplet (row number, column number, value). This reduces
the initial memory storage to O(d). Because during initializ-
ation we start with a diagonal matrix of order d and d basis
vectors each with single non-zero entry. The memory stor-
age increases at each step as per the number of migrations
happened during the interval. Thus, the multiplication in
Equation (11) turns into simply choosing the non-zero terms
in Bt according to the non-zero entries in ϕai ’s involved
in the calculation, and then adding or subtracting them. It
reduces the time complexity of Line 9 in Algorithm 1 to
O(#m), where #m is the number of migrations per step.
The aforementioned use of online update and inversion
technique, and also leveraging the sparsity of the basis
vector reduces both the space and time complexity of Megh
substantially. These techniques give Megh the speed-up to
be a real-time system for live VM migration while keeping
its structure and learn-as-you-go strategy intact.

6 PERFORMANCE EVALUATION

6.1 Experimental Setup
We perform experiments using the CloudSim toolkit [13]
as the simulation platform. CloudSim uses CPU utilization
as the key metric to characterize the workloads. We fol-
low this characterization throughout our experiments. In
the power model, we use the standard price of the local
power providers, 0.18675 USD/kWh, to calculate the energy
consumption cost. We assume that the user has to pay 1.2
USD per hour for using a VM instance. Though it is a bit
costlier than reality, it does not harm the analysis. Following
the model mentioned in Section 3.3, we also assume that
Cloud providers would pay back 16.7% and 33.3% of user’s
money depending on whether the performance degradation
is less than or greater than 0.10%. We consider β = 70% as
the overloading threshold of the PMs and α = 30% for the
minimum CPU usage threshold by VMs during migration.
The experiments are conducted on a server with two AMD
Opteron(TM) Processor 6272 CPUs. Each CPU has eight
cores, 128 GB memory and clock rate of 2.1GHz. Each core
has two threads.

MMT algorithms are tested using the code embedded
with the CloudSim toolkit, whereas Megh and MadVM are
implemented and embedded in the CloudSim framework
using Java. For both of them, the value of γ is set to 0.5.
γ = 0.5 imposes 50:50 importance of both new and old

9

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time (in 5 minutes)

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

P
er

-s
te

p
C

os
t (

in
 U

S
D

)

THR-MMT

Megh

(a) Per-step cost (in USD)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time (in 5 minutes)

10 2

10 3

10 4

10 5

#V
M

 m
ig

ra
tio

ns

THR-MMT

Megh

(b) Number of VM migrations

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time (in 5 minutes)

0

50

100

150

200

250

#A
ct

iv
e

ho
st

s

THR-MMT

Megh

(c) Number of active hosts

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time (in 5 minutes)

500

1000

1500

2000

2500

3000

3500

E
xe

cu
tio

n
O

ve
rh

ea
d

(in
 m

ill
is

ec
on

ds
) THR-MMT

Megh

(d) Execution time

Figure 2. Performance of Megh and THR-MMT algorithms for PlanetLab dataset

Table 2
Performance Evaluation for PlanetLab

Algorithms THR-MMT IQR-MMT MAD-MMT LR-MMT LRR-MMT Megh

Total cost (USD) 1347 1504 1367 1392 1392 1155
#VM migrations 325299 444624 331304 324079 324079 2309

#Active hosts 666 684 682 692 692 203
Execution time (ms) 2016 3077 2226 1924 2080 1426

information. Temp0 and ϵ are set to 3 and 0.01 respectively
for the experiments in Section 6.3 and 6.4.We explicate such
choice of parameters in Section 6.5. At each time-step, we
allow a maximum 2% of VMs to be migrated by Megh.

6.2 Dataset and Workload

PlanetLab Dataset
CloudSim contains workloads extracted from the CoMoN
project which was a monitoring infrastructure for Planet-
Lab [14]. Each of the workloads consists of CPU utilization
data extracted at a regular interval of 5 minutes for a span
of 7 days. Figure 1(a) shows the statistical nature of the
workload and depicts inherent uncertainty in its dynamics.
All the workloads operate continuously on the PlanetLab
system for the 7 days. The average workload operating on
a VM is ∼ 12% and the standard deviation of the workload
is ∼ 34%. At any moment, the maximum and minimum
workload levels vary from∼ 90 to∼ 5%. This demonstrates
the diversity of workload dynamics and presency of heavy
workloads in the system.

The workloads are working on a set of 800 heterogen-
eous physical machines (PMs). Half of these PMs are HP
ProLiant ML110 G4 servers and the other half are HP ProLi-
ant ML110 G5 servers. The power consumption characterist-
ics of these two servers is obtained from SPECbenchmark
and is shown in Table 1. Though they follow different
energy consumption models, each of them has a dual-core
processor with 4GB RAM and are provided with 1 Gbps
network bandwidth. There are a total of 1052 applications

Table 3
Performance Evaluation for Google Cluster

Algortihm THR-MMT IQR-MMT MAD-MMT LR-MMT LRR-MMT Megh

Total cost (USD) 706 708 708 710 710 688
#VM migrations 299352 262185 266706 233172 233172 3104

#Active host 82 72 73 59 59 194
Execution time (ms) 2887 4030 4000 3889 3923 1945

are running on this system. Each of the applications are
allocated on a VM with 1 vcpu, 0.5-2.5GB RAM, 0.5-2.5 MIPS
and 100 Mbps bandwidth.

