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Abstract

As a technology ML is oblivious to societal good or bad, and thus, the field of fair machine
learning has stepped up to propose multiple mathematical definitions, algorithms, and
systems to ensure different notions of fairness in ML applications. Given the multitude of
propositions, it has become imperative to formally verify the fairness metrics satisfied by
different algorithms on different datasets. In this paper, we propose a stochastic satisfiability
(SSAT) framework, Justicia, that formally verifies different fairness measures of supervised
learning algorithms with respect to the underlying data distribution. We instantiate Justicia
on multiple classification and bias mitigation algorithms, and datasets to verify different
fairness metrics, such as disparate impact, statistical parity, and equalized odds. Justicia is
scalable, accurate, and operates on non-Boolean and compound sensitive attributes unlike
existing distribution-based verifiers, such as FairSquare and VeriFair. Being distribution-
based by design, Justicia is more robust than the verifiers, such as AIF360, that operate
on specific test samples. We also theoretically bound the finite-sample error of the verified
fairness measure.

1. Introduction

Machine learning (ML) is becoming the omnipresent technology of our time. ML algorithms
are being used for high-stake decisions like college admissions, crime recidivism, insurance,
and loan decisions etc. Thus, human lives are now pervasively influenced by data, ML, and
their inherent bias.

Example 1 Let us consider an example (Figure 1) of deciding eligibility for health insurance
depending on the fitness and income of the individuals of different age groups (20-40 and
40-60). Typically, incomes of individuals increase as their ages increase while their fitness
deteriorate. We assume relation of income and fitness depends on the age as per the Normal
distributions in Figure 1. Now, if we train a decision tree (Narodytska et al., 2018) on these
fitness and income indicators to decide the eligibility of an individual to get a health insurance,
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Figure 1: A trained decision tree to learn eligibility for health insurance using age-dependent
fitness and income indicators.

we observe that the ‘optimal’ decision tree (ref. Figure 1) selects a person above and below
40 years with probabilities 0.18 and 0.72 respectively. This simple example demonstrates that
even if an ML algorithm does not explicitly learn to differentiate on the basis of a sensitive
attribute, it discriminates different age groups due to the utilitarian sense of accuracy that it
tries to optimize.

Fair ML. Statistical discriminations caused by ML algorithms have motivated researchers
to develop several frameworks to ensure fairness and several algorithms to mitigate bias.
Existing fairness metrics mostly belong to three categories: independence, separation, and
sufficiency (Mehrabi et al., 2019). Independence metrics, such as demographic parity,
statistical parity, and group parity, try and ensure the outcomes of an algorithm to be
independent of the groups that the individuals belong to (Feldman et al., 2015; Dwork et al.,
2012). Separation metrics, such as equalized odds, define an algorithm to be fair if the
probability of getting the same outcomes for different groups are same (Hardt et al., 2016).
Sufficiency metrics, such as counterfactual fairness, constrain the probability of outcomes to
be independent of individual’s sensitive data given their identical non-sensitive data (Kusner
et al., 2017).

In Figure 1, independence is satisfied if the probability of getting insurance is same
for both the age groups. Separation is satisfied if the number of ‘actually’ (ground-truth)
ineligible and eligible people getting the insurance are same. Sufficiency is satisfied if the
eligibility is independent of their age given their attributes are the same. Thus, we see that
the metrics of fairness can be contradictory and complimentary depending on the application
and the data (Corbett-Davies and Goel, 2018). Different algorithms have also been devised
to ensure one or multiple of the fairness definitions. These algorithms try to rectify and
mitigate the bias in the data and thus in the prediction-model in three ways: pre-processing
the data (Kamiran and Calders, 2012; Zemel et al., 2013; Calmon et al., 2017), in-processing
the algorithm (Zhang et al., 2018), and post-processing the outcomes (Kamiran et al., 2012;
Hardt et al., 2016).
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Fairness Verifiers. Due to the abundance of fairness metrics and difference in algorithms
to achieve them, it has become necessary to verify different fairness metrics over datasets
and algorithms.

In order to verify fairness as a model property on a dataset, verifiers like FairSquare (Al-
barghouthi et al., 2017) and VeriFair (Bastani et al., 2019) have been proposed. These
verifiers are referred to as distributional verifiers owing to the fact that their inputs are
a probability distribution of the attributes in the dataset and a model of a suitable form,
and their objective is to verify fairness w.r.t. the distribution and the model. Though
FairSquare and VeriFair are robust and has asymptotic convergence guarantees, we observe
that they scale up poorly with the size of inputs and also do not generalize to non-Boolean
and compound sensitive attributes. In contrast to the distributional verifiers, another line of
work, referred to as sample-based verifiers, has focused on the design of testing methodologies
on a given fixed data sample (Galhotra et al., 2017; Bellamy et al., 2018). Since sample-based
verifiers are dataset-specific, they generally do not provide robustness over the distribution.

Thus, a unified formal framework to verify different fairness metrics of an ML algorithm,
which is scalable, capable of handling compound protected groups, robust with respect to the
test data, and operational on real-life datasets and fairness-enhancing algorithms, is missing
in the literature.

