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Abstract. Machine learning algorithms create models from training
data for the purpose of estimation, prediction and classification. While re-
leasing parametric machine learning models requires the release of the pa-
rameters of the model, releasing non-parametric machine learning models
requires the release of the training dataset along with the parameters.
The release of the training dataset creates a risk of breach of privacy. An
alternative to the release of the training dataset is the presentation of
the non-parametric model as a service. Still, the non-parametric model
as a service may leak information about the training dataset.
We study how to provide differential privacy guarantees for non-parametric
models as a service. We show how to apply the perturbation to the model
functions of histogram, kernel density estimator, kernel SVM and Gaus-
sian process regression in order to provide (ε, δ)-differential privacy. We
empirically evaluate the trade-off between the privacy guarantee and the
error incurred for each of these non-parametric machine learning algo-
rithms on benchmarks and real-world datasets.
Our contribution is twofold. We show that functional perturbation is not
only pragmatic for releasing machine learning models as a service but
also yields higher effectiveness than output perturbation mechanisms for
specified privacy parameters. We show a practical step to perturbate the
model functions of histogram, kernel SVM, Gaussian process regression
along with kernel density estimator and perform evaluation on a real-
world dataset as well as a selection of benchmarks.

Keywords: Differential Privacy, Data Privacy, Non-parametric models,
Functional Perturbation

1 Introduction

Organisations are amassing data at an unprecedented scale and granularity. They
release either raw data or machine learning models that are trained on the raw
data. All machine learning models do not fit the choice of releasing only the
models. A parametric machine learning model [22] assumes a parametric model
function1 that maps a new data to the corresponding output. A non-parametric

1 Model function refers to the mapping from input to output that is learned by the
corresponding machine learning algorithm.
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machine learning model [22] does not assume a parametric model function but
calculates some form of correlation between new data and the training data to
compute the corresponding output. For instance, kernel density estimation [24]
computes the probability density of new data by assimilating probabilities of
the new data with reference to the assumed probability distributions centred
at every data-point in the training data. Kernel SVM [6] and Gaussian process
regression [26] compute kernel Gram matrix between new data and the train-
ing data. Thus, while releasing parametric machine learning models requires the
release of the parameters of the model function, releasing non-parametric ma-
chine learning models requires the release of the training dataset along with
the parameters. An alternative to the release of the training dataset is utilising
non-parametric models as a service. While using a non-parametric model as a
service, user would send a new data-point to the model to obtain the output of
estimation, prediction, or classification.

Publication of raw data without any processing leads to a violation of the
privacy of users. Not only raw data but also publication of a ‘non-private’ ma-
chine learning model as a service leads to a violation of the privacy of users. For
instance, experiments by Shokri et al. [28] show that models created using pop-
ular machine-learning-as-a-service platforms, such as Google and Amazon, can
leak identity of a data-point in the training dataset with accuracy up to 94%. In
order to reduce the risk of breach of privacy, we need to take preemptive steps
and provide quantifiable privacy guarantees for the released machine learning
model. Differential privacy [14] is one of such privacy definitions to quantify the
privacy guarantees.

We study how to provide differential privacy guarantees for non-parametric
models as a service. This cannot be achieved by differentially private output
perturbation mechanisms, such as Laplace mechanism and Gaussian mecha-
nism [14]. Due to sequential composition [14] of differential privacy, the privacy
guarantee of a mechanism linearly degrades with the number of times the noise
is added from a given noise distribution. Output perturbation requires addition
of calibrated noise in the output for every new data input. Therefore, it suffers
from the degradation of privacy guarantee. When machine learning is provided
as a service one can not limit the number of queries. If the noise is added to a
model function, further evaluations are performed on the noisy model and we do
not need to introduce noise for every evaluation. We adopt functional perturba-
tion proposed in [18] that adds a scaled noise sampled from a Gaussian process
to the model function in order to provide a robust privacy guarantee. [18] proves
that an appropriate calibration of this mechanism provides (ε, δ)-differential pri-
vacy. We show how to calibrate the functional perturbation for histogram, kernel
density estimator, kernel SVM, and Gaussian process regression. We evaluate
the trade-off between the privacy guarantee and the error incurred for each of
these non-parametric machine learning algorithms on benchmarks and US census
dataset.