Google Cluster Dataset
The Google Cluster trace represents dynamic tasks running
on Google’s Hadoop MapReduce clusters with 12,500 het-
erogeneous machines [2]. The trace contains continuous
information of 29 days with event records and sampled
resource usage at an interval of 5 minutes. We select 500
machines as physical machines and the tasks scheduled on
those machines as virtual machine workloads. We create
2000 virtual machines with each running an individual task
to completion and switching to another. Unlike PlanetLab
where all of the workloads are together varying intensely,
the Google Cluster trace has tasks with varying durations,
starting times, and obfuscated resource usages as shown in
Figure 1(b). Figure 1(b) also shows that the durations of the
tasks do not follow any standard distribution, and vary in
a wide range from the order of 101 to 106 seconds. These
observations demonstrates need of a prior bias free learn-
ing algorithm to perform efficiently for both the datasets.
PlanetLab is a huge geo-distributed computing platform

consisting of hundreds of sites and more than one thousand
nodes [14]. It is hosted by organisations across the world.
Users can access the computing resources by deploying
applications to a subset of the nodes in the form of VMs. The
trace is collected from PlanetLab to track the CPU usage of
each VM’s workload. The result represents the typical work-

10

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time (in 5 minutes)

0.75

1

1.25

P
e

r-
s
te

p
 C

o
s
t

(i
n

 U
S

D
)

THR-MMT

Megh

(a) Per-step cost (in USD)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time (in 5 minutes)

10 2

10 3

10 4

10 5

10 6

#
V

M
 m

ig
ra

ti
o

n
s

THR-MMT

Megh

(b) Number of VM migrations

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time (in 5 minutes)

0

50

100

150

200

250

#A
ct

iv
e

ho
st

s Megh

THR-MMT

(c) Number of active hosts

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time (in 5 minutes)

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

E
xe

cu
tio

n
O

ve
rh

ea
d

(in
 m

ill
is

ec
on

ds
)

THR-MMT

Megh

(d) Execution time

Figure 3. Performance of Megh and THR-MMT algorithms for Google Cluster dataset.

load running in an enterprise Cloud environment. While
the PlanetLab trace is mainly related to academic and other
organisational computation tasks, the Google Cluster trace
records the events in Google’s Hadoop MapReduce clusters.
Google’s trace shows the characteristics of workloads run-
ning in the publicly available Cloud systems [2]. In order
to confirm, we plotted Cullen and Frey graph [48] for the
workloads of both the datasets. They did not match with
any of the standard parmateric distributions. This shows the
need of learning them without imposing a prior assumption.
Evaluating Megh with the traces from both the community
and the industry validates its universality and robustness.

6.3 Comparative Performance Analysis

Megh vs MMT algorithms
Table 2 depicts the performance of Megh and the MMT
algorithms on a week-long trace of PlanetLab. Table 3 sum-
marizes the performance of the aforementioned algorithms
for the Google Cluster dataset. Total cost of operation of
the data center (in USD) obtained by adding the power
consumption cost and SLA violation cost, the number of VM
migrations, average number of active hosts, and execution
time (in milliseconds) of each iteration of the algorithms
are used as the performance measures of the algorithms. As
THR-MMT performs the best among the MMT algorithms,
we show a comparison of Megh with THR-MMT in Fig-
ures 2 and 3.

We observe from Tables 2 and 3 after 7 days of operation
Megh reduces the expenditure by 14.25% for PlanetLab
and 2.5% for Google Cluster with respect to that of THR-
MMT. Figures 2(a) and 3(a) show the per-step operation
cost for Megh not only converges faster than the contending
algorithms but also has less variance for both PlanetLab and
Google. Here, the per-step operation cost includes both the
energy consumption cost and the SLA violation cost in the

5 minutes interval between two observations. Megh takes
around 100 time-steps before converging to almost stable
cost per-step for both PlanetLab and Google Cluster data-
sets. We do not observe such a fast convergence for THR-
MMT. THR-MMT takes around 600 and 300 time-steps in
order to converge for PlanetLab and Google Cluster datasets,
respectively. Being a greedy heuristics, THR-MMT still faces
high variance and instability even after initial convergence.
The comparatively fast convergence speed and less variance
in per-step cost after convergence validate robustness and
stability of Megh for a diverse set of workloads with respect
to other heuristics.

In order to measure the performance of the system and
its QoS, we use the number of VM migration as another
metric. In our experiments, we consider that during the
course of migration the CPU capacity allocated to a VM
on the destination node is same as that of the present
host. This means that each migration may cause some SLA
violation. Therefore, it is crucial to minimize the number
of VM migrations. The total number of VM migrations for
THR-MMT is almost 140 times and 97 times more than that
of Megh for PlanetLab and Google respectively. Figures 2(b)
and 3(b) report the evolution of the cumulative number of
VM migrations over the span of 7 days. As the total number
of VM migrations up to an instance for Megh is much less
than that of the THR-MMT, it shows that at any instance
Megh performs significantly better.