Our Contribution. From this vantage point, we propose to model verifying different
fairness metrics as a Stochastic Boolean Satisfiability (SSAT) problem (Littman et al., 2001).
SSAT was originally introduced by (Papadimitriou, 1985) to model games against nature. In
this work, we primarily focus on reductions to the exist-random quantified fragment of SSAT,
which is also known as E-MAJSAT (Littman et al., 2001). SSAT is a conceptual framework
that has been employed to capture several fundamental problems in AI such as computation
of maximum a posteriori (MAP) hypothesis (Fremont et al., 2017), propositional probabilistic
planning (Majercik, 2007), circuit verification (Lee and Jiang, 2018) and so on. Furthermore,
our choice of SSAT as a target formulation is motivated by the recent algorithmic progress
that has yielded efficient SSAT tools (Lee et al., 2017, 2018).

Our contributions are summarised below:

• We propose a unified SSAT-based approach, Justicia, to verify independence and
separation metrics of fairness for different datasets and classification algorithms.

• Unlike previously proposed formal distributional verifiers, namely FairSquare and
VeriFair, Justicia verifies fairness for compound and non-Boolean sensitive attributes.

• Our experiments validate that our method is more accurate and scalable than the
distributional verifiers, such as FairSquare and VeriFair, and more robust than the
sample-based empirical verifiers, such as AIF360.

• We prove a finite-sample error bound on our estimated fairness metrics which is
stronger than the existing asymptotic guarantees.

It is worth remarking that significant advances in AI bear testimony to the right choice
of formulation, for example, formulation of planning as SAT (Kautz et al., 1992). In this
context, we view that formulation of fairness as SSAT has potential to spur future work
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from both the modeling and encoding perspective as well as core algorithmic improvements
in the underlying SSAT solvers.

2. Background: Fairness and SSAT

In Section 2.1, we define different fairness metrics for a supervised learning problem. Following
that, we discuss Stochastic Boolean Satisfiability (SSAT) problem in Section 2.2.

2.1 Fairness Metrics for Machine Learning

Let us represent a dataset D as a collection of triads (X,A, Y ) sampled from an underlying
data generating distribution D. X , {X1, . . . , Xm} ∈ Rm is the set of non-protected (or
non-sensitive) attributes. A , {A1, . . . , An} is the set of categorical protected attributes. Y
is the binary label (or class) of (X,A). A compound protected attribute a = {a1, . . . , an}
is a valuation to all Ai’s and represents a compound protected group. For example, A =
{race, sex}, where race ∈ {Asian,Colour,White} and sex ∈ {female,male}. Thus, a =
{Colour, female} is a compound protected group. We defineM , Pr(Ŷ |X,A) to be a binary
classifier trained from samples in the distribution D. Here, Ŷ is the predicted label (or class)
of the corresponding data.

As we illustrated in Example 1, a classifier M that solely optimizes accuracy, i.e., the
average number of times Ŷ = Y , may discriminate certain compound protected groups over
others (Chouldechova and Roth, 2020). Now, we describe two family of fairness metrics that
compute bias induced by a classifier and are later verified by Justicia.

2.1.1 Independence Metrics of Fairness.

The independence (or calibration) metrics of fairness state that the output of the classifier
should be independent of the compound protected group. A notion of independence is
referred to group fairness that specifies an equal positive predictive value (PPV) across
all compound protected groups for an algorithm M, i.e., Pr[Ŷ = 1|A = a,M] = Pr[Ŷ =
1|A = b,M], ∀a,b ∈ A. Since satisfying group fairness exactly is hard, relaxations of group
fairness, such as disparate impact and statistical parity (Dwork et al., 2012; Feldman et al.,
2015), are proposed.

Disparate impact (DI) (Feldman et al., 2015) measures the ratio of PPVs between the
most favored group and least favored group, and prescribe it to be close to 1. Formally, a
classifier satisfies (1− ε)-disparate impact if, for ε ∈ [0, 1],

min
a∈A

Pr[Ŷ = 1|a,M] ≥ (1− ε) max
b∈A

Pr[Ŷ = 1|b,M].

Another popular relaxation of group fairness, statistical parity (SP) measures the difference
of PPV among the compound groups, and prescribe this to be near zero. Formally, an
algorithm satisfies ε-statistical parity if, for ε ∈ [0, 1],

max
a,b∈A

|Pr[Ŷ = 1|a,M]− Pr[Ŷ = 1|b,M]| ≤ ε.

For both disparate impact and statistical parity, lower value of ε indicates higher group
fairness of the classifier M.
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2.1.2 Separation Metrics of Fairness.

In the separation (or classification parity) notion of fairness, the predicted labels Ŷ of a
classifier M is independent of the sensitive attributes A given the actual class labels Y .
In case of binary classifiers, a popular separation metric is equalized odds (EO) (Hardt
et al., 2016) that computes the difference of false positive rates (FPR) and the difference of
true positive rates (TPR) among all compound protected groups. Lower value of equalized
odds indicates better fairness. A classifier M satisfies ε-equalized odds if, for all compound
protected groups a,b ∈ A,

|Pr[Ŷ = 1|A = a, Y = 0]− Pr[Ŷ = 1|A = b, Y = 0]| ≤ ε,
|Pr[Ŷ = 1|A = a, Y = 1]− Pr[Ŷ = 1|A = b, Y = 1]| ≤ ε.

In this paper, we formulate verifying the aforementioned independence and separation
metrics of fairness as stochastic Boolean satisfiability (SSAT) problem, which we define next.