Our contribution is twofold. Firstly, we show that functional perturbation
is a viable alternative to output perturbation to provide privacy guarantees
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for machine learning models as a service. We also hypothesise as well as ex-
perimentally validate that output perturbation is less effective than functional
perturbation for a given privacy level and a given test set. Additionally, output
perturbation is not directly applicable for machine learning models with cate-
gorical outputs, such as classification, where functional perturbation naturally
operates. Secondly, we show the practical step to perturb the model functions
of histogram, kernel SVM, Gaussian process regression, and the kernel density
estimator. We evaluate the trade-off between the privacy guarantee and the error
incurred for each of these non-parametric machine learning algorithms for US
census dataset [1] and a comprehensive range of benchmarks. The results val-
idate that the error decreases for nonparametric machine learning as a service
with increase in the size of training dataset and the values of privacy parameters
ε and δ.

2 Related work
Most of the big technology companies offer machine learning as a service on
their cloud platforms, such as Google’s Cloud Machine Learning Engine2, Mi-
crosoft’s Azure Learning Studio3, Amazon’s Machine Learning on AWS4, IBM’s
Bluemix5. These apps provide machine learning models as easy to use APIs
for data scientists. Cloud services also provide storage space to host training
datasets. For an extensive survey of such platforms, readers can refer to [25].

Privacy of machine learning models is a well-studied topic. Ateniese et al. [4]
show the ability to learn statistical information about the training data through
parameters of a trained machine learning model. They show a successful attack
on support vector machine and hidden Markov model. Homer et al. [19] identify
the presence of a certain genome in a publicly released highly complex genomic
mixture microarray dataset. They do so by comparing distributions of genomes
from the released sample to avaliable statistics of the population. Fredrikson et
al. [16] propose the model inversion attack on machine learning models wherein
they learn some sensitive attribute in the training dataset. Given black-box ac-
cess to the model and access to demographic information about patients, they
successfully learn genomic markers of patients. In the follow-up work, Fredrikson
et al. [17] show instantiation of a successful model inversion attack on decision
trees and neural networks that are implemented on machine learning as a service
platform. Shokri et al. [28] propose membership inference attack that infers the
presence of a data-point in the training dataset based on the outputs machine
learning models. They perform attacks on classification models provided by com-
mercial platforms from Google and Amazon. We have enlisted the attacks that
are pertinent to research in this work. For an extensive survey of attacks on
various machine learning models, readers can refer to [15].

Differential privacy [13] has become a popular privacy definition to provide
privacy guarantees for machine learning algorithms. Researchers have devised

2 https://cloud.google.com/ml-engine/
3 https://azure.microsoft.com/en-us/services/machine-learning-studio/
4 https://aws.amazon.com/machine-learning/
5 https://www.ibm.com/cloud/
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privacy-preserving mechanisms to provide differential privacy guarantees for lin-
ear regression [8, 32], logistic regression [7, 31], support vector machines [27],
deep learning [2, 28]. Chaudhury et al. [8] propose differentially private empir-
ical risk minimisation, which lies at the heart of training of machine learning
models. They propose output perturbation and objective perturbation. These
mechanisms are helpful for releasing parametric machine learning models. Zhang
et al. [32] propose the functional mechanism that introduces noise in the loss
function of a machine learning model. The functional mechanism is useful for
parametric machine learning models that estimate parameters of the model by
minimising its loss function. Hall et al. [18] propose the use of functional per-
turbation that induced noise in the coefficient of expansion of a function in a
functional basis. Functions of non-parametric models that use kernels lie in the
RKHS spanned by the kernel. Therefore, it is possible to apply the functional
perturbation to provide privacy guarantees for non-parametric models. Smith et
al. [29] apply functional perturbation by Hall et al. to provide differntial privacy
Gaussian processe regression. Aldá and Rubinstein [3] propose Bernstein mech-
anism that provides a differentially private way of releasing functions of machine
learning models in a non-interactive way. Balog et al. [5] provide a functional
perturbation that ensures the closure of functions in a finite dimensional RKHS
under the appropriate perturbations. Nozari et al. [23] propose a functional per-
turbation algorithm that is catered to distributed machine learning task.

