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Abstract. Machine learning algorithms create models from training
data for the purpose of estimation, prediction and classification. While re-
leasing parametric machine learning models requires the release of the pa-
rameters of the model, releasing non-parametric machine learning models
requires the release of the training dataset along with the parameters. In-
deed, estimation, prediction or classification with non-parametric models
computes some form of correlation between new data and the training
data. The release of the training dataset creates a risk of breach of pri-
vacy. An alternative to the release of the training dataset is the presenta-
tion of the non-parametric model as a service. Still, the non-parametric
model as a service may leak information about the training dataset.
We study how to provide differential privacy guarantees for non-parametric
models as a service. This cannot be achieved by perturbation of the out-
put but requires perturbation of the model functions. We show how to
apply the perturbation to the model functions of histogram, kernel den-
sity estimator, kernel SVM and Gaussian process regression in order to
provide (ε, δ)-differential privacy. We evaluate the trade-off between the
privacy guarantee and the error incurred for each of these non-parametric
machine learning algorithms on benchmarks and real-world datasets.
Our contribution is twofold. We show that functional perturbation is
not only pragmatic for releasing machine learning models as a service
but also yields higher effectiveness than output perturbation mechanisms
for specified privacy parameters. We show the practical step to pertur-
bate the model functions of histogram, kernel SVM, Gaussian process
regression along with kernel density estimator. We evaluate the tradeoff
between the privacy guarantee and the error incurred for each of these
non-parametric machine learning algorithms for a real-world dataset as
well as a selection of benchmarks.

Keywords: Differential Privacy, Data Privacy, Non-parametric models,
Functional Perturbation

1 Introduction

Organisations are amassing data at an unprecedented scale and granularity. They
release either the raw data or the machine learning models that are trained on the



2 Dandekar A. et al.

raw data. All machine learning models do not fit the choice of releasing only the
models. A parametric machine learning model [21] assumes a parametric model
function3 that maps a new data to the corresponding output. A non-parametric
machine learning model [21] does not assume a parametric model function but
calculates some form of correlation between a new data and the training data to
compute the corresponding output. For instance, kernel density estimation [23]
computes the probability density of a new data by assimilating the probabilities
of the new data originating from the probability distributions centred at every
data-point in the training data. Kernel SVM [7] and Gaussian process regres-
sion [25] compute kernel Gram matrix between the new data and the training
data. Thus, while releasing parametric machine learning models requires the
release of the parameters of the model function, releasing non-parametric ma-
chine learning models requires the release of the training dataset along with the
parameters. An alternative to the release of the training dataset is utilising non-
parametric models as a service. While using a non-parametric model as a service,
user would send a new data to the model to obtain the output of estimation,
prediction, or classification.

Publication of raw data without any processing leads to a violation of the
privacy of users [2]. Not only raw data but also publication of a ‘non-private’ ma-
chine learning model as a service leads to a violation of the privacy of users. For
instance, experiments in [27] show that models created using popular machine-
learning-as-a-service platforms, such as Google and Amazon, can leak identity of
a data-point in the training dataset with accuracy up to 94%. In order to reduce
the risk of breach of privacy, we need to take preemptive steps and provide quan-
tifiable privacy guarantees for the released machine learning model. Differential
privacy [13] is one of such privacy definitions to quantify the privacy guarantees.

We study how to provide differential privacy guarantees for non-parametric
models as a service. This cannot be achieved by the output perturbation using
typical differential privacy mechanisms, such as Laplace mechanism and Gaus-
sian mechanism [13]. Due to sequential composition [13] of differential privacy,
the privacy guarantee of a mechanism linearly degrades with the number of
times the noise is added from a given noise distribution. Output perturbation
requires addition of calibrated noise in the output for every new data input.
Therefore, it suffers from the degradation of privacy guarantee. When machine
learning is provided as a service one can not limit the number of queries. Once
the noise is added to a model function, further evaluations are performed on the
noisy model. We adopt the functional perturbation proposed in [17] in order to
provide a robust privacy guarantee. Functional perturbation adds a scaled noise
sampled from a Gaussian process to the function. [17] proves that an appropriate
calibration of this mechanism provides (ε, δ)-differential privacy. We show how
to calibrate the functional perturbation for histogram, kernel density estimator,
kernel SVM, and Gaussian process regression. We evaluate the trade-off between

3 Model function refers to the mapping from input to output that is learned by the
corresponding machine learning algorithm.



