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Abstract. We present ε-differentially private functional mechanisms for
variants of regularised linear regression, LASSO, Ridge, and elastic net.
We empirically and comparatively analyse their effectiveness. We quan-
tify the error incurred by these ε-differentially private functional mech-
anisms with respect to the non-private linear regression. We show that
the functional mechanism is more effective than the state-of-art differ-
entially private mechanism using input perturbation for the three main
regularised linear regression models. We also discuss caveats in the func-
tional mechanism, such as non-convexity of the noisy loss function, which
causes instability in the results.
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1 Introduction

Dwork et al. proposed differential privacy [5] to quantify the privacy of a mech-
anism.

Let D denotes a universe of d-dimensional real-valued datapoints and the
corresponding real-valued responses of a statistical machine learning algorithm
M . An element from this universe can be represented by a pair D = (X,Y )
where X ∈ Rn×d is a matrix and Y ∈ Rn is a vector. We use ‖·‖p to represent
the Lp norm of a vector. Let us call a neighbouring dataset a dataset D′ that
differs from the dataset D by one datapoint. Differential privacy quantifies the
privacy of a randomized algorithm, referred to as a mechanismM, run on those
datasets.

Definition 1. [5] A randomized algorithm M with domain D is ε-differentially
private if for all S ∈ Range(M) and D,D′ ∈ D such that D and D′: are neigh-
bouring datasets

log

(∣∣∣∣ Pr(M(D) ∈ S)

Pr(M(D′) ∈ S)

∣∣∣∣) ≤ ε
Differential privacy introduces noise at selected stages of a statistical machine

learning algorithm, for instance in the output of the model [4] or in the input of
the algorithm [9] or in the loss function as with the functional mechanism [16].
The calibration of these mechanisms requires the computation of sensitivity of
the function.



Definition 2. The sensitivity of a function f : D → Rk is defined as:

∆f = max
x∼y
‖f(x)− f(y)‖1

Laplace mechanism [4] is a widely used privacy-preserving mechanism. It achieves
differential privacy by adding random noise from a Laplace distribution. For a
given privacy level ε, Laplace distribution is calibrated such that the mean is
zero and the scale

∆f

ε . The Laplace mechanism calibrated in this way satisfies
ε-differential privacy [5].

We present ε-differentially private functional mechanisms for variants of reg-
ularised linear regression, namely LASSO, Ridge, and elastic net. Linear regres-
sion [10] is a widely used statistical machine learning model. It uses a linear
hypothesis to map a set of predictor attributes of a datapoint to the correspond-
ing response. In matrix notation, linear regression is parameterized by θ ∈ Rd
such that Xθ = Y . In order to find the optimal value of θ, training step in
linear regression minimizes mean squared loss, lθ(T ), over the training data T ,
as defined in Equation 1.

θ∗ = arg min
θ

lθ(T ) = arg min
θ

(Xθ − Y )2 (1)

Properties of the coefficient of quadratic term in Equation 1 determine the
convexity of the optimisation problem. The optimization problem is made convex
by adding a regularisation term to the objective function in Equation 1. With
a regularisation term that is proportional to the L2 norm of the parameters the
new optimisation is called Ridge regression [8]. It is defined in Equation 2.

θ∗ = arg min
θ

(Xθ − Y )2 + λ‖θ‖22 (2)

With a regularisation term that is proportional to the L1 norm of the parameters
the new optimisation is called LASSO regression [14]. With a regularisation term
that is proportional to a convex combination of L1 and L2 norms of parameters
the new optimisation is called Elastic net regression [17].

In Section 3, we extend the work of the authors of [16] for Ridge regression
and present the functional mechanism [16] for linear regression and three of its
regularised variants, namely, Ridge, LASSO and Elastic net.