2.2 Stochastic Boolean Satisfiability (SSAT)

Let B = {B1, . . . , Bm} be a set of Boolean variables. A literal is a variable Bi or its
complement ¬Bi. A propositional formula φ defined over B is in Conjunctive Normal Form
(CNF) if φ is a conjunction of clauses and each clause is a disjunction of literals. Let σ be an
assignment to the variables Bi ∈ B such that σ(Bi) ∈ {1, 0} where 1 is logical TRUE and 0
is logical FALSE. The propositional satisfiability problem (SAT) (Biere et al., 2009) finds an
assignment σ to all Bi ∈ B such that the formula φ is evaluated to be 1. In contrast to the
SAT problem, the Stochastic Boolean Satisfiability (SSAT) problem (Littman et al., 2001) is
concerned with the probability of the satisfaction of the formula φ. An SSAT formula is of
the form

Φ = Q1B1, . . . , QmBm, φ, (1)

where Qi ∈ {∃, ∀,

Rpi} is either of the existential (∃), universal (∀), or randomized (

Rpi)
quantifiers over the Boolean variable Bi and φ is a quantifier-free CNF formula. In the SSAT
formula Φ, the quantifier part Q1B1, . . . , QmBm is known as the prefix of the formula φ. In
case of randomized quantification

Rpi , pi ∈ [0, 1] is the probability of Bi being assigned to 1.
Given an SSAT formula Φ, let B be the outermost variable in the prefix. The satisfying
probability of Φ can be computed by the following rules:

1. Pr[TRUE] = 1, Pr[FALSE] = 0,

2. Pr[Φ] = maxB{Pr[Φ|B],Pr[Φ|¬B]} if B is existentially quantified,

3. Pr[Φ] = minB{Pr[Φ|B],Pr[Φ|¬B]} if B is universally quantified,

4. Pr[Φ] = pPr[Φ|B] + (1− p) Pr[Φ|¬B] if B is randomized quantified with probability p
of being TRUE,

where Φ|B and Φ|¬B denote the SSAT formulas derived by eliminating the outermost
quantifier of B by substituting the value of B in the formula φ with 1 and 0 respectively. In
this paper, we focus on two specific types of SSAT formulas: random-exist (RE) SSAT and
exist-random (ER) SSAT. In the ER-SSAT (resp. RE-SSAT) formula, all existentially (resp.
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randomized) quantified variables are followed by randomized (resp. existentially) quantified
variables in the prefix.

Lemma 1 Solving the ER-SSAT and RE-SSAT problems are NPPP hard (Littman et al.,
2001).

The problem of SSAT and its variants have been pursued by theoreticians and practi-
tioners alike for over three decades (Majercik and Boots, 2005; Fremont et al., 2017; Huang
et al., 2006). We refer the reader to (Lee et al., 2017, 2018) for detailed survey. It is worth
remarking that the past decade have witnessed a significant performance improvements
thanks to close integration of techniques from SAT solving with advances in weighted model
counting (Sang et al., 2004; Chakraborty et al., 2013, 2014).

3. Justicia: An SSAT Framework to Verify Fairness Metrics

In this section, we present the primary contribution of this paper, Justicia, which is an
SSAT-based framework for verifying independence and separation metrics of fairness.

Given a binary classifier M and a probability distribution over dataset (X,A, Y ) ∼ D,
our goal is to verify whether M achieves independence and separation metrics with respect
to the distribution D. We focus on a classifier that can be translated to a CNF formula of
Boolean variables B. The probability pi of Bi ∈ B being assigned to 1 is induced by the
data generating distribution D. In order to verify fairness metrics in compound protected
groups, we discuss an enumeration-based approach in Section 3.1 and an equivalent learning-
based approach in Section 3.2. We conclude this section with a theoretical analysis for a
high-probability error bound on the fairness metric in Section 3.3.

3.1 Evaluating Fairness with RE-SSAT Encoding

In order to verify independence and separation metrics, the core component of Justicia is to
compute the positive predictive value Pr[Ŷ = 1|A = a] for a compound protected group a.
For simplicity, we initially make some assumptions and discuss their practical relaxations in
Section 3.4. We first assume the classifier M is representable as a CNF formula, namely φŶ ,

such that Ŷ = 1 when φŶ is satisfied and Ŷ = 0 otherwise. Since a Boolean CNF classifier is
defined over Boolean variables, we assume all attributes in X and A to be Boolean. Finally,
we assume independence of non-protected attributes on protected attributes and pi is the
probability of the attribute Xi being assigned to 1 for any Xi ∈ X.

Now, we define a RE-SSAT formula Φa to compute the probability Pr[Ŷ = 1|A = a].
In the prefix of Φa, all non-protected Boolean attributes in X are assigned randomized
quantification and they are followed by the protected Boolean attributes in A with existential
quantification. The CNF formula φ in Φa is constructed such that φ encodes the event
inside the target probability Pr[Ŷ = 1|A = a]. In order to encode the conditional A = a, we
take the conjunction of the Boolean variables in A that symbolically specifies the compound
protected group a. For example, we represent two protected attributes: race ∈ {White,
Colour} and sex ∈ {male, female} by the Boolean variables R and S respectively. Thus, the
compound groups {White,male} and {Colour, female} are represented by R∧S and ¬R∧¬S,
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respectively. Thus, the RE-SSAT formula for computing the probability Pr[Ŷ = 1|A = a] is

Φa :=

Rp1X1, . . . ,

RpmXm︸ ︷︷ ︸
non-protected attributes

, ∃A1, . . . ,∃An︸ ︷︷ ︸
protected attributes

, φŶ ∧ (A = a).