Differentially Private Non-parametric Machine Learning as a Service 3

the privacy guarantee and the error incurred for each of these non-parametric
machine learning algorithms on benchmarks and US census dataset.

Our contribution is twofold. Firstly, we show that functional perturbation is
a viable alternative to output perturbation to provide privacy guarantees for ma-
chine learning models as a service. We also hypothesise as well as experimentally
validate that output perturbation is less effective than functional perturbation
for a given privacy level and a given test set. Additionally, output perturbation
is not directly applicable for machine learning models with categorical outputs,
such as classification, where functional perturbation operates naturally. Secondly,
we show the practical step to perturb the model functions of histogram, kernel
SVM, Gaussian process regression, and the kernel density estimator. We evalu-
ate the trade-off between the privacy guarantee and the error incurred for each
of these non-parametric machine learning algorithms for US census dataset [1]
and a comprehensive range of benchmarks. The results validate that the error
decreases for nonparametric machine learning as a service with increase in the
size of training dataset and privacy parameters ε and δ.

2 Background and related work

This paper is at the crossroads of machine learning and differential privacy. In
this section, we provide a brief background and literature review of both of these
fields and the research works bridging them.

2.1 Machine learning models

Murphy [21] classifies machine learning models into two classes based on the
assumption on the kind of the mapping between inputs and outputs, called as
the hypothesis. In this paper, we refer to the hypothesis as the model function.

A parametric model assumes a parametric function as the model function.
Parameters of the model function are estimated using a given training dataset.
Values of the parameters represent a summary of latent patterns in the data.
Linear regression [21], logistic regression [21], K-means clustering [21] are a few
examples of the parametric models. Unlike a parametric model, a non-parametric
model assumes a set of correlated parametric functions, one for each data point
in the training dataset, as the model function. In order to compute outputs
for new data, it computes a function of correlation between the new data and
the training dataset using the functions in the model function. Parameters of
functions in the model function, called as the hyperparameters, along with the
training data represent a summary of latent patterns in the data. Histogram
fitting [21], kernel density estimation [29], Gaussian process [25], kernel SVM [29]
are a few examples of the non-parametric models.

2.2 Differential privacy

Dwork et al. [12] propose differential privacy as a quantifiable privacy defini-
tion for any randomised algorithm. Degree of indistinguishability in the outputs
obtained from a randomised algorithm operated on two neighbouring datasets4

4 Two datasets are neighbouring if they differ at one data point.
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quantifies the privacy guarantee of differential privacy. There has been extensive
research on differential privacy and interested readers can refer to [13] for further
details.

Let D denote the universe of datasets. Two datasets of equal cardinality x and
y are said to be neighbouring datasets if they differ in one data point. We want
to provide privacy guarantees for queries that are functions on D. A privacy-
preserving mechanism, which is a randomised algorithm, explicitly adds noise to
the query from a given family of distributions. For example, Laplace and Gaus-
sian mechanisms add noise sampled from Laplace and Gaussian distributions
respectively [12]. For a given query f and parameters of a noise distribution Θ,
we denote a privacy-preserving mechanism asM(f,Θ). With this paraphernalia,
we define (ε, δ)-differential privacy in Definition 1.

Definition 1 ((ε, δ)-differential privacy [13]). A privacy-preserving mecha-
nism M, equipped with a query f and with parameters Θ, is (ε, δ)-differentially
private if for all Z ⊆ Range(M), ε ≥ 0, δ ≥ 0, and neighbouring datasets
x, y ∈ D:

P(M(f,Θ)(x) ∈ Z) ≤ eεP(M(f,Θ)(y) ∈ Z) + δ

In Definition 1, ε quantifies the privacy guarantee and δ quantifies a slack in the
inequality. In order to have stronger privacy guarantees, we require a small value
of ε and close to zero value of δ. For δ = 0, (ε, δ)-differential privacy reduces to
the ε-differential privacy [12].