In Section 4, we comparatively evaluate the performance of these four mech-
anisms and their differentially private variants on two datasets with different
correlations and sparsity. We observe that the functional mechanism applied
to the regularised linear regression yields similar performance results and that
the private linear regression models perform worse than the non-private linear
regression models. We compare the effectiveness of the functional mechanism
with an input perturbation mechanism [9]. For a given privacy level, ε, we em-
pirically show, for the three main regularised linear regression models, that the
functional mechanism is more effective than the state-of-art differentially private
mechanism using input perturbation, DPME [9]. We extend the analysis in [16]
to empirically study the robustness of the functional mechanism. The key ob-
servation in our experiments is that all the private linear regression models are



unstable. Our analysis shows that the reason for such an instability is inherent
to the functional mechanism. In reference to these experimental evidences, we
conclude by puting forth (Section 5) the need of designing a differentially private
mechanism that produces a convex noisy loss function in order to provide both
stable and private output for linear regression models.

The extended version of this paper is available at [2].

2 Related Work

Linear regression [10] is a fundamental yet a widely used machine learning model.
Variants of linear regression, Ridge [8] and LASSO [14], are used to reduce corre-
lation in the data features and to avoid overfitting. Elastic net [17] regression uses
convex combination of regularisation terms that are used in Ridge and LASSO.
For a detailed presentation and discussion of regularisation and regression anal-
ysis, interested readers can refer to [10].

Differential Privacy [5] is a probabilistic framework that quantifies the privacy
of a randomized function or algorithm. Existing deterministic machine learning
models can be randomized by introducing calibrated random noise. The resul-
tant randomized mechanism can be shown to satisfy constraints of differential
privacy. Dwork et. al. propose the Laplace mechanism [4], which perturbs the
output of a machine learning model by explicitly adding scaled random noise
from the Laplace distribution. The Gaussian mechanism [5] and the K-norm
mechanism [7] are differentially private mechanisms that are also based on the
idea of output perturbation with noise from different distributions. Lei [9] pro-
poses differentially private M-estimators, which perturbs the histogram of input
data using a scaled noise and further uses the noisy histogram to train the mod-
els. Zhang et. al. [16] propose a differentially private functional mechanism that
adds a properly scaled Laplace noise to the coefficients of loss function in the
polynomial basis. Hall et.al. [6] also propose a differentially private functional
mechanism that adds a properly scaled noise drawn from the Gaussian process
to the coefficients of loss function in the kernel basis.

Zhang et. al. instantiate their functional mechanism on linear regression and
logistic regression. In order to alleviate the non-convexity caused in the loss
function due to addition of random noise, they use Ridge regularised linear and
logistic regressions. Yu et. al. [15] achieve differential privacy in the elastic net
logistic regression by controlling the coefficient of regularisation term. The reg-
ularisation term in their proposal is inversely proportional to the number of
datapoints. It causes reduction in regularisation as the number of datapoints in-
creases. Therefore, their proposed mechanism is not applicable for large datasets.
Talwar et. al. [12] propose a differentially private variant of Frank-Wolfie optimi-
sation algorithm to perform LASSO regression. This method adds noise in the
optimisation algorithm instead of adding it to the objective function.

3 Functional Mechanism for regularised linear regression

Functional mechanism [16], which is a privacy-preserving mechanism, introduces
random noise in the loss function of a machine learning algorithm. Optimisation



of such a noisy loss function leads to the parameters that are different than
true optimal parameters. In this way, we indirectly get noisy outputs from the
machine learning model without explicitly adding noise to the outputs. In this
section, we elucidate the details related to the functional mechanism.