Decreasing the number of active hosts also decreases the
power consumption. Thus, the number of active hosts is
also used as a performance metric for resource management
algorithms [12]. Though reducing the number of active hosts
is the approach taken by VM consolidation algorithms, it
may prove not to be a perfect metric. Because keeping a
larger number of hosts at very low utilization level may
cause less power consumption than keeping a few hosts at

11

0 100 200 300 400 500 600 700 800

Time (in 5 minutes)

0.07

0.071

0.072

0.073

0.074

0.075

0.076

0.077

0.078

0.079

0.08

P
er

-s
te

p
C

os
t (

in
 U

S
D

)

MadVM

Megh

(a) Per-step cost (in USD)

0 100 200 300 400 500 600 700 800

Time (in 5 minutes)

0

500

1000

1500

2000

2500

#V
M

 m
ig

ra
tio

ns

MadVM

Megh

(b) Number of VM migrations

0 100 200 300 400 500 600 700 800

Time (in 5 minutes)

0

10

20

30

40

50

60

70

80

90

100

#A
ct

iv
e

ho
st

s

MadVM

Megh

(c) Number of active hosts

0 100 200 300 400 500 600 700 800

Time (in 5 minutes)

10 0

10 1

10 2

10 3

10 4

E
xe

cu
tio

n
O

ve
rh

ea
d

(in
 m

ill
is

ec
on

ds
)

MadVM

Megh

(d) Execution time

Figure 4. Performance of Megh and MadVM for a dataset of 100 PMs and 150 VMs extracted from PlanetLab trace.

very high utilization level. We observe this dilemma from
Figures 2(c) and 3(c). For PlanetLab, Megh keeps fewer hosts
active than other MMT algorithms, whereas for Google it
keeps more active VMs while incurring the least per-step
cost for both datasets. Figures 2(c) and 3(c) interestingly
indicates towards a subtle balance between the number of
active hosts and the feature of corresponding workloads. For
the data centers with VMs running for long enough with
heavy workloads, such as PlanetLab, the overloading and
thus migration is unavoidable. Thus, consolidating VMs on
smaller number of hosts than equally distributing them is
intuitive as we see in VM consolidation literature. In con-
trary, we observe that if the VMs have very low workload
operating for small duration, such as the Google Cluster,
the VMs are distributed over larger number of hosts. As
each host has less workload, the probability of overloading
and hence that of the migration reduces significantly. This
reduces the number of migrations and the cost due to
degradation of performance but maintains more number
of active hosts. This phenomenon is counter-intuitive with
respect to the VM consolidation literature.

While the results establish Megh’s effectiveness to solve
the live migration decisions with less expenditure and better
QoS, Megh has to fulfil another criterion to be a real-time
system: a small execution time. From Figures 2(d) and 3(d),
we observe Megh is running faster than that of the heuristic
based online algorithms. As shown in Tables 2 and 3, Megh
speeds up the decision making by 1.41 and 1.48 times with
respect to THR-MMT for PlanetLab and Google respectively.
Since migration time of a VM is in the order of a few seconds,
speed up of Megh with respect to the state-of-the-art can
help the system to make decisions and to execute them with
significantly less overhead or downtime to the process of
migration. This, in turn, improves the QoS of the system too.
This empirically proves the efficiency of Megh not only as an

effective learning algorithm but also as an eligible real-time
resource management system in Clouds.

Megh vs MadVM

MadVM fails to scale-up for the complete PlanetLab or
Google Cluster in our experimental facilities. Thus, in order
to compare the performance of Megh with MadVM, we have
chosen two random sets of 150 workloads running on 100
PMs for 3 days from PlanetLab and Google Cluster traces. In
the beginning, all these workloads are allocated uniformly at
random to each of the PMs, such that there is no initial bias
for the learning and the robustness of both the algorithms
can be tested. The 50:50 ratio of two type of servers is still
maintained.

From Figures 4(a) and 5(a), we observe that Megh incurs
less cost (4.3% and 8.8%) than MadVM at every time
step. Additionally, Megh converges faster than MadVM.
Figures 4(b) and 5(b) show Megh causes significantly less
number (5.5 and 6.1 times) of migrations than MadVM.
Figures 4(c) and 5(c) depict at every time step MadVM
(average ∼58 and 34) keeps more hosts active than Megh
(average ∼21 and 20). Figures 4(a) and 5(a) show that Megh
takes 100 and 40 time-steps to converge whereas MadVM
takes 200 and 700 steps to converge for PlanetLab and
Google Cluster respectively.

The main factor where MadVM stumbles is the execution
time. MadVM takes on an average 4143ms and 4057ms to
execute a single iteration for a system of 100 PMs and 150
VMs. In PlanetLab set-up, the migration time of a VM of
0.5 GB RAM is at least 4000ms. Thus, MadVM incurs a
large execution overhead that disrupts VM migration to
be ‘live’. In contrary to MadVM, Megh incurs 1

1000 th of
the execution overhead of MadVM that allows the live VM
migration to happen without additional delay. As the RL
algorithms face the curse of dimensionality and have a huge

12

0 100 200 300 400 500 600 700 800

Time (in 5 minutes)

0.067

0.068

0.069

0.07

0.071

0.072

0.073

0.074

0.075

0.076

0.077

Pe
r-s

te
p

C
os

t (
in

 U
SD

)

MadVM

Megh

(a) Per-step cost (in USD)

0 100 200 300 400 500 600 700 800

Time (in 5 minutes)

0

500

1000

1500

2000

2500

#V
M

 m
ig

ra
tio

ns

MadVM

Megh

(b) Number of VM migrations

0 100 200 300 400 500 600 700 800

Time (in 5 minutes)

0

10

20

30

40

50

60

70

80

#A
ct

iv
e

ho
st

s

MadVM

Megh

(c) Number of active hosts

0 100 200 300 400 500 600 700 800

Time (in 5 minutes)

10 0

10 1

10 2

10 3

10 4

Ex
ec

ut
io

n
O

ve
rh

ea
d

(in
 m

illi
se

co
nd

s)

MadVM

Megh

(d) Execution time

Figure 5. Performance of Megh and MadVM for a dataset of 100 PMs and 150 VMs extracted from Google Cluster trace.

transition matrix for bookkeeping at each time step, it makes
RL algorithms slower for a real-time system. Though au-
thors of MadVM tries to handle such scenario, Figures 4(d)
and 5(d) depict its inability to scale in real-time for large data
centers. Since Megh leverages the sparsity-based projection
technique (Theorem 1), along with the specialised data
structure (Section 5.2), it takes the same migration decisions
in approximately 7ms and 8ms respectively for PlanetLab
and Google datasets.