In Φa, the existentially quantified variables A1, . . . , An are assigned values according to the
constraint A = a. 1 Therefore, by solving the SSAT formula Φa, the SSAT solver finds the
probability Pr[Φa] for the protected group A = a given the random values of X1, . . . , Xm,
which is the PPV of the protected group a for the distribution D and algorithm M.

For simplicity, we have described computing the PPV of each compound protected group
without considering the correlation between the protected and non-protected attributes. In
reality, correlation exists between the protected and non-protected attributes. Thus, they
may have different conditional distributions for different protected groups. We incorporate
these conditional distributions in Justicia enum by evaluating the conditional probability
pi = Pr[Xi = TRUE|A = a] instead of the independent probability Pr[Xi = TRUE] for any
Xi ∈ X. We illustrate this method in Example 2.

Example 2 (RE-SSAT encoding) Here, we illustrate the RE-SSAT formula for calcu-
lating the PPV for the protected group ‘age ≥ 40’ in the decision tree of Figure 1. We assign
three Boolean variables F, I, J for the three nodes in the tree such that the literal F, I, J
denote ‘fitness ≥ 0.61’, ‘income ≥ 0.29’, and ‘income ≥ 0.69’, respectively. We consider
another Boolean variable A where the literal A represents the protected group ‘age ≥ 40’.
Thus, the CNF formula for the decision tree is (¬F ∨ I) ∧ (F ∨ J). From the distribution in
Figure 1, we get Pr[F ] = 0.41,Pr[I] = 0.93, and Pr[J ] = 0.09. Given this information, we
calculate the PPV for the protected group ‘age ≥ 40’ by solving the RE-SSAT formula:

ΦA :=

R0.41F,

R0.93I,

R0.09J, ∃A, (¬F ∨ I) ∧ (F ∨ J) ∧A.

From the solution to this SSAT formula, we get Pr[ΦA] = 0.43. Similarly, to calculate the
PPV for the group ‘age < 40’, we replace the unit (single-literal) clause A with ¬A in the
CNF in ΦA and construct another SSAT formula Φ¬A where Pr[Φ¬A] = 0.43. Therefore, if
Pr[F ],Pr[I],Pr[J ] are computed independently of A and ¬A, both age groups demonstrate
equal PPV as the protected attribute is not explicitly present in the classifier. However,
there is an implicit bias in the data distribution for different protected groups and the
classifier unintentionally learns it. To capture this implicit bias, we calculate the conditional
probabilities Pr[F |A] = 0.01,Pr[I|A] = 0.99, and Pr[J |A] = 0.18 from the distribution. Using
the conditional probabilities in ΦA, we find that Pr[ΦA] = 0.18 for ‘age ≥ 40’. For ‘age
< 40’, we similarly obtain Pr[F |¬A] = 0.82,Pr[I|¬A] = 0.88, and Pr[J |¬A] = 0.01, and
thus Pr[Φ¬A] = 0.72. Thus, Justicia enum detects the discrimination of the classifier among
different protected groups. An astute reader would observe that I and J are not independent.
Following (Chavira and Darwiche, 2008), we can simply capture relationship between the
variables using constraints and if needed, auxiliary variables. In this case, it suffices to add
the the constraint J → I.

1. An RE-SSAT formula becomes an R-SSAT formula when the assignment to the existential variables are
fixed.
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Algorithm 1 Justicia: SSAT-based Fairness Verifier

1: function Justicia enum(X,A, Ŷ )
2: φŶ := CNF(Ŷ = 1)
3: for all a ∈ A do
4: pi ← CalculateProb(Xi|a), ∀Xi ∈ X
5: φ := φŶ ∧ (A = a)
6: Φa :=

Rp1X1, . . . ,

RpmXm, ∃A1, . . . ,∃An, φ
7: Pr[Φa]← SSAT(Φa)

8: return maxa Pr[Φa],mina Pr[Φa]

9: function Justicia learn(X,A, Ŷ )
10: φŶ := CNF(Ŷ = 1)
11: pi ← CalculateProb(Xi),∀Xi ∈ X
12: ΦER := ∃A1, . . . ,∃An,

Rp1X1, . . . ,

RpmXm, φŶ
13: Φ′

ER := ∃A1, . . . ,∃An,

Rp1X1, . . . ,

RpmXm,¬φŶ
14: return SSAT(ΦER), 1− SSAT(Φ′

ER)

Measuring Fairness Metrics. As we compute the probability Pr[Ŷ = 1|A = a] by
solving the SSAT formula Φa, we use Pr[Φa] to measure different fairness metrics. For that,
we compute Pr[Φa] for all compound groups a ∈ A that requires solving exponential (with
n) number of SSAT instances. We elaborate this enumeration approach, Justicia enum, in
Algorithm 1 (Line 1–8).

We calculate the ratio of the minimum and the maximum probabilities according to the
definition of disparate impact in Section 2. We compute statistical parity by taking the
difference between the maximum and the minimum probabilities of all Pr[Φa]. Moreover, to
measure equalized odds, we compute two SSAT instances for each compound group with
modified values of pi. Specifically, to compute TPR, we use the conditional probability
pi = Pr[Xi|Y = 1] on samples with class label Y = 1 and take the difference between the
maximum and the minimum probabilities of all compound groups. In addition, to compute
FPR, we use the conditional probability pi = Pr[Xi|Y = 0] on samples with Y = 0 and take
the difference similarly. Thus, Justicia enum allows us to compute different fairness metrics
using a unified algorithmic framework.