For a given machine learning model, the loss function lθ can be expanded
in the polynomial basis, using Stone-Weierstrass theorem [13], as a function of
parameter θ as given in Equation 3 where t = (x, y) denotes a datapoint in
training dataset T , Φj denotes the set of polynomials with degree j and λtφ
denote respective coefficients.

lθ(T ) =
∑
t∈T

J∑
j=0

∑
φ∈Φj

λtφφ(θ) (3)

Lemma 1. [16] Upper bound on sensitivity of the loss function of a machine
learning model is given by:

∆l = 2 max
t

J∑
j=1

∑
φ∈Φj

‖λtφ‖1

Using Lemma 1 and the Laplace mechanism, Zhang et. al. [16] devise an al-
gorithm, namely the functional mechanism, that adds noise to loss function of a
machine learning model. For a given privacy level ε, they use Laplace mechanism
calibrated with the sensitivity calculation in Lemma 1 to induce noise in the co-
efficients of the Taylor expansion of the loss function. Parameters of the machine
learning model are estimated by optimizing the noisy loss function. They prove
that this algorithm satisfies ε-differential privacy. Please refer to Algorithm 1 in
[16] for the details.

Elastic net regression [17] adds the regularisation term which is a convex com-
bination of L1 regularisation term and L2 regularisation term. The optimisation
problem for elastic net regression with functional mechanism is given in Equa-
tion 4. l′θ(T ) denotes the noisy loss function obtained by applying the functional
mechanism on the loss function for linear regression, as stated in Equation 1.

θ∗ = arg min
θ

l′θ(T ) + λ(α‖θ‖22 + (1− α)‖θ‖1) (4)

The additive regularisation term is proportional to the norm of the param-
eters and it does not depend on the training dataset. Therefore, regularisation
does not change the sensitivity of the loss function. We use this observation and
the sensitivity calculation for linear regression in [16] to compute the sensitivity
of Elastic net regression. We present the result below.

Assuming that all features of datapoints are normalized such that each of
the feature value lies in [−1, 1], L1 sensitivity of the loss function in Equation 4
is given by:

∆l = 2(d2 + 2d+ 1)



4 Empirical Performance Evaluation

We comparatively and empirically evaluate functional mechanism for regularised
linear regressions: namely Ridge, LASSO, and elastic net. We present the result
analysis in this section.

We conduct experiments on a microdata sample of US Census in 2000 pro-
vided by IPUMS International [1]. The census dataset consists of 1% sample of
the original census data. We consider a subset of 316, 276 records of the heads of
households in our dataset. Each record has 9 attributes, namely, Age, Gender,
Race, Marital Status, Family Size, Education, Employment Status, House type,
Income. Regression analysis is performed using Income as the response variable
and the rest of the attributes as predictor variables.

We use Python R© 2.7.6 with the SCS [11] solver from CVXPY [3] package.
We report the results as the aggregates over 50 experimental runs. For every

experimental run, we randomly hold out 20% of the data for testing and use the
rest 80% of the data for training regression models. We normalize each of these
features such that their values lie in [−1, 1]. We use root mean squared error
(RMSE) [10] as the metric to comparatively evaluate effectiveness. For given
value of ε, the model with smallest value of RMSE is the most effective model.

We comparatively evaluate eight regression problems: linear regression (LR),
Ridge regression (RG), LASSO regression (LS), elastic net regression (EN), and
their private versions. We call the regression model obtained using the functional
mechanism functional regression. For every regularised regression model, we set,
by cross-validation, the regularisation coefficient, λ, that yields smallest testing
error.

Figure 1 shows the comparative evaluation of the functional mechanisms with
an input perturbation mechanism, differentially private M-estimators (DPME) [9].
Discretisation of a large number of attributes leads to a large discrete space that
causes prohibitive computation cost. Due to concentration of data around sub-
sets of features, a large discrete space also leads to sparse histograms [9]. In order
to alleviate the sparsity, we follow [9] and evaluate the performance on a simpler
regression model. We show the comparative study on the census dataset where
we predict Income of a person using Age, Gender, Race and Education Status.
The results are presented in Figure 1. Solid lines represent the mean RMSE
over 50 runs. For a given value of ε, we observe that the functional mechanism
provides lower RMSE for all regularised linear regressions. Thus, we show that
the functional mechanism is more effective than DPME.