Jain and Thakurta [21] propose three ways, which are interactive, non-
interactive and semi-interactive, of using machine learning models with differ-
ential privacy guarantees. This work is an instance of interactive use of non-
parametric machine learning model wherein we provide differential privacy guar-
antees using the functional perturbation proposed in the work of Hall et al. [18].

3 Methodology

In this section, we discuss release of trained machine learning models. We argue
that non-parametric machine learning models need to be released as a service to
users. We further instantiate functional perturbation by Hall et al. [18], which
provides (ε, δ)-differential privacy guarantee, to four non-parametric models.

Our work stands at the crossroads of machine learning and differential pri-
vacy. We present a brief background to each of these fields in the technical
report [10] for providing privacy operators as service [11].

3.1 Non-parametric machine learning models as a service

Jain and Thakurta [21] propose three ways in which an organisation can use
machine learning models. Firstly, they propose a non-interactive model release
wherein an organisation releases a model with quantifiable privacy guarantees.
Non-interactive model release is plausible for parametric machine learning mod-
els since values of the parameters are sufficient to compute outputs for a new
data. Non-parametric machine learning models require training dataset along
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with the parameters to compute outputs for new data. Secondly, they propose
a semi-interactive model release wherein an organisation releases model that
provides quantifiable privacy guarantees for a specified set of test data. A pri-
ori knowledge of test data is not an assumption that can be realised in every
business scenario. Lastly, they propose interactive model release wherein an or-
ganisation provides machine learning model as a service. It keeps trained model
on the server and users send queries to the server. For non-parametric models,
release of training dataset violates the privacy of the users. Therefore, interactive
model release, i.e. release of machine learning as a service is a viable alternative.

Differential privacy [14] is a privacy definition for randomised algorithms.
In order to provide quantifiable differential privacy guarantees, we need to in-
troduce randomisation while using machine learning models as a service. A
privacy-preserving mechanism introduces randomisation to avoid the release of
true outputs. Under appropriately calibrated randomisation, privacy-preserving
mechanisms provide differential privacy guarantees.

Firstly, randomisation can be introduced by adding an appropriately cali-
brated random noise to the output of the query. These privacy-preserving mecha-
nisms are called as output perturbation mechanisms. For instance, Laplace mech-
anism [14] adds noise drawn from Laplace distribution whereas Gaussian mech-
anism [14] adds noise drawn from Gaussian distribution to the output of the
model. Multiple evaluations of such mechanisms result in a sequential composi-
tion [14]. Privacy guarantee of the sequential composition of privacy-preserving
mechanisms linearly degrades with the number of evaluations of privacy pre-
serving mechanisms. Secondly, randomisation can be introduced by adding an
appropriately calibrated random noise to the model function. Unlike output per-
turbation mechanisms, which add calibrated noise to every output of the query,
the privacy-preserving mechanisms that perturb functions are one-shot privacy-
preserving mechanisms. They add calibrated noise in a function leading to change
in its functional form. The noisy functional form is used for computing outputs.
Therefore, functional perturbation does not suffer from the degradation in the
differential privacy guarantee with increasing the number of queries.

When a machine learning model is provided as a service, one cannot strictly
control the number of times a user accesses the service. Therefore, we choose
functional perturbation based privacy-preserving mechanism. Hall et al.[18] pro-
pose the functional mechanism that adds calibrated noise to the expansion of the
model function in an appropriate functional basis. Functions of non-parametric
machine learning models, especially the ones that use kernels, lie in Reproduc-
ing Kernel Hilbert Space (RKHS) [30] associated with the kernel. Thus, RKHS
readily provides a functional basis for functions of non-parametric models. Zhang
et al. [32] propose the functional mechanism that adds calibrated noise to the
loss function of machine learning model. Loss functions are akin to parametric
models that train their parameters using some appropriate loss function. There-
fore, we choose to use functional perturbation as proposed by Hall et al. [18] to
provide differential privacy guarantees for non-parametric models released as a
service.
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3.2 Functional perturbation in RKHS

Hall et al. [18] propose a mechanism that provides a calibrated functional pertur-
bation that provides quantifiable (ε, δ)-differential privacy guarantee. We briefly
explain functional perturbation of a function that lies in a reproducing kernel
Hilbert space (RKHS).