3.2 Learning Fairness with ER-SSAT Encoding

In most practical problems, there can be exponentially many compound groups based on the
different combinations of valuation to the protected attributes. Therefore, the enumeration
approach in Section 3.1 may suffer from scalability issues. Hence, we propose efficient SSAT
encodings to learn the most favored group and the least favored group for given M and D,
and to compute their PPVs to measure different fairness metrics.

Learning the Most Favored Group. In an SSAT formula Φ, the order of quantification
of the Boolean variables in the prefix carries distinct interpretation of the satisfying probability
of Φ. In ER-SSAT formula, the probability of satisfying Φ is the maximum satisfying
probability over the existentially quantified variables given the randomized quantified
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variables (by Rule 2, Sec. 2.2). In this paper, we leverage this property to compute the most
favored group with the highest PPV. We consider the following ER-SSAT formula.

ΦER := ∃A1, . . . ,∃An,

Rp1X1, . . . ,

RpmXm, φŶ . (2)

The CNF formula φŶ is the CNF translation of the classifier Ŷ = 1 without any specification
of the compound protected group. Therefore, as we solve ΦER, we find the assignment to the
existentially quantified variables A1 = amax

1 , . . . , An = amax
n for which the satisfying probabil-

ity Pr[ΦER] is maximum. Thus, we compute the most favored group afav , {amax
1 , . . . , amax

n }
achieving the highest PPV.

Learning the Least Favored Group. In order to learn the least favored group in terms
of PPV, we compute the minimum satisfying probability of the classifier φŶ given the
random values of the non-protected variables X1, . . . , Xm. In order to do so, we have to
solve a ‘universal-random’ (UR) SSAT formula (Eq. (3)) with universal quantification over
the protected variables and randomized quantification over the non-protected variables (by
Rule 3, Sec. 2.2).

ΦUR := ∀A1, . . . ,∀An,

Rp1X1, . . . ,

RpmXm, φŶ . (3)

A UR-SSAT formula returns the minimum satisfying probability of φ over the universally
quantified variables in contrast to the ER-SSAT formula that returns the maximum satisfying
probability over the existentially quantified variables. Due to practical issues to solve UR-
SSAT formula, in this paper, we leverage the duality between UR-SSAT (Eq. (3)) and
ER-SSAT formulas (Eq. (4))

Φ′
ER := ∃A1, . . . ,∃An,

Rp1X1, . . . ,

RpmXm, ¬φŶ . (4)

and solve the UR-SSAT formula on the CNF φ using the ER-SSAT formula on the comple-
mented CNF ¬φ (Littman et al., 2001). Lemma 2 encodes this duality.

Lemma 2 Given Eq. (3) and (4), Pr[ΦUR] = 1− Pr[Φ′
ER].

As we solve Φ′
ER, we obtain the assignment to the protected attributes aunfav , {amin1 , . . . , aminn }

that maximizes Φ′
ER. If p is the maximum satisfying probability of Φ′

ER, according to Lemma 2,
1− p is the minimum satisfying probability of ΦUR, which is the PPV of the least favored
group aunfav. We present the algorithm for this learning approach, namely Justicia learn in
Algorithm 1 (Line 9–14).

In ER-SSAT formula of Eq. (4), we need to negate the classifier φŶ to another CNF
formula ¬φŶ . The näıve approach of negating a CNF to another CNF generates exponential
number of new clauses. Here, we can apply Tseitin transformation that increases the clauses
linearly while introducing linear number of new variables (Tseitin, 1983). As an alternative,
we also directly encode the classifier M for the negative class label Ŷ = 0 as a CNF formula
and pass it to Φ′

ER, if possible. The last approach is generally more efficient than the other
approaches as the resulting CNF is often smaller.

Example 3 (ER-SSAT encoding) Here, we illustrate the ER-SSAT encodings for learn-
ing the most favored and the least favored group in presence of multiple protected groups. As

9
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the example in Figure 1 is degenerate for this purpose, we introduce another protected group
‘sex ∈ {male, female}’. Consider a Boolean variable S for ‘sex’ where the literal S denotes ‘sex
= male’. With this new protected attribute, let the classifier be M , (¬F ∨ I ∨ S)∧ (F ∨ J),
where F, I, J have same distributions as discussed in Example 2. Hence, we obtain the
ER-SSAT formula of M to learn the most favored group:

ΦER := ∃S, ∃A,

R0.41F,

R0.93I,

R0.09J, (¬F ∨ I ∨ S) ∧ (F ∨ J).

As we solve ΦER, we learn that the assignment to the existential variables σ(S) = 1, σ(A) = 0,
i.e. ‘male individuals with age < 40’ is the most favored group with PPV computed as
Pr[ΦER] = 0.46. Similarly, to learn the least favored group, we negate the CNF of the
classifier M to obtain the following ER-SSAT formula:

ΦER′ := ∃S, ∃A,

R0.41F,

R0.93I,

R0.09J, ¬((¬F ∨ I ∨ S) ∧ (F ∨ J)).

Solving ΦER′ , we learn the assignment σ(S) = 0, σ(A) = 0 and Pr[ΦER′ ] = 0.57. Thus, ‘female
individuals with age < 40’ constitute the least favored group with PPV: 1−0.57 = 0.43. Thus,
Justicia learn allows us to learn the most and least favored groups and the corresponding
discrimination.

We use the PPVs of the most and least favored groups to compute fairness metrics
as described in Section 3.1. We prove equivalence of Justicia enum and Justicia learn in
Lemma 3.