The experiments validate that though Megh uses the RL
framework, it is significantly more efficient and faster than
the latest state-of-art RL algorithm for live VM migration.

6.4 Scalability Analysis

Scalability is an important issue that an algorithm has to
achieve in order to perform for a large-scale Cloud data cen-
ter. We show a comparative analysis of scalability of Megh
and THR-MMT in Figures 6(a) and 6(b). In order to conduct
such experiments, we randomly choose m and n number of
PMs and VMs from the PlanetLab data. Here, both m and
n take values in {100, 200, 300, 400, 500, 600, 700, 800}. For
each value of m and n, we conduct 25 experiments with 25
randomly chosen set of PMs and VMs.

We observe from Figures 6(a) and 6(b) as the number
of PMs and VMs increase, the execution time per-step in-
creases for both THR-MMT and Megh. With the increase of
number of PMs and VMs, the decision making algorithm
has to choose among larger set of actions and has to face
an increased uncertainty in workload dynamics. Thus, this
increase in execution time is intuitive and natural. For Megh
the rise in execution time is much smaller than that of THR-
MMT. This significant difference in per-step execution time
shows that Megh scales up better than THR-MMT. This
scalability establishes Megh more effective as a real-time
decision maker for large-scale Clouds.

In Figure 7, we report the growth of the number of non-
zero elements in the Q-table of Megh with time and the
number of physical machines. We assume the number of
VMs to be equal to the number of PMs for these exper-
iments. We observe that the Q-table grows linearly with
time, and shifts by certain constant factors due to increase in
the number of PMs. These observations empirically proves
constant increment in complexity of every iteration of Megh
with time. Figure 6.4 also show that the vertical shift in the
growth of Q-table for Megh is linear with respect to the
number of PMs with a proportionality constant around 0.3.

As MadVM takes execution time more than the migra-
tion time of a VM even for 100∼150 PMs, it is not realistic
to use it for live VM migration of a larger number of PMs
and VMs. Additionally, MadVM is not scalable beyond this
setup for our experimental resources. Thus, we cannot con-
duct such a comparative study of scalability with MadVM.

6.5 Parameter Sensitivity
Temp0 and ϵ are used as parameters to tune the exploration-
exploitation trade-off of Megh. We test and analyze Megh’s
performance on different values of the parameters. We vary
Temp0 from 0.5 to 10 with a granularity of 0.5 while keeping
ϵ = 0.001. We run experiments on 30 distinct values of
ϵ, which belong to the interval

[
10−3, 100

]
and are at a

logarithmic (base 10) distance of 0.1. In this case, Temp0
is fixed to 1. For each value of Temp0 and ϵ, Megh is tested
25 times on the PlanetLab dataset described in Section 6.2.

Figures 8(a) and 8(b) show boxplots of per-step cost (in
USD) of Megh for each of the values of the parameter. These
boxplots depict the median and 90 percentile distribution of
the per-step cost. We observe that the median cost decreases
first as the Temp0 increases but the cost rises as Temp0
becomes greater than 3. Though for ϵ this change in per-
step cost is a bit sporadic, we empirically observe that the

13

100 200 300 400 500 600 700 800

#PM

0

100

200

300

400

500

600

700

800

E
xe

cu
tio

n
O

ve
rh

ea
d

(in
 m

ill
is

ec
on

ds
)

(a) THR-MMT

100 200 300 400 500 600 700 800

PM

0

100

200

300

400

500

600

700

800

E
xe

cu
tio

n
O

ve
rh

ea
d

(in
 m

ill
is

ec
on

ds
)

(b) Megh

Figure 6. Scalability analysis of THR-MMT (left) and Megh (right).

0 100 200 300 400 500 600 700 800

TIme (in 5 minutes)

0

500

1000

1500

no

n-
ze

ro
 e

le
m

en
ts

 in
 Q

-t
ab

le

#PM = 200

#PM = 300

#PM = 400

#PM = 500

#PM = 600

#PM = 700

#PM = 800

Figure 7. Increase in the number of non-zero elements in the Q-table
with time and number of PMs.

variance and the median both reach a local minimum at
ϵ = 0.001.

Since use of Temp in Algorithm 2 allows Megh to
explore more rather than direct exploitation, increase in
Temp0 would increase the initial exploration. We observe
till Temp0 = 3 this increase in exploration is decreasing
the median cost. Because increased exploration stops agent
from getting stuck at local minima and take decisions more
globally. After that point, we see the adverse effect of too
much exploration. As Temp0 increases after 3, the algorithm
cannot benefit enough from exploitation. Thus, the curve
instantiate the exploration-exploitation trade-off in case of
Megh.