Suppose that a function f : Rd → R lies in RKHS, Hk, associated with a
kernel k : Rd × Rd → R. For a given dataset D = {xi}ni=1 where each xi ∈ Rd,
let {k(·, xi)}ni=1 denotes a basis of Hk. In this basis, any function f ∈ Hk is
expanded as:

f(·) =

n∑
i=1

wfi k(·, xi)

where each wfi ∈ R. Inner product between two functions f, g ∈ Hk is defined
as:

〈f, g〉 =

n∑
i=1

n∑
j=1

wfi w
g
j k(xi, xj)

The inner product is used to define norm of any function in Hk as ‖f‖Hk
=√

〈f, f〉.
Functional perturbation adds calibrated noise sampled from a Gaussian pro-

cess to a model function. Gaussian process uses the kernel that is associated
with RKHS where the function lies. We formally define functional perturbation
in Definition 1.

Definition 1 (Functional perturbation [18]). Let fD denotes a model func-
tion, whose parameters (or hyperparameters) are estimated on a dataset D ∈ D.
Assume that fD lies in a reproducing kernel Hilbert space, Hk, with an associ-
ated kernel k. Functional perturbation is a privacy-preserving mechanism that
perturbs fD as follows:

f ′D = fD +∆
c(δ)

ε
G. (1)

where G is a sample path of a Gaussian process with mean zero and covariance
function k and ∆, ε, δ > 0.

Functional perturbation in Definition 1 satisfies (ε, δ)-differential privacy [14]
when parameters are calibrated as ∆ ≥ maxD,D′‖fD − fD′‖Hk

and c(δ) ≥√
2 log 2

δ . ∆ is sensitivity of the functions in RKHS Hk. Sensitivity is the max-

imum deviation of model functions that are trained on any two neighbouring
datasets D and D′. In order to apply functional perturbation for machine learn-
ing tasks, we need to compute the sensitivity of respective model functions.

3.3 Applications to four non-parametric machine learning models

We now illustrate application of functional perturbation for four non-parametric
machine learning models. We use non-parametric models that are based on kernel
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methods. For such non-parametric models, model functions lie in the RKHS
associated with the specified kernel.

Histogram. Histogram [22] is used for solving discretised probability density
estimation problem. It discretises the domain of a given dataset into a finite
number of bins. Each bin defines an interval in the domain of the training dataset.
Probability of a data-point inside an interval is commensurate to the number of
training data-points that lie in the interval.

For a fixed number of bins b, histogram is a vector in Rb. Therefore, we can
consider histogram estimation as a function f : D → Rb wherein D is a universe
of datasets. Let, {ei}bi=1 be the standard basis of Euclidean space Rb. Standard
basis spans RKHS associated with the dot product kernel, i.e. k(x, y) = xT y.
For a pair of neighbouring datasets, L1 norm between two histograms is two
in the case when the distinct data-points occupy two different bins. Therefore,
sensitivity of the histogram function is 2. Let, fD denotes the histogram for
a dataset D with the number of bins b. Thus, the functional perturbation of
Equation 1 for histograms takes the form

f ′D = fD +
2

n

c(δ)

ε
G.

Kernel density estimation. Kernel density estimation [22] is a probability
density estimation problem that estimates the probability density function of
a training dataset. It assumes a probability density function centred at every
data-point in the training dataset. Probability of a new data-point is computed
as weighted average of the probabilities computed using the probability densities
centred at every data-point.

We consider the kernel function namely Gaussian kernel that outputs values
in the range [0, 1]. It acts as a probability density function. Let k denotes a
Gaussian kernel with bandwidth h. Estimate of the probability density function
for a dataset D = {xi}ni=1 for the Gaussian kernel k is presented as

fD(·) =
1

n

∑
xi∈D

k(·, xi) =
1

n

∑
xi∈D

1

(2πh2)d
exp

(
−〈·, xi〉

2h2

)
.

Hall et al. [18] compute the sensitivity ∆ of kernel density estimator with a

Gaussian kernel as
√
2

n(2πh2)d/2
. Thus, from Equation 1 the functional perturbation

for kernel density estimate with Gaussian kernel is

f ′D = fD +

( √
2

n(2πh2)d/2

)
c(δ)

ε
G.