Lemma 3 Let Φa be the RE-SSAT formula for computing the PPV of the compound
protected group a ∈ A. If ΦER is the ER-SSAT formula for learning the most favored group
and ΦUR is the UR-SSAT formula for learning the least favored group, then maxa Pr[Φa] =
Pr[ΦER] and mina Pr[Φa] = Pr[ΦUR].

3.3 Theoretical Analysis: Error Bounds

We access the data generating distribution through finite number of samples observed from
it. These finite sample set introduce errors in the computed probabilities of the randomised
quantifiers being 1. These finite-sample errors in computed probabilities induce further
errors in the computed positive predictive value (PPV) and fairness metrics. In this section,
we provide a bound on this finite-sample error.

Let us consider that p̂i is the estimated probability of a Boolean variable Bi being
assigned to 1 from k-samples and pi is the true probability according to D. Thus, the true
satisfying probability p of Φ is the weighted sum of all satisfying assignments of the CNF
φ: p =

∑
σ

∏
Bi∈σ pi. This probability is estimated as p̂ using k-samples from the data

generating distribution D such that p̂ ≤ ε0p for ε0 ≥ 1.

Theorem 4 For an ER-SSAT problem, the sample complexity is given by

k = O

(
(n+ ln(1/δ))

lnm

ln ε0

)
,

where p̂
p ≤ ε0 with probability 1− δ such that ε0 ≥ 1.
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Table 1: Results on synthetic benchmark. ‘—’ refers that the verifier cannot compute the
metric.

Metric Exact Justicia FairSquare VeriFair AIF360

Disparate impact 0.26 0.25 0.99 0.99 0.25
Stat. parity 0.53 0.54 — — 0.54

Corollary 5 If k samples are considered from the data-generating distribution in Justicia
such that

k = O

(
(n+ ln(1/δ))

lnm

ln ε0

)
,

the estimated disparate impact D̂I and statistical parity ŜP satisfy, with probability 1− δ,
D̂I ≤ ε0DI, and ŜP ≤ ε0SP.

3.4 Extending to Practical Settings

In this section, we relax assumptions of Boolean classifiers and Boolean attributes and
extend Justicia to verify fairness metrics for more practical settings of decision trees, linear
classifiers, and continuous attributes.

Extending to Decision Trees and Linear Classifiers. In the SSAT approach of
Section 3, we assume that the classifierM is represented as a CNF formula. In the literature
of interpretable machine learning, several studies have been conducted for learning CNF
classifiers in the supervised learning setting, which include but are not limited to the work
of (Angelino et al., 2017; Malioutov and Meel, 2018; Ghosh and Meel, 2019). Additionally,
we extend Justicia beyond CNF classifiers to decision trees and linear classifiers2, which are
widely used in the fairness studies (Zemel et al., 2013; Raff et al., 2018; Zhang and Ntoutsi,
2019).

Extending to Continuous Attributes. In practical problems, attributes are generally
real-valued or categorical. But classifiers which are already represented using CNF are
usually trained on a Boolean abstraction of the input attributes. In order to perform this
Boolean abstraction, each categorical attribute is one-hot encoded and each real-valued
attribute is discretised into a set of Boolean attributes (Lakkaraju et al., 2019; Ghosh et al.,
2020). Detailed design choices are deferred to Appendix B.

4. Empirical Performance Analysis

In this section, we discuss the empirical studies to evaluate the performance of Justicia in
verifying different fairness metrics. We first discuss the experimental setup and the objective
of the experiments and then evaluate the experimental results.

2. Linear classifiers can be encoded to CNF using pseudo-Boolean encoding (Roussel and Manquinho, 2009).
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Table 2: Scalability of different verifiers in terms of execution time (in seconds). DT and LR
refer to decision tree and logistic regression respectively. ‘—’ refers to timeout.

Dataset Ricci Titanic COMPAS Adult

Classifier DT LR DT LR DT LR DT LR

Justicia 0.1 0.2 0.1 0.9 0.1 0.2 0.2 1.0
FairSquare 4.8 — 16.0 — 36.9 — — —
VeriFair 5.3 2.2 1.2 0.8 15.9 11.3 295.6 61.1

Table 3: Verification of different fairness enhancing algorithms for multiple datasets and
classifiers using Justicia. Numbers in bold refer to fairness improvement compared against the
unprocessed (orig.) dataset. RW and OP refer to reweighing and optimized-preprocessing
algorithm respectively. Results for German dataset is deferred to the Appendix

Classifier
Dataset → Adult COMPAS

Protected → Race Sex Race Sex

Algorithm → orig. RW OP orig. RW OP orig. RW OP orig. RW OP

Logistic
regression

Disparte impact 0.23 0.85 0.59 0.03 0.61 0.62 0.34 0.36 0.47 0.48 0.80 0.74
Stat. parity 0.09 0.01 0.05 0.16 0.04 0.03 0.39 0.33 0.21 0.23 0.09 0.10
Equalized odds 0.13 0.03 0.10 0.30 0.02 0.06 0.38 0.33 0.18 0.17 0.19 0.07

Decision
tree

Disparte impact 0.82 0.60 0.67 0.00 0.73 0.95 0.61 0.58 0.57 0.94 0.78 0.63
Stat. parity 0.02 0.05 0.04 0.14 0.05 0.01 0.18 0.17 0.17 0.02 0.09 0.18
Equalized odds 0.07 0.05 0.03 0.47 0.03 0.04 0.17 0.16 0.16 0.07 0.05 0.16

4.1 Experimental Setup

We have implemented a prototype of Justicia in Python (version 3.7.3). The core computation
of Justicia relies on solving SSAT formulas using an off-the-shelf SSAT solver. To this end,
we employ the state of the art RE-SSAT solver of (Lee et al., 2017) and the ER-SSAT
solver of (Lee et al., 2018). Both solvers output the exact satisfying probability of the SSAT
formula.