ϵ controls decay of Temp0 with time. As Temp0 de-
cays, the exploratory nature turns dormant and exploitative
nature begins to dominate. Thus, increase in ϵ would cause
faster decay of Temp. Though we expect to observe similar
nature as that of the variation of Temp0, here we find out
a bit of sporadic nature where it is hard to detect a single
tipping point for exploration-exploitation trade-off. Hence,
we make our choice empirically from observation.

We have conducted additional experiments that show
effects of energy and SLA costs on the performance of Megh.
We do not present any detailed analysis of them due to space
constraints.

7 CONCLUSION AND FUTURE DIRECTIONS

This work addresses the problem of energy– and
performance–efficient resource management during live mi-
gration of VMs in a Cloud data center. Uncertain dynamics
and diversity of workloads as well as the heterogeneous
Cloud hardware demand for a generic algorithm to solve

the efficient VM migration problem under uncertainty. Re-
inforcement learning provides a general framework to learn
as-you-go and to take decisions under uncertainty. Thus, we
propose an online reinforcement learning algorithm, Megh,
that works irrespective of application and hardware hetero-
geneity while learning the uncertain dynamics. State-of-the-
art reinforcement learning algorithms encounter curse of
dimensionality and unavailability of a model for workload’s
uncertainty. These issues make such algorithms not scalable
in real-time and asks for extensive training respectively.
Megh dissolves both of the issues in real-time. It is scalable,
operates in real-time with small execution overhead, and
does not require a training phase. In order to overcome the
curse of dimensionality, Megh projects the combinatorially
explosive state-action space to a polynomial dimensional
space with sparse basis. Megh updates the transition op-
erator incrementally without using any prior knowledge
of workload dynamics. Through this update, Megh learns
the uncertainty and dynamics of workload as-it-goes. Megh
uses these two schemes to develop the sequential func-
tional approximation framework with asymptotic conver-
gence guarantee. We leverage a data structure based on the
sparsity of the basis for fast and scalable real-time updates
and learning. Megh incurs the smallest cost and the least
execution overhead with respect to its contenders both on
PlanetLab and Google Cluster workloads. This validates
Megh’s claim as a cost-effective, time-efficient and robust
algorithm. The comparative scalability analysis of Megh and
THR-MMT demonstrates that Megh has better scalability
than the competing algorithm. We explicate our choices
of parameters controlling the exploration-exploitation trade-
off through a sensitivity analysis of Megh.

We are currently investigating the opportunity to take
advantage of additional knowledge about the workload,
such as periodicity or a queueing model representing the
dynamics of incoming workload [31], [32], [33], and also
to leverage knowledge of the network topology like fat-
trees [49]. We are confident that network and memory shar-
ing can be seamlessly accommodated without modifying
our solution algorithmically. Megh can be used with some
other cost model till the MDP formulation of the problem
is kept intact. We are studying the necessary extensions of
the cost model to such settings in order to apply Megh.
Though this paper majorly focuses on theoretical study and
validating it on a simulation platform like [10], [12], we are
also planning to extend this research and study performance
of Megh in real-life large-scale Cloud data center.

14

1 2 3 4 5 6 7 8 9 10

Temp
0

0.57

0.571

0.572

0.573

0.574

0.575
P

er
-s

te
p

C
os

t (
in

 U
S

D
)

(a) Temp0-sensitivity

-3 -2 -1 0

log
10

0.57

0.571

0.572

0.573

0.574

0.575

P
er

-s
te

p
C

os
t (

in
 U

S
D

)

(b) ϵ-sensitivity

Figure 8. Sensitivity of per-step cost (in USD) on Temp0 and ϵ.

ACKNOWLEDGMENTS

We thank Prof. Pierre Senellart for his valuable feedbacks on
this work. This work is supported by the National Research
Foundation, Prime Minister’s Office, Singapore under its
Campus for Research Excellence and Technological Enter-
prise (CREATE) programme and by the National University
of Singapore Institute for Data Science project WATCHA:
WATer CHallenges Analytics.

REFERENCES

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of
virtualization,” ACM SIGOPS Operating Systems Review, vol. 37,
no. 5, pp. 164–177, 2003.

[2] P. Li, S. Guo, T. Miyazaki, X. Liao, H. Jin, A. Y. Zomaya, and
K. Wang, “Traffic-aware geo-distributed big data analytics with
predictable job completion time,” IEEE Transactions on Parallel and
Distributed Systems, vol. 28, no. 6, pp. 1785–1796, June 2017.

[3] A. Iosup, S. Ostermann, M. N. Yigitbasi, R. Prodan, T. Fahringer,
and D. Epema, “Performance analysis of cloud computing services
for many-tasks scientific computing,” IEEE Transactions on Parallel
and Distributed Systems, vol. 22, no. 6, pp. 931–945, June 2011.

[4] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield, “Live migration of virtual machines,” in
Proceedings of the 2nd conference on Symposium on Networked Systems
Design & Implementation-Volume 2, 2005, pp. 273–286.

[5] M. Nelson, B.-H. Lim, and G. Hutchins, “Fast transparent migra-
tion for virtual machines,” in Proceedings of the Annual Conference on
USENIX Annual Technical Conference. USENIX Association, 2005,
pp. 25–25.

[6] P. Wieder, J. M. Butler, W. Theilmann, and R. Yahyapour, Service
level agreements for cloud computing. Springer Science & Business
Media, 2011.