2.3 Related work

Most of the big technology companies offer machine learning as a service on
their cloud platforms, such as Google’s Cloud Machine Learning Engine5, Mi-
crosoft’s Azure Learning Studio6, Amazon’s Machine Learning on AWS7, IBM’s
Bluemix8. These apps provide machine learning models as easy to use APIs
for data scientists. Cloud services also provide storage space to host training
datasets. For an extensive survey of such platforms, readers can refer to [24].

Privacy of machine learning models is a well-studied topic. Ateniese et al. [5]
show the ability to learn statistical information about the training data through
parameters of a trained machine learning model. They show a successful attack
on support vector machine and hidden Markov model. Homer et al. [18] identify
the presence of a certain genome in a publicly released highly complex genomic
mixture microarray dataset. They do so by comparing distributions of genomes
from the released sample to avaliable statistics of the population. Fredrikson et
al. [15] propose the model inversion attack on machine learning models wherein
they learn some sensitive attribute in the training dataset. Given black-box ac-
cess to the model and access to demographic information about patients, they
successfully learn genomic markers of patients. In the follow-up work, Fredrikson

5 https://cloud.google.com/ml-engine/
6 https://azure.microsoft.com/en-us/services/machine-learning-studio/
7 https://aws.amazon.com/machine-learning/
8 https://www.ibm.com/cloud/
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et al. [16] show instantiation of a successful model inversion attack on decision
trees and neural networks that are implemented on machine learning as a service
platform. Shokri et al. [27] propose membership inference attack that infers the
presence of a data-point in the training dataset based on the outputs machine
learning models. They perform attacks on classification models provided by com-
mercial platforms from Google and Amazon. We have enlisted the attacks that
are pertinent to research in this work. For an extensive survey of attacks on
various machine learning models, readers can refer to [14].

Differential privacy [12] has become a popular privacy definition to provide
privacy guarantees for machine learning algorithms. Researchers have devised
privacy-preserving mechanisms to provide differential privacy guarantees for lin-
ear regression [9, 31], logistic regression [8, 30], support vector machines [26],
deep learning [3, 27]. Chaudhury et al. [9] propose differentially private empir-
ical risk minimisation, which lies at the heart of training of machine learning
models. They propose output perturbation and objective perturbation. These
mechanisms are helpful for releasing parametric machine learning models. Zhang
et al. [31] propose the functional mechanism that introduces noise in the loss
function of a machine learning model. The functional mechanism is useful for
parametric machine learning models that estimate parameters of the model by
minimising its loss function. Hall et al. [17] propose the use of functional per-
turbation that induced noise in the coefficient of expansion of a function in a
functional basis. Functions of non-parametric models that use kernels lie in the
RKHS spanned by the kernel. Therefore, it is possible to apply the functional
perturbation to provide privacy guarantees for non-parametric models. Smith et
al. [28] apply functional perturbation by Hall et al. to provide differntial privacy
Gaussian processe regression. Aldá and Rubinstein [4] propose Bernstein mech-
anism that provides a differentially private way of releasing functions of machine
learning models in a non-interactive way. Balog et al. [6] provide a functional
perturbation that ensures the closure of functions in a finite dimensional RKHS
under the appropriate perturbations. Nozari et al. [22] propose a functional per-
turbation algorithm that is catered to distributed machine learning task.

Jain and Thakurta [20] propose three ways, which are interactive, non-
interactive and semi-interactive, of using machine learning models with differ-
ential privacy guarantees. This work is an instance of interactive use of non-
parametric machine learning model wherein we provide differential privacy guar-
antees using the functional perturbation proposed in the work of Hall et al. [17].

3 Methodology

In this section, we discuss release of trained machine learning models. We argue
that non-parametric machine learning models need to be released as a service to
users. We further instantiate functional perturbation by Hall et al. [17], which
provides (ε, δ)-differential privacy guarantee, to four non-parametric models.