Gaussian process regression. Gaussian process [26] is a collection of
Gaussian random variables such that any subset follows a multivariate Gaus-
sian distribution. Covariance function for the multivariate Gaussian distribution
is calculated using a kernel function k. Gaussian process regression outputs a re-
sponse sampled from posterior distribution of a test data-point given the training
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dataset. Mean function f̄D and variance function V ar(fD) of the posterior dis-
tribution computed on a training dataset D are given in Equation 2.

f̄D(·) =
∑
di∈D

∑
dj∈D

(KD + σ2
nI)
−1
ij yjk(·, xi)

V ar(fD)(·) = k(·, ·)−
∑
di∈D

∑
dj∈D

(KD + σ2
nI)
−1
ij k(·, xi)k(·, xj) (2)

KD is the Gram matrix computed using kernel k on the training dataset and d
is the dimension of each training data-point.

Smith et al. [29] use the functional perturbation to provide differential privacy
guarantee to Gaussian process regression. Equation 2 shows that the posterior
covariance function does not require responses yj ’s in the training data. Since
only the responses are sensitive towards the disclosure, Smith et al. [29] proposed
to perturb only the posterior mean function. Since the sensitivity of the posterior
mean function with Gram matrix KD is d‖(KD + σ2

nI)−1‖∞, they apply the
functional perturbation to the posterior mean function as

f̄D
′

= f̄D + (d‖(KD + σ2
nI)−1‖∞)

c(δ)

ε
G.

Kernel support vector machine. Support vector machine (SVM) [9] is
used for solving a classification problem. SVM outputs the class label of a data-
point that is specified as the input. Linear SVM is a parametric machine learning
model whereas kernel SVM is a non-parametric machine learning model.

Let us consider a data-point d = (x, y) where x ∈ Rd are the predictors and
y ∈ {−1, 1} is the associated class label. Let D denotes universe of datasets with
n data-points each. We fit a support vector machine classifier with a kernel k
on a training dataset D ∈ D with n data-points. Kernel support vector machine
assumes the form f(·) = 〈w, φ(·)〉 where w ∈ RF and φ : Rd → RF . w is
estimated by solving the optimisation problem in Equation 3. In Equation 3, C
denotes the regularisation constant and l denotes the loss function.

max
w∈RF

‖w‖2

2
+ C

∑
d∈D

l(yi, fD(xi)) (3)

Using hinge loss, lhinge(x, y) = max(0, xy), as the loss function we obtain
a closed form solution. It is presented in Equation 4. In the solution, α∗’s are
called support vectors that are solutions to dual of the optimisation problem in
Equation 3.

wD =

n∑
i=1

α∗i yik(·, xi) (4)

Hall et al. [18] compute the sensitivity of the minimisers of regularised functionals
in RKHS. Equation 3 represents an instance of the same problem. Since the
sensitivity of wD is 2C

n , following Equation 1 the functional perturbation for
kernel SVM takes the form

w′D = wD +

(
2C

n

)
c(δ)

ε
G.
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(a) Histogram (b) KDE (c) GP regression

Fig. 1. Comparative evaluation of functional and output perturbation mechanisms for
varying size of test datasets. We compare (0.4, 0.001)-differentially private functional
perturbation, (0.4, 0.001)-differentially private Gaussian mechanism and (0.4, 0.0)-
differentially private Laplace mechanism.

4 Performance Evaluation

In this section, we present effectiveness and efficiency evaluation of functional
perturbation for four non-parametric models, viz. histogram, kernel density esti-
mation (KDE), Gaussian process regression (GP regression) and kernel support
vector machine (kernel SVM), as a service. We comparatively evaluate output
perturbation and functional perturbation mechanism. We observe that output
perturbation mechanism are less effective than functional perturbation mecha-
nism for a specified setting of differential privacy parameters.

4.1 Dataset

Real world dataset. We conduct experiments on a subset of the 2000 US
census dataset provided by Minnesota Population Center in its Integrated Pub-
lic Use Microdata Series [1]. The census dataset consists of 1% sample of the
original census data. It spans over 1.23 million households with records of 2.8
million people. The value of several attributes is not necessarily available for ev-
ery household. We have therefore selected 212, 605 records, corresponding to the
household heads, and 6 attributes, namely, Age, Gender, Race, Marital Status,
Education, Income. We treat this dataset as the population from which we draw
samples of desired sizes.