[7] S. T. Maguluri, R. Srikant, and L. Ying, “Stochastic models of
load balancing and scheduling in cloud computing clusters,” in
INFOCOM, 2012 Proceedings IEEE, 2012, pp. 702–710.

[8] H.-W. Tseng, T.-T. Yang, K.-C. Yang, and P.-S. Chen, “An energy
efficient vm management scheme with power-law characteristic
in video streaming data centers,” IEEE Transactions on Parallel and
Distributed Systems, vol. 29, no. 2, pp. 297–311, 2018.

[9] A. Beloglazov and R. Buyya, “Optimal online deterministic al-
gorithms and adaptive heuristics for energy and performance
efficient dynamic consolidation of virtual machines in cloud data
centers,” Concurr. Comput. : Pract. Exper., vol. 24, no. 13, pp. 1397–
1420, Sep. 2012.

[10] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource
allocation heuristics for efficient management of data centers for
cloud computing,” Future Gener. Comput. Syst., vol. 28, no. 5, pp.
755–768, May 2012.

[11] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 1998.

[12] Z. Han, H. Tan, G. Chen, R. Wang, Y. Chen, and F. C. M. Lau,
“Dynamic virtual machine management via approximate markov
decision process,” in IEEE INFOCOM 2016 - The 35th Annual IEEE
International Conference on Computer Communications, April 2016,
pp. 1–9.

[13] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and
R. Buyya, “Cloudsim: a toolkit for modeling and simulation of
cloud computing environments and evaluation of resource provi-
sioning algorithms,” Software: Practice and Experience, vol. 41, no. 1,
pp. 23–50, 2011.

[14] K. Park and V. S. Pai, “Comon: a mostly-scalable monitoring
system for planetlab,” ACM SIGOPS Operating Systems Review,
vol. 40, no. 1, pp. 65–74, 2006.

[15] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google cluster-usage
traces: format+ schema,” Google Inc., White Paper, pp. 1–14, 2011.

[16] R. Nathuji and K. Schwan, “Virtualpower: coordinated power
management in virtualized enterprise systems,” in Proce. SOSP,
2007, pp. 265–278.

[17] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif, “Black-box
and gray-box strategies for virtual machine migration,” in Proc.
NSDI, 2007, pp. 11–13.

[18] Z. A. Mann, “Allocation of virtual machines in cloud data cen-
ters—a survey of problem models and optimization al-
gorithms,” ACM Comput. Surv., vol. 48, no. 1, pp. 11:1–11:34,
September 2015.

[19] M. Wang, X. Meng, and L. Zhang, “Consolidating virtual machines
with dynamic bandwidth demand in data centers,” in INFOCOM,
2011 Proceedings IEEE, 2011, pp. 71–75.

[20] W. Song, Z. Xiao, Q. Chen, and H. Luo, “Adaptive resource
provisioning for the cloud using online bin packing,” Computers,
IEEE Transactions on, vol. 63, no. 11, pp. 2647–2660, 2014.

[21] M. L. Puterman, Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons, 2014.

[22] F. Farahnakian, P. Liljeberg, and J. Plosila, “Energy-efficient virtual
machines consolidation in cloud data centers using reinforce-
ment learning,” in Parallel, Distributed and Network-Based Processing
(PDP), 2014 22nd Euromicro International Conference on, Feb 2014, pp.
500–507.

[23] S. S. Masoumzadeh and H. Hlavacs, “Integrating vm selection
criteria in distributed dynamic vm consolidation using fuzzy
q-learning,” in Proceedings of the 9th International Conference on
Network and Service Management (CNSM 2013), Oct 2013, pp. 332–
338.

[24] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8,
no. 3-4, pp. 279–292, 1992.

[25] J. Rao, X. Bu, C.-Z. Xu, L. Wang, and G. Yin, “Vconf: A reinforce-
ment learning approach to virtual machines auto-configuration,”
in Proceedings of the 6th International Conference on Autonomic Com-
puting, ser. ICAC ’09. New York, NY, USA: ACM, 2009, pp. 137–
146.

[26] L. Baird et al., “Residual algorithms: Reinforcement learning with
function approximation,” in Proceedings of the twelfth international
conference on machine learning, 1995, pp. 30–37.

[27] R. Bellman, “A markovian decision process,” Indiana Univ. Math.
J., vol. 6, pp. 679–684, 1957.

[28] I. Grondman, L. Busoniu, G. Lopes, and R. Babuska, “A survey
of actor-critic reinforcement learning: Standard and natural policy
gradients,” Systems, Man, and Cybernetics, Part C: Applications and

15

Reviews, IEEE Transactions on, vol. 42, no. 6, pp. 1291–1307, Nov
2012.

[29] M. G. Lagoudakis and R. Parr, “Least-squares policy iteration,” The
Journal of Machine Learning Research, vol. 4, pp. 1107–1149, 2003.

[30] K. R. Babu, A. A. Joy, and P. Samuel, “Load balancing of tasks
in cloud computing environment based on bee colony algorithm,”
in Advances in Computing and Communications (ICACC), 2015 Fifth
International Conference on. IEEE, 2015, pp. 89–93.

[31] H. Khazaei, J. Misic, and V. B. Misic, “Performance of an iaas cloud
with live migration of virtual machines,” in Global Communications
Conference (GLOBECOM), 2013 IEEE. IEEE, 2013, pp. 2289–2293.