3.1 Non-parametric machine learning models as a service

Jain and Thakurta [20] propose three ways in which an organisation can use
machine learning models. Firstly, they propose a non-interactive model release
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wherein an organisation releases a model with quantifiable privacy guarantees.
Non-interactive model release is plausible for parametric machine learning mod-
els since values of the parameters are sufficient to compute outputs for a new
data. Non-parametric machine learning models require training dataset along
with the parameters to compute outputs for new data. Secondly, they propose
a semi-interactive model release wherein an organisation releases model that
provides quantifiable privacy guarantees for a specified set of test data. A pri-
ori knowledge of test data is not an assumption that can be realised in every
business scenario. Lastly, they propose interactive model release wherein an or-
ganisation provides machine learning model as a service. It keeps trained model
on the server and users send queries to the server. For non-parametric models,
release of training dataset violates the privacy of the users. Therefore, interactive
model release, i.e. release of machine learning as a service is a viable alternative.

Differential privacy, as defined in Definition 1, is a privacy definition for ran-
domised algorithms. In order to provide quantifiable differential privacy guar-
antees, we need to introduce randomisation while using machine learning mod-
els as a service. A privacy-preserving mechanism introduces randomisation to
avoid the release of true outputs. Under appropriately calibrated randomisation,
privacy-preserving mechanisms provide differential privacy guarantees.

Firstly, randomisation can be introduced by adding an appropriately cali-
brated random noise to the output of the query. These privacy-preserving mecha-
nisms are called as output perturbation mechanisms. For instance, Laplace mech-
anism [13] adds noise drawn from Laplace distribution whereas Gaussian mech-
anism [13] adds noise drawn from Gaussian distribution to the output of the
model. Multiple evaluations of such mechanisms result in a sequential composi-
tion [13]. Privacy guarantee of the sequential composition of privacy-preserving
mechanisms linearly degrades with the number of evaluations of privacy pre-
serving mechanisms. Secondly, randomisation can be introduced by adding an
appropriately calibrated random noise to the model function. Unlike output per-
turbation mechanisms, which add calibrated noise to every output of the query,
the privacy-preserving mechanisms that perturb functions are one-shot privacy-
preserving mechanisms. They add calibrated noise in a function leading to change
in its functional form. The noisy functional form is used for computing outputs.
Therefore, functional perturbation does not suffer from the degradation in the
differential privacy guarantee with increasing the number of queries.

When a machine learning model is provided as a service, one cannot strictly
control the number of times a user accesses the service. Therefore, we choose
functional perturbation based privacy-preserving mechanism. Hall et al.[17] pro-
pose the functional mechanism that adds calibrated noise to the expansion of the
model function in an appropriate functional basis. Functions of non-parametric
machine learning models, especially the ones that use kernels, lie in Reproduc-
ing Kernel Hilbert Space (RKHS) [29] associated with the kernel. Thus, RKHS
readily provides a functional basis for functions of non-parametric models. Zhang
et al. [31] propose the functional mechanism that adds calibrated noise to the
loss function of machine learning model. Loss functions are akin to parametric
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models that train their parameters using some appropriate loss function. There-
fore, we choose to use functional perturbation as proposed by Hall et al. [17] to
provide differential privacy guarantees for non-parametric models released as a
service.

3.2 Functional perturbation in RKHS

Hall et al. [17] propose a mechanism that provides a calibrated functional pertur-
bation that provides quantifiable (ε, δ)-differential privacy guarantee. We briefly
explain functional perturbation of a function that lies in a reproducing kernel
Hilbert space (RKHS).

Suppose that a function f : Rd → R lies in RKHS, Hk, associated with a
kernel k : Rd × Rd → R. For a given dataset D = {xi}ni=1 where each xi ∈ Rd,
let {k(·, xi)}ni=1 denotes a basis of Hk. In this basis, any function f ∈ Hk is
expanded as:

f(·) =

n∑
i=1

wfi k(·, xi)

where each wfi ∈ R. Inner product between two functions f, g ∈ Hk is defined
as:

〈f, g〉 =

n∑
i=1

n∑
j=1

wfi w
g
j k(xi, xj)

The inner product is used to define norm of any function in Hk as ‖f‖Hk
=√

〈f, f〉.
Functional perturbation adds calibrated noise sampled from a Gaussian pro-

cess to a model function. Gaussian process uses the kernel that is associated
with RKHS where the function lies. We formally define functional perturbation
in Definition 2.