Benchmark datasets. For histogram and kernel density estimation, we fol-
low Hall et al. [18] and synthetically generate a dataset from a known probability
distribution. We generate 5000 points from a Gaussian distribution with mean
and variance of 2 and 1.3 respectively. For Gaussian process regression, we follow
Smith [29] and use !Kung San woman demographic dataset [20]. It comprises of
heights and ages of 287 women. For kernel SVM, we use Iris dataset [12]. It
comprises of three species of Iris flower with four attributes: length and width
of sepal and petal.

4.2 Experimental Setup

All experiments are run on Linux machine with 12-core 3.60GHz Intel R© Core
i7TMprocessor with 64GB memory. Python R© 2.7.6 is used as the scripting lan-
guage. We use RBF kernel for the experiments. Hyperparameters of the kernel
are tuned by performing cross-validation on respective dataset.
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4.3 Evaluation Metrics

We perform experiments on four non-parametric models solving the problems of
estimation, prediction, and classification. Therefore, we use different metrics of
effectiveness for the evaluation. Histogram and kernel density estimation are used
for estimating probability density of a given data-point and we use Kullback-
Leibler divergence (KL divergence) as the metric of effectiveness. Gaussian pro-
cess regression is used for predicting real-valued attribute and we use root mean
squared error (RMSE) as the metric of effectiveness. Kernel SVM is used for clas-
sification and we use classification error as the metric of effectiveness. Smaller
the value of any of these metrics higher is the effectiveness of the model. In order
to evaluate efficiency, we compute query execution time, i.e. the time required
to compute output of the model.

4.4 Effectiveness Evaluation

In this section, we present the results on the real-world census dataset.
We start by the comparative evaluation of the functional perturbation and

output perturbation mechanisms, namely Gaussian mechanism and Laplace mech-
anism. Output perturbation mechanisms are not directly applicable for machine
learning models with categorical outputs, such as SVMs. Therefore, we perform
comparative study for histograms, KDE and GP regression. We also plot the
effectiveness of the model without any application of privacy-preserving mech-
anism. We denote it by “no privacy”. In case of histogram and KDE, we do
not have the true distributions of the attributes from the census dataset. There-
fore, we compute effectiveness by computing KL divergence between functionally
perturbed estimators and their non-private counterparts.

In Figure 1, we comparatively evaluate effectiveness for varying size of testing
datasets. Across three models, we observe that effectiveness of the output per-
turbation mechanisms degrades as the testing dataset size increases. We do not
observe such a phenomenon with the functional perturbation. Due to sequential
composition [14], privacy guarantee of output perturbation mechanisms linearly
degrades with the number of evaluations. In order to attain differential privacy
with specified privacy parameters, output perturbation mechanisms introduce
higher amount of noise for testing datasets of large sizes. Higher amount of noise
results in reduction in the effectiveness.

In Figures 2 and 3, we comparatively evaluate effectiveness for varying pri-
vacy parameters ε and δ respectively. Across three models, we observe that the
effectiveness of the output perturbation mechanisms increases as values of pri-
vacy parameters increase. Privacy parameter ε quantifies the privacy guarantee
of differential privacy. Higher values of ε provides weaker privacy guarantees.
Weaker privacy guarantees require less amount of noise and hence yield higher
effectiveness. Privacy parameter δ is a quantifier of the extent of slack provided
in the privacy guarantee of ε-differential privacy. In order to provide a robust
differential privacy guarantee, we require the value of δ to be as small as possi-
ble. Thus, with increasing value of δ the amount of perturbation in the function
reduces and hence, the effectiveness increases.
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(a) Histogram (b) KDE (c) GP regression

Fig. 2. Comparative evaluation of functional and output perturbation mechanisms for
varying privacy parameter ε and δ = 0.001. We use dataset of size 5000 to train the
models.

(a) Histogram (b) KDE (c) GP regression

Fig. 3. Comparative evaluation of functional and output perturbation mechanisms for
varying privacy parameter δ and ε = 0.4. We use dataset of size 5000 to train the
models.