[32] C. Zhu, B. Han, Y. Zhao, and B. Liu, “A queueing-theory-based
bandwidth allocation algorithm for live virtual machine migra-
tion,” in Smart City/SocialCom/SustainCom (SmartCity), 2015 IEEE
International Conference on. IEEE, 2015, pp. 1065–1072.

[33] H. Lu, C. Xu, C. Cheng, R. Kompella, and D. Xu, “vhaul: To-
wards optimal scheduling of live multi-vm migration for multi-
tier applications,” in Cloud Computing (CLOUD), 2015 IEEE 8th
International Conference on. IEEE, 2015, pp. 453–460.

[34] D. G. Lago, E. R. Madeira, and D. Medhi, “Energy-aware vir-
tual machine scheduling on data centers with heterogeneous
bandwidths,” IEEE Transactions on Parallel and Distributed Systems,
vol. 29, no. 1, pp. 83–98, 2018.

[35] R. Yu, G. Xue, X. Zhang, and D. Li, “Survivable and bandwidth-
guaranteed embedding of virtual clusters in cloud data centers,”
in INFOCOM 2017-IEEE Conference on Computer Communications,
IEEE. IEEE, 2017, pp. 1–9.

[36] L. Minas and B. Ellison, Energy efficiency for information technology:
How to reduce power consumption in servers and data centers. Intel
Press, 2009.

[37] K. Huppler, K.-D. Lange, and J. Beckett, “Spec: Enabling efficiency
measurement,” in Proceedings of the 3rd ACM/SPEC International
Conference on Performance Engineering, 2012, pp. 257–258.

[38] S. P. Committee et al., “Spec power and performance benchmark
methodology,” Standard Performance Evaluation Corporation, Tech.
Rep. Version, vol. 2, 2014.

[39] A. Alsarhan, A. Itradat, A. Y. Al-Dubai, A. Y. Zomaya, and G. Min,
“Adaptive resource allocation and provisioning in multi-service
cloud environments,” IEEE Transactions on Parallel and Distributed
Systems, vol. 29, no. 1, pp. 31–42, 2018.

[40] M. L. Dertouzos and A. K. Mok, “Multiprocessor online schedul-
ing of hard-real-time tasks,” IEEE Transactions on software engineer-
ing, vol. 15, no. 12, pp. 1497–1506, 1989.

[41] L. Sha, T. Abdelzaher, K.-E. Årzén, A. Cervin, T. Baker, A. Burns,
G. Buttazzo, M. Caccamo, J. Lehoczky, and A. K. Mok, “Real time
scheduling theory: A historical perspective,” Real-time systems,
vol. 28, no. 2-3, pp. 101–155, 2004.

[42] R. Bellman and R. E. Kalaba, Dynamic programming and modern
control theory, 1965.

[43] W. B. Powell, Approximate Dynamic Programming: Solving the Curses
of Dimensionality. Wiley-Interscience, 2007.

[44] S. Singh, T. Jaakkola, M. L. Littman, and C. Szepesvári, “Con-
vergence results for single-step on-policy reinforcement-learning
algorithms,” Machine learning, vol. 38, no. 3, pp. 287–308, 2000.

[45] K. E. Atkinson, An introduction to numerical analysis. John Wiley
& Sons, 2008.

[46] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and
D. Sorensen, LAPACK Users’ guide. Siam, 1999, vol. 9.

[47] J. Sherman and W. J. Morrison, “Adjustment of an inverse matrix
corresponding to a change in one element of a given matrix,”
Annals of Mathematical Statistics, vol. 20, p. 317, 1949.

[48] A. C. Cullen, H. C. Frey, and C. H. Frey, Probabilistic techniques
in exposure assessment: a handbook for dealing with variability and
uncertainty in models and inputs. Springer Science & Business
Media, 1999.

[49] C. E. Leiserson, “Fat-trees: Universal networks for hardware-
efficient supercomputing,” IEEE Trans. Comput., vol. 34, no. 10, pp.
892–901, Oct. 1985.

Debabrota Basu Debabrota Basu received his
Bachelor of Engineering degree in Electronics
and Telecommunication Engineering from Ja-
davpur University, India. He has recently de-
fended his PhD degree in Computer Science
from School of Computing, National University
of Singapore. He is going to join Chalmers Uni-
versity of Technology as a postdoctoral research
fellow in adversarial machine learning. Basu’s
research interests include reinforcement learn-
ing, statistical learning theory, information theory,

differential privacy, and their applications in real-world systems.

Xiayang Wang Xiayang Wang received his BS
degree in software engineering from Fudan Uni-
versity, China, in 2014. He is now working to-
ward the PhD degree at the School of Software,
Shanghai Jiao Tong University. His research in-
terests include program analysis and software
security.

Yang Hong Yang Hong received the BS de-
gree in software engineering from Shanghai Jiao
Tong University, China, in 2013. He is now work-
ing toward the PhD degree at the School of
Software, Shanghai Jiao Tong University. His
research interests include parallel systems and
networked systems.

Haibo Chen Haibo Chen received the PhD de-
gree in computer science from Fudan University,
in 2009. He is currently a tenured full Professor
in the School of Software, Shanghai Jiao Tong
University. His research interests include operat-
ing systems and parallel & distributed systems.
He is a senior member of the IEEE.