Definition 2 (Functional perturbation [17]). Let fD denotes a model func-
tion, whose parameters (or hyperparameters) are estimated on a dataset D ∈ D.
Assume that fD lies in a reproducing kernel Hilbert space, Hk, with an associ-
ated kernel k. Functional perturbation is a privacy-preserving mechanism that
perturbs fD as follows:

f ′D = fD +∆
c(δ)

ε
G. (1)

where G is a sample path of a Gaussian process with mean zero and covariance
function k and ∆, ε, δ > 0.

Functional perturbation in Definition 2 satisfies (ε, δ)-differential privacy
when parameters are calibrated as ∆ ≥ maxD,D′‖fD − fD′‖Hk

and c(δ) ≥√
2 log 2

δ . ∆ is sensitivity of the functions in RKHS Hk. Sensitivity is the max-

imum deviation of model functions that are trained on any two neighbouring
datasets D and D′. In order to apply functional perturbation for machine learn-
ing tasks, we need to compute the sensitivity of respective model functions.
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3.3 Applications to four non-parametric machine learning models

We now illustrate application of functional perturbation for four non-parametric
machine learning models. We use non-parametric models that are based on kernel
methods. For such non-parametric models, model functions lie in the RKHS
associated with the specified kernel.

Histogram. Histogram [21] is used for solving discretised probability density
estimation problem. It discretises the domain of a given dataset into a finite
number of bins. Each bin defines an interval in the domain of the training dataset.
Probability of a data-point inside an interval is commensurate to the number of
training data-points that lie in the interval.

For a fixed number of bins b, histogram is a vector in Rb. Therefore, we can
consider histogram estimation as a function f : D → Rb wherein D is a universe
of datasets. Let, {ei}bi=1 be the standard basis of Euclidean space Rb. Standard
basis spans RKHS associated with the dot product kernel, i.e. k(x, y) = xT y.
For a pair of neighbouring datasets, L1 norm between two histograms is two
in the case when the distinct data-points occupy two different bins. Therefore,
sensitivity of the histogram function is 2. Let, fD denotes the histogram for
a dataset D with the number of bins b. Thus, the functional perturbation of
Equation 1 for histograms takes the form

f ′D = fD +
2

n

c(δ)

ε
G.

Kernel density estimation. Kernel density estimation [21] is a probability
density estimation problem that estimates the probability density function of
a training dataset. It assumes a probability density function centred at every
data-point in the training dataset. Probability of a new data-point is computed
as weighted average of the probabilities computed using the probability densities
centred at every data-point.

We consider the kernel function namely Gaussian kernel that outputs values
in the range [0, 1]. It acts as a probability density function. Let k denotes a
Gaussian kernel with bandwidth h. Estimate of the probability density function
for a dataset D = {xi}ni=1 for the Gaussian kernel k is presented as

fD(·) =
1

n

∑
xi∈D

k(·, xi) =
1

n

∑
xi∈D

1

(2πh2)d
exp

(
−〈·, xi〉

2h2

)
.

Hall et al. [17] compute the sensitivity ∆ of kernel density estimator with a

Gaussian kernel as
√
2

n(2πh2)d/2
. Thus, from Equation 1 the functional perturbation

for kernel density estimate with Gaussian kernel is

f ′D = fD +

( √
2

n(2πh2)d/2

)
c(δ)

ε
G.