We continue our evaluation of functional perturbation for four non-parametric
models on the census dataset. In Figure 4, we present the effectiveness as pri-
vacy parameter ε varies between 0 to 1 keeping δ = 0.0001 for different sizes
of training dataset sizes. We observe that effectiveness of the models increases
with increasing the size of dataset. The reason for this is twofold. Firstly, effec-
tiveness of non-parametric models increases with increasing size of the training
dataset [22]. Secondly, closer inspection of equations of functional perturbation
for each of the four models tells that the amount of noise is inversely proportional
to the number of training data-points. Thus, the functional perturbation adds
lesser amount of noise for specified privacy parameters as the size of training
dataset increases. We make similar observations while evaluating the effective-
ness under variation in privacy parameter δ for a fixed value of ε. Due to lack of
space, we do not provide these results.

4.5 Efficiency evaluation

In Figure 5(a), we plot the query execution time that is the time required to
compute the output for non-parametric models as a service, on a dataset of size
5000 with varying privacy levels. For a given non-parametric model, we observe
that query execution time does not depend on the value of the privacy parameter
ε. Functional perturbation involves sampling a path from the Gaussian process
with zero mean function and covariance function computed using the kernel func-
tion used in the non-parametric model. The computation of covariance functions
requires a significant computational time. This computation time is not affected
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(a) Histogram (b) Kernel density estimator

(c) Gaussian process regression (d) Kernel SVM

Fig. 4. Variation in the utility as the privacy parameter ε changes for datasets of
varying sizes. Experiments are carried out with δ = 0.0001 on census dataset.

(a) Privacy parameter (b) Training dataset size

Fig. 5. Evaluation of efficiency of functional perturbation for various four non-
parametric machine learning models. Figure (a) plots query execution time versus
privacy level. Figure (b) plots query execution time versus training dataset size. For
both experiments, we set δ = 0.001. We set ε = 0.2 for the plot in Figure (b).

by any particular value of privacy level. We make similar observation for the
privacy parameter δ, which we do not include in the paper due to lack of space.

In Figure 5(b), we plot query evaluation time for varying size of the training
datasets. For this experiment, we set privacy parameters ε and δ to 0.2 and 0.001
respectively. We observe that evaluation time increases with increasing size of the
training dataset. Large training datasets require large amount of correlations to
be computed for every new data-point. Therefore, larger training datasets incur
higher amount of time.
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(a) Histogram (b) KDE

(c) Gaussian process regression (d) Kernel SVM

Fig. 6. Variation in the utility as the privacy level changes for datasets of varying sizes.
Experiments are carried out with δ = 0.0001 on benchmark datasets.

4.6 Experiments on the Benchmark Datasets

For reproducibility of the results, we also conduct experiments on the datasets
that are either synthetic or publicly available. We observe results that are con-
sistent with the results on the real-world dataset.

In Figure 6, we present effectiveness of functional perturbation technique on
the benchmark datasets. We perform 10 experimental runs for each value of the
privacy level. Solid lines in Figure 4 show mean effectiveness whereas shaded
region covers values that are one standard deviation away from the mean. We
invariably observe that effectiveness of the models increases when we increase
the privacy level in the functional perturbation. Our observation for the other
experiments on the benchmark datasets are consistent with the observations that
we make for the same experiment on the census datasets.

5 Conclusion

We have shown that functional perturbation is not only pragmatic for releasing
machine learning models as a service but also yields higher effectiveness than
output perturbation mechanisms for specified privacy parameters. We have in-
stantiated application of functional perturbation to the model functions of his-
togram, kernel density estimator, kernel SVM and Gaussian process regression
in order to provide (ε, δ)-differential privacy. We have evaluated the tradeoff
between the privacy guarantee and the error incurred for each of these non-
parametric machine learning algorithms for a real-world dataset as well as a
selection of benchmarks.
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We are now studying functional perturbation for non-parametric machine
learning methods such as k-nearest neighbour density estimation and kernel
Bayesian optimisation. We are also interested in studying a step by step func-
tional perturbation method that perturbs a model function in adaptive way
balancing the specified privacy and utility requirements.
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