Now we present the comparative evaluation functional regularised regres-
sions. Figure 2 shows the boxplot of functional elastic net regression for different
values of ε’s. We note the presence of a large number of outliers in the result. We
observe similar results for the rest of the functional regressions. In order to avoid
this bias due to the outliers, we choose to plot the median instead of the mean.
Figure 3 shows the comparative evaluation of the variants of regularised linear
regression for the census quality dataset. In the plot, solid line represents median
over 50 experimental runs and the shaded region covers RMSE values that lie
between 20th and 80th percentile. Smaller values of ε’s induce higher noise in the



Fig. 1: RMSE of regularised linear re-
gressions for varying values of ε’s for
DPME [9] and the functional
mechanism

Fig. 2: Boxplot of RMSE of elastic net
regression with functional
mechanism for different values of ε for
the census dataset.

Fig. 3: Comparison of different regressions for the census dataset with median as
the aggregate

function, which in turn results in higher privacy. Therefore, we observe higher
RMSE for smaller values of ε’s. As the value of ε increases, the effectiveness
of the functional regression approaches the the effectiveness of the non-private
counterpart.

One observation that is common in all the empirical evaluation in Figure 2
and Figure 3 is the instability in the results. M -estimator is a robust statistic [?].
We observe the stability in the performance of DPME as compared to the func-
tional regressions. We find that the reasons for this instability are rooted in the



functional mechanism it self. We complete the result analysis by the discussion
of these possible reasons.

The coefficient of the quadratic term in Equation 1, XtX, is a symmet-
ric matrix. It loses its symmetric property after adding random noise from the
Laplace distribution. A standard way to make a given matrix A symmetric is to
use (A + At) ∗ 0.5. This way of symmetrization of noisy XtX indirectly incurs
addition two Laplace random variables. Addition of two Laplace random vari-
able does not follow Laplace distribution. Therefore, in order to maintain the
integrity of the functional mechanism, we can not make XtX symmetric in the
conventional way.

Linear regression works on the assumption that the attributes in a dataset
are independent of each other. Independence among the attributes makes XtX a
positive definite matrix. Positive definite matrices make the optimisation convex
and guarantees optimality of the solution. Noisy loss function fails to guarantee
convexity of the objective problem, and hence the optimality of the solution. A
similar observation is made by Lei [9] while perturbing the histograms of input
data by adding the calibrated noise. In order to make the objective function
convex, Zhang et. al. [16] calculate the spectral decomposition of XtX and con-
sider the projection of parameters onto the eigenspace spanned by eigenvectors
with positive eigenvalues. They do not provide any analytical justification which
guarantees differential privacy after pruning the non-positive eigenspace.

Functional mechanism proves that the loss function generated by any two
neighbouring datasets satisfies differential privacy. Composition of a differen-
tially private function with a deterministic function, called as post-processing [5],
remains differentially private. An optimisation problem solver calculates an ap-
proximate solution when the objective function is not convex. Therefore, differ-
ential privacy of a loss function is not preserved by the optimisation algorithm
itself.

5 Conclusion and Future Works

We present the construction of differentially private versions of the three linear
regression models, Ridge, LASSO and Elastic net, using the functional mecha-
nism. We empirically and comparatively evaluate the effectiveness of the private
and non-private versions on a census datasets. For a given privacy level, ε, we
observe that the functional mechanism is more effective than DPME [9] for reg-
ularized linear regression. We extend the analysis in [16] to empirically study
the robustness of the functional mechanism. As expected, we invariably observe
that the private versions are less effective than their non-private counterparts.
The key observation from these experiments is that all these private regularised
regression methods are equally unstable, and that private linear regression is
comparatively more unstable. We analyse the loss of symmetry of the covari-
ance matrix and the non-convexity of the loss function after adding the noise
as the principal reasons of this instability. This opens up the need of designing
a privacy-preserving mechanism that would retain these properties for private
linear regression.
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