Gaussian process regression. Gaussian process [25] is a collection of
Gaussian random variables such that any subset follows a multivariate Gaus-
sian distribution. Covariance function for the multivariate Gaussian distribution
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is calculated using a kernel function k. Gaussian process regression outputs a re-
sponse sampled from posterior distribution of a test data-point given the training
dataset. Mean function f̄D and variance function V ar(fD) of the posterior dis-
tribution computed on a training dataset D are given in Equation 2.

f̄D(·) =
∑
di∈D

∑
dj∈D

(KD + σ2
nI)
−1
ij yjk(·, xi)

V ar(fD)(·) = k(·, ·)−
∑
di∈D

∑
dj∈D

(KD + σ2
nI)
−1
ij k(·, xi)k(·, xj) (2)

KD is the Gram matrix computed using kernel k on the training dataset and d
is the dimension of each training data-point.

Smith et al. [28] use the functional perturbation to provide differential privacy
guarantee to Gaussian process regression. Equation 2 shows that the posterior
covariance function does not require responses yj ’s in the training data. Since
only the responses are sensitive towards the disclosure, Smith et al. [28] proposed
to perturb only the posterior mean function. Since the sensitivity of the posterior
mean function with Gram matrix KD is d‖(KD + σ2

nI)−1‖∞, they apply the
functional perturbation to the posterior mean function as

f̄D
′

= f̄D + (d‖(KD + σ2
nI)−1‖∞)

c(δ)

ε
G.

Kernel support vector machine. Support vector machine (SVM) [10] is
used for solving a classification problem. SVM outputs the class label of a data-
point that is specified as the input. Linear SVM is a parametric machine learning
model whereas kernel SVM is a non-parametric machine learning model.

Let us consider a data-point d = (x, y) where x ∈ Rd are the predictors and
y ∈ {−1, 1} is the associated class label. Let D denotes universe of datasets with
n data-points each. We fit a support vector machine classifier with a kernel k
on a training dataset D ∈ D with n data-points. Kernel support vector machine
assumes the form f(·) = 〈w, φ(·)〉 where w ∈ RF and φ : Rd → RF . w is
estimated by solving the optimisation problem in Equation 3. In Equation 3, C
denotes the regularisation constant and l denotes the loss function.

max
w∈RF

‖w‖2

2
+ C

∑
d∈D

l(yi, fD(xi)) (3)

Using hinge loss, lhinge(x, y) = max(0, xy), as the loss function we obtain
a closed form solution. It is presented in Equation 4. In the solution, α∗’s are
called support vectors that are solutions to dual of the optimisation problem in
Equation 3.

wD =

n∑
i=1

α∗i yik(·, xi) (4)

Hall et al. [17] compute the sensitivity of the minimisers of regularised functionals
in RKHS. Equation 3 represents an instance of the same problem. Since the
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sensitivity of wD is 2C
n , following Equation 1 the functional perturbation for

kernel SVM takes the form

w′D = wD +

(
2C

n

)
c(δ)

ε
G.

4 Performance Evaluation
In this section, we present effectiveness and efficiency evaluation of functional
perturbation for four non-parametric models, viz. histogram, kernel density esti-
mation (KDE), Gaussian process regression (GP regression) and kernel support
vector machine (kernel SVM), as a service. We comparatively evaluate output
perturbation and functional perturbation mechanism. We observe that output
perturbation mechanism are less effective than functional perturbation mecha-
nism for a specified setting of differential privacy parameters.

4.1 Dataset

Real world dataset. We conduct experiments on a subset of the 2000 US
census dataset provided by Minnesota Population Center in its Integrated Pub-
lic Use Microdata Series [1]. The census dataset consists of 1% sample of the
original census data. It spans over 1.23 million households with records of 2.8
million people. The value of several attributes is not necessarily available for ev-
ery household. We have therefore selected 212, 605 records, corresponding to the
household heads, and 6 attributes, namely, Age, Gender, Race, Marital Status,
Education, Income. We treat this dataset as the population from which we draw
samples of desired sizes.

Benchmark datasets. For histogram and kernel density estimation, we fol-
low Hall et al. [17] and synthetically generate a dataset from a known probability
distribution. We generate 5000 points from a Gaussian distribution with mean
and variance of 2 and 1.3 respectively. For Gaussian process regression, we follow
Smith [28] and use !Kung San woman demographic dataset [19]. It comprises of
heights and ages of 287 women. For kernel SVM, we use Iris dataset [11]. It
comprises of three species of Iris flower with four attributes: length and width
of sepal and petal.