For comparative evaluation of Justicia, we have experimented with two state-of-the-art
distributional verifiers FairSquare and VeriFair, and also a sample-based fairness measuring
tool: AIF360. In the experiments, we have studied three type of classifiers: CNF learner,
decision trees and logistic regression classifier. Decision tree and logistic regression are
implemented using scikit-learn module of Python (Pedregosa et al., 2011) and we use
the MaxSAT-based CNF learner IMLI of (Ghosh and Meel, 2019). We have used the
PySAT library (Ignatiev et al., 2018) for encoding the decision function of the logistic
regression classifier into a CNF formula. We have also verified two fairness-enhancing
algorithms: reweighing algorithm (Kamiran and Calders, 2012) and the optimized pre-
processing algorithm (Calmon et al., 2017). We have experimented on multiple datasets
containing multiple protected attributes: the UCI Adult and German-credit dataset (Dua

12
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Figure 2: Fairness metrics measured by Justicia for different protected groups in the Adult
dataset. The number within parenthesis in the xticks denotes total compound groups.

and Graff, 2017), ProPublicas COMPAS recidivism dataset (Angwin et al., 2016), Ricci
dataset (McGinley, 2010), and Titanic dataset3.

Our empirical studies have the following objectives:

1. How accurate and scalable Justicia is with respect to existing fairness verifiers, FairSquare
and VeriFair?

2. Can Justicia verify the effectiveness of different fairness-enhancing algorithms on
different datasets?

3. Can Justicia verify fairness in the presence of compound sensitive groups?

4. How robust is Justicia in comparison to sample-based tools like AIF360 for varying
sample sizes?

Our experimental studies validate that Justicia is more accurate and scalable than the
state-of-the-art verifiers FairSquare and VeriFair. Justicia is able to verify the effectiveness
of different fairness-enhancing algorithms for multiple fairness metrics, and datasets. Justicia
achieves scalable performance in the presence of compound sensitive groups that the existing
verifiers cannot handle. Finally, Justicia is more robust than the sample-based tools such as
AIF360.

4.2 Experimental Analysis

Accuracy: Less Than 1%-error. In order to assess the accuracy of different verifiers, we
have considered the decision tree in Figure 1 for which the fairness metrics are analytically
computable. In Table 1, we show the computed fairness metrics by Justicia, FairSquare,
VeriFair, and AIF360. We observe that Justicia and AIF360 yield more accurate estimates
of DI and SP compared against the ground truth with less than 1% error. FairSquare

3. https://www.kaggle.com/c/titanic

13

https://www.kaggle.com/c/titanic


Ghosh, Basu, and Meel

0.2 0.4 0.6 0.8 1.0
Sample size

0.00
0.01
0.02
0.03
0.04
0.05
0.06

St
d.

 o
f D

I

Verifier
AIF360
Justicia

0.2 0.4 0.6 0.8 1.0
Sample size

0.000
0.005
0.010
0.015
0.020
0.025
0.030

St
d.

 o
f S

P

Verifier
AIF360
Justicia

Figure 3: Standard deviation in estimation of disparate impact (DI) and stat. parity (SP)
for different sample sizes. Justicia is more robust with variation of sample size than AIF360.

and VeriFair estimate the disparate impact to be 0.99 and thus, being unable to verify the
fairness violation. Thus, Justicia is significantly accurate than the existing formal verifiers:
FairSquare and VeriFair.

Scalability: 1 to 3 Magnitude Speed-up. We have tested the scalability of Justicia,
FairSquare, and VeriFair on practical benchmarks with a timeout of 900 seconds and reported
the execution time of these verifiers on decision tree and logistic regression in Table 2. We
observe that Justicia shows impressive scalability than the competing verifiers. Particularly,
Justicia is 1 to 2 magnitude faster than FairSquare and 1 to 3 magnitude faster than VeriFair.
Additionally, FairSquare times out in most benchmarks. Thus, Justicia is not only accurate
but also scalable than the existing verifiers.

Verification: Detecting Compounded Discrimination in Protected Groups. We
have tested Justicia for datasets consisting of multiple protected attributes and reported
the results in Figure 2. Justicia operates on datasets with even 40 compound protected
groups and can potentially scale more than that while the state-of-the-art fairness verifiers
(e.g., FairSquare and VeriFair) consider a single protected attribute. Thus, Justicia removes
an important limitation in practical fairness verification. Additionally, we observe in most
datasets the disparate impact decreases and thus, discrimination increases as more compound
protected groups are considered. For instance, when we increase the total groups from 5 to
40 in the Adult dataset, disparate impact decreases from around 0.9 to 0.3, thereby detecting
higher discrimination. Thus, Justicia detects that the marginalized individuals of a specific
type (e.g., ‘race’) are even more discriminated and marginalized when they also belong to a
marginalized group of another type (e.g., ‘sex’).