Stéphane Bressan Stéphane Bressan is As-
sociate Professor in the Department of Com-
puter Science of the School of Computing of
the National University of Singapore. Stéphane
graduated in 1992 with a PhD in Computer Sci-
ence from the University of Lille (France). In
1990, Stéphane joined the European Computer-
industry Research Centre of Bull, ICL, and
Siemens in Munich (Germany). From 1996 to
1998, he was Research Associate at the Sloan
School of Management of the Massachusetts

Institute of Technology (United States of America). Stéphane’s research
interests include the integration, management and analysis of data from
heterogeneous, disparate and distributed sources.

16

APPENDIX

SUPPLEMENTARY MATERIAL FOR SECTION 5 (MEGH: LEARN TO MIGRATE AS-YOU-GO)

Proof of Theorem 1

Theorem 1. There exists a unique projection vector θ ∈ Rd that approximates the cost-to-go function as V (s) = θTϕπ(s) for all
states s ∈ S and policy π ∈ U.

Proof. As we project the state-action space S × A to the space X spanned by d dimensional basis vectors {ϕj}dj=0, we
reduce our search space from whole state-action space to a subspace St. St is the set of all the states reachable through one
migration action from the present state st ∈ S. Suppose St = {s1, s2, . . . , sd}. Note that we use superscripts to denote the
ordering of elements in St.

Thus, at each time-step t, we update the value functions of the only reachable states in St. Let V = (V (s))Ts∈St and M
be a d× d matrix such that

Ψi,j = ϕπ(st)[j] ∀j = 1, . . . , d

where, si is the state reachable from st using action π(st). Let θ be a |S|-dimension column vector such that Ψθ = V . If Ψ
is invertible, θ = Ψ−1V and Theorem 1 holds.

We claim that Ψ is invertible and its inverse is the matrix Ω such that,

Ωi,j = (−1)|s
i|−|sj |Ψi,j .

In order to establish this construction, let us consider the i, jth element of the matrix obtained by multiplying Ψ and Ω. If
si ∼ sj means state sj is reachable from state si through one of the d migration actions, then

(ΩΨ)i,j =
∑

1≤k≤|St|

(−1)|s
i|−|sk|Ψi,kΨk,j

=
∑

sj∼sk∼si

(−1)|s
i|−|sk|.

Therefore (ΩΨ)i,j = 1 if and only if i = j. Thus, Ψ is invertible and there exists a unique projection for given basis
vectors.

Proof of Theorem 2

Theorem 2. There exists a unique projection vector θ ∈ Rd that approximates the cost-to-go function as V (s) = θTϕπ(s) for all
states s ∈ S and policy π ∈ U.

Proof. Let us denote the set of all possible value functions V π obtained using policy π ∈ U. Without loss of generality, we
can assume V : S → R be a set of bounded, real-valued functions. Then V is a Banach space with the norm ∥v∥ = ∥v∥∞ =
sup |v(s)| for any v ∈ V.

Now, if we rephrase our problem of Equation 8 by including the projection, we obtain,

argmin
π∈U

Ef

[∞∑
t=1

γt−1C(st−1, st)

]
(12)

such that, st ∈ St−1 i.e, st is reachable from st−1 through one of the d migrations. Then Algorithm 1 is analogous to
LSPI over the reduced search space X . For this new problem given by Equation (12), Algorithm 1 converges to a unique
cost-to-go function, say Ṽ ∈ V. We need to show that the cost-to-go function estimated by Algorithm 1 is the optimal one
i.e, V ∗ = Ṽ .

Let us define the process of updating policy as a mapping M : V→ V. Now using Equation 9, we can formulate M as

Mv(s) = min
s′∈Ss

Ef [C(s, s′) + γv(s′)] .

For a given state s, let

a∗s(v) = argmin
s′∈Ss

(C(s, s′) + γv(s′)) .

17

Let us assume that Mv(s) ≥Mu(s) If s∗(v) is the state obtained by following optimal policy π∗ from value function v and
state s, then

0 ≤Mv(s)−Mu(s)

= E [C(s, s∗(v)) + γv(s∗(v))]

− E [C(s, s∗(u)) + γu(s∗(u))]

≤ E [C(s, s∗(u)) + γv(s∗(u))]

− E [C(s, s∗(u)) + γu(s∗(u))]

= γE [v(s∗(u))− u(s∗(u))]

≤ γE [∥v − u∥] = γ∥v − u∥.

This result states that if Mv(s) ≥Mu(s), then

Mv(s)−Mu(s) ≤ γ|v(s)− u(s)|.

If we assume that Mv(s) ≤Mu(s), the same reasoning produces

Mv(s)−Mu(s) ≥ −γ|v(s)− u(s)|.

Thus we can conclude, |Mv(s)−Mu(s)| ≤ γ|v(s)− u(s)| for all configuration s ∈ S. From the definition of our norm, we
can write

sup
s∈S
|Mv(s)−Mu(s)| = ∥Mv −Mu∥

≤ γ∥v − u∥.

This means for 0 ≤ γ < 1, M is a contraction mapping. Following [29, Proposition 3.10.2], there exists a unique v∗ such
that Mv∗ = v∗. Thus, for an arbitrary initial value function v0, the sequence vn generated by vn+1 = Mvn converges to
v∗. By the property of convergence of LSPI [29], v∗ = Ṽ . As the cost function C is a positive and monotonically increasing
function, the optimal cost-to-go function V ∗ also satisfies MV ∗ = V ∗. Hence V ∗ = Ṽ and the property of convergence of
LSPI is preserved in Algorithm 1.