4.2 Experimental Setup

All experiments are run on Linux machine with 12-core 3.60GHz Intel R© Core
i7TMprocessor with 64GB memory. Python R© 2.7.6 is used as the scripting lan-
guage. We use RBF kernel for the experiments. Hyperparameters of the kernel
are tuned by performing cross-validation on respective dataset.

4.3 Evaluation Metrics

We perform experiments on four non-parametric models solving the problems of
estimation, prediction, and classification. Therefore, we use different metrics of
effectiveness for the evaluation. Histogram and kernel density estimation are used
for estimating probability density of a given data-point and we use Kullback-
Leibler divergence (KL divergence) as the metric of effectiveness. Gaussian pro-
cess regression is used for predicting real-valued attribute and we use root mean
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(a) Histogram (b) KDE (c) GP regression

Fig. 1. Comparative evaluation of functional and output perturbation mechanisms for
varying size of test datasets. We compare (0.4, 0.001)-differentially private functional
perturbation, (0.4, 0.001)-differentially private Gaussian mechanism and (0.4, 0.0)-
differentially private Laplace mechanism.

squared error (RMSE) as the metric of effectiveness. Kernel SVM is used for clas-
sification and we use classification error as the metric of effectiveness. Smaller
the value of any of these metrics higher is the effectiveness of the model. In order
to evaluate efficiency, we compute query execution time, i.e. the time required
to compute output of the model.

4.4 Effectiveness Evaluation

In this section, we present the results on the real-world census dataset.
We start by the comparative evaluation of the functional perturbation and

output perturbation mechanisms, namely Gaussian mechanism and Laplace mech-
anism. Output perturbation mechanisms are not directly applicable for machine
learning models with categorical outputs, such as SVMs. Therefore, we perform
comparative study for histograms, KDE and GP regression. We also plot the
effectiveness of the model without any application of privacy-preserving mech-
anism. We denote it by “no privacy”. In case of histogram and KDE, we do
not have the true distributions of the attributes from the census dataset. There-
fore, we compute effectiveness by computing KL divergence between functionally
perturbed estimators and their non-private counterparts.

In Figure 1, we comparatively evaluate effectiveness for varying size of testing
datasets. Across three models, we observe that effectiveness of the output per-
turbation mechanisms degrades as the testing dataset size increases. We do not
observe such a phenomenon with the functional perturbation. Due to sequential
composition [13], privacy guarantee of output perturbation mechanisms linearly
degrades with the number of evaluations. In order to attain differential privacy
with specified privacy parameters, output perturbation mechanisms introduce
higher amount of noise for testing datasets of large sizes. Higher amount of noise
results in reduction in the effectiveness.

In Figures 2 and 3, we comparatively evaluate effectiveness for varying pri-
vacy parameters ε and δ respectively. Across three models, we observe that the
effectiveness of the output perturbation mechanisms increases as values of pri-
vacy parameters increase. Privacy parameter ε quantifies the privacy guarantee
of differential privacy. Higher values of ε provides weaker privacy guarantees.
Weaker privacy guarantees require less amount of noise and hence yield higher
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(a) Histogram (b) KDE (c) GP regression

Fig. 2. Comparative evaluation of functional and output perturbation mechanisms for
varying privacy parameter ε and δ = 0.001. We use dataset of size 5000 to train the
models.

(a) Histogram (b) KDE (c) GP regression

Fig. 3. Comparative evaluation of functional and output perturbation mechanisms for
varying privacy parameter δ and ε = 0.4. We use dataset of size 5000 to train the
models.

effectiveness. Privacy parameter δ is a quantifier of the extent of slack provided
in the privacy guarantee of ε-differential privacy. In order to provide a robust
differential privacy guarantee, we require the value of δ to be as small as possi-
ble. Thus, with increasing value of δ the amount of perturbation in the function
reduces and hence, the effectiveness increases.