Verification: Fairness of Algorithms on Datasets. We have experimented with
two fairness-enhancing algorithms: the reweighing (RW) algorithm and the optimized-
preprocessing (OP) algorithm. Both of them pre-process to remove statistical bias from the
dataset. We study the effectiveness of these algorithms using Justicia on three datasets each
with two different protected attributes. In Table 3, we report different fairness metrics on
logistic regression and decision tree. We observe that Justicia verifies fairness improvement
as the bias mitigating algorithms are applied. For example, for the Adult dataset with ‘race’
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as the protected attribute, disparate impact increases from 0.23 to 0.85 for applying the
reweighing algorithm on logistic regression classifier. In addition, statistical parity decreases
from 0.09 to 0.01, and equalized odds decreases from 0.13 to 0.03, thereby showing the
effectiveness of reweighing algorithm in all three fairness metrics. Justicia also finds instances
where the fairness algorithms fail, specially when considering the decision tree classifier.
Thus, Justicia enables verification of different fairness enhancing algorithms in literature.

Robustness: Stability to Sample Size. We have compared the robustness of Justicia
with AIF360 by varying the sample-size and reporting the standard deviation of different
fairness metrics. In Figure 3, AIF360 shows higher standard deviation for lower sample-size
and the value decreases as the sample-size increases. In contrast, Justicia shows significantly
lower (∼ 10× to 100×) standard deviation for different sample-sizes. The reason is that
AIF360 empirically measures on a fixed test dataset whereas Justicia provides estimates
over the data generating distribution. Thus, Justicia is more robust than the sample-based
verifier AIF360.

5. Discussion and Future Work

Though formal verification of different fairness metrics of an ML algorithm for different
datasets is an important question, existing verifiers are not scalable, accurate, and extendable
to non-Boolean attributes. We propose a stochastic SAT-based approach, Justicia, that
formally verifies independence and separation metrics of fairness for different classifiers
and distributions for compound protected groups. Experimental evaluations demonstrate
that Justicia achieves higher accuracy and scalability in comparison to the state-of-the-art
verifiers, FairSquare and VeriFair, while yielding higher robustness than the sample-based
tools, such as AIF360.

Our work opens up several new directions of research. One direction is to develop SSAT
models and verifiers for popular classifiers like Deep networks and SVMs. Other direction
is to develop SSAT solvers that can accommodate continuous variables and conditional
probabilities by design.
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Appendix A. Proofs of Theoretical Results

Lemma 1 Solving the ER-SSAT and RE-SSAT problems are NPPP hard (Littman et al.,
2001).

Proof [Proof of Lemma 1] The decision version of ER-SSAT problem is

Φ := ∃a1, . . . ,∃an,

Rpx1x1, . . . ,

Rpxmxm. Pr[φŷ] ≥ t,

where t is a threshold in [0, 1]. It is exactly the an E-MAJSAT (or threshold SAT) problem
which is NPPP hard (Littman et al., 2001). If there’s no random variable and t = 1,
ER-SSAT reduces to a SAT problem, which is NP-hard. If there’s no existential variable,
ER-SSAT reduces to a MAJSAT problem, which is PP-hard. Similar arguments also hold
for RE-SSAT problem.

Lemma 2 Given Eq. (3) and (4), Pr[ΦUR] = 1− Pr[Φ′
ER].

Proof [Proof of Lemma 2] Both ΦUR and Φ′
ER have random quantified variables in the

identical order in the prefix. According to the definition of SSAT formulas,

Pr[ΦUR] = min
a1,...,an

Pr[φŶ ] and Pr[Φ′
ER] = max

a1,...,an
Pr[¬φŶ ].

We can show the following duality between ER-SSAT and UR-SSAT,

Pr[Φ′
ER] = max

a1,...,an
Pr[¬φŶ ]

= min
a1,...,an

(1− Pr[φŶ ])

= 1− min
a1,...,an

Pr[φŶ ]

= 1− Pr[ΦUR].

Lemma 3 Let Φa be the RE-SSAT formula for computing the PPV of the compound
protected group a ∈ A. If ΦER is the ER-SSAT formula for learning the most favored group
and ΦUR is the UR-SSAT formula for learning the least favored group, then maxa Pr[Φa] =
Pr[ΦER] and mina Pr[Φa] = Pr[ΦUR].

Proof [Proof of Lemma 3] It is trivial that the PPV of most favored group afav is the
maximum PPV of all compound groups a ∈ A. Similarly, the PPV of the least favored
group aunfav is the minimum PPV of all compound groups a ∈ A.

By construction of the SSAT formulas, the PPV of afav and aunfav are Pr[ΦER] and
Pr[ΦUR] respectively. Since Pr[Φa] is the PPV of the compound group a,

max
a

Pr[Φa] = Pr[ΦER] and min
a

Pr[Φa] = Pr[ΦUR].
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Theorem 4 For an ER-SSAT problem, the sample complexity is given by

k = O

(
(n+ ln(1/δ))

lnm

ln ε0

)
,

where p̂
p ≤ ε0 with probability 1− δ such that ε0 ≥ 1.

Corollary 5 If k samples are considered from the data-generating distribution in Justicia
such that

k = O

(
(n+ ln(1/δ))

lnm

ln ε0

)
,

the estimated disparate impact D̂I and statistical parity ŜP satisfy, with probability 1− δ,
D̂I ≤ ε0DI, and ŜP ≤ ε0SP.

Proof [Proof of Corollary 5] By Theorem 4, we get that for k samples obtained from the
data generating distribution, where

k ≥ (n+ ln(1/δ))
lnm

ln ε0
,

the estimated probability of satisfaction for the most and least favoured groups p̂max and
p̂min satisfies

p̂max ≤ ε0 max
a

Pr[Φa] and p̂min ≤ ε0 