We continue our evaluation of functional perturbation for four non-parametric
models on the census dataset. In Figure 4, we present the effectiveness as pri-
vacy parameter ε varies between 0 to 1 keeping δ = 0.0001 for different sizes
of training dataset sizes. We observe that effectiveness of the models increases
with increasing the size of dataset. The reason for this is twofold. Firstly, effec-
tiveness of non-parametric models increases with increasing size of the training
dataset [21]. Secondly, closer inspection of equations of functional perturbation
for each of the four models tells that the amount of noise is inversely proportional
to the number of training data-points. Thus, the functional perturbation adds
lesser amount of noise for specified privacy parameters as the size of training
dataset increases. We make similar observations while evaluating the effective-
ness under variation in privacy parameter δ for a fixed value of ε. Due to lack of
space, we do not provide these results.

4.5 Efficiency evaluation

In Figure 5(a), we plot the query execution time that is the time required to
compute the output for non-parametric models as a service, on a dataset of size
5000 with varying privacy levels. For a given non-parametric model, we observe
that query execution time does not depend on the value of the privacy parameter
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(a) Histogram (b) Kernel density estimator

(c) Gaussian process regression (d) Kernel SVM

Fig. 4. Variation in the utility as the privacy parameter ε changes for datasets of
varying sizes. Experiments are carried out with δ = 0.0001 on census dataset.

(a) Privacy parameter (b) Training dataset size

Fig. 5. Evaluation of efficiency of functional perturbation for various four non-
parametric machine learning models. Figure (a) plots query execution time versus
privacy level. Figure (b) plots query execution time versus training dataset size. For
both experiments, we set δ = 0.001. We set ε = 0.2 for the plot in Figure (b).

ε. Functional perturbation involves sampling a path from the Gaussian process
with zero mean function and covariance function computed using the kernel func-
tion used in the non-parametric model. The computation of covariance functions
requires a significant computational time. This computation time is not affected
by any particular value of privacy level. We make similar observation for the
privacy parameter δ, which we do not include in the paper due to lack of space.

In Figure 5(b), we plot query evaluation time for varying size of the training
datasets. For this experiment, we set privacy parameters ε and δ to 0.2 and 0.001
respectively. We observe that evaluation time increases with increasing size of the
training dataset. Large training datasets require large amount of correlations to
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(a) Histogram (b) KDE

(c) Gaussian process regression (d) Kernel SVM

Fig. 6. Variation in the utility as the privacy level changes for datasets of varying sizes.
Experiments are carried out with δ = 0.0001 on benchmark datasets.

be computed for every new data-point. Therefore, larger training datasets incur
higher amount of time.

4.6 Experiments on the Benchmark Datasets

For reproducibility of the results, we also conduct experiments on the datasets
that are either synthetic or publicly available. We observe results that are con-
sistent with the results on the real-world dataset.

In Figure 6, we present effectiveness of functional perturbation technique on
the benchmark datasets. We perform 10 experimental runs for each value of the
privacy level. Solid lines in Figure 4 show mean effectiveness whereas shaded
region covers values that are one standard deviation away from the mean. We
invariably observe that effectiveness of the models increases when we increase
the privacy level in the functional perturbation. Our observation for the other
experiments on the benchmark datasets are consistent with the observations that
we make for the same experiment on the census datasets.

5 Conclusion

We show that functional perturbation is not only pragmatic for releasing ma-
chine learning models as a service but also yields higher effectiveness than output
perturbation mechanisms for specified privacy parameters. We show how to ap-
ply functional perturbation to the model functions of histogram, kernel density
estimator, kernel SVM and Gaussian process regression in order to provide (ε, δ)-
differential privacy. We evaluate the tradeoff between the privacy guarantee and
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the error incurred for each of these non-parametric machine learning algorithms
for a real-world dataset as well as a selection of benchmarks.

We are now studying functional perturbation for non-parametric machine
learning methods such as k-nearest neighbour density estimation and kernel
Bayesian optimisation. We are also interested in studying a step by step func-
tional perturbation method that perturbs a model function in adaptive way
balancing the specified privacy and utility requirements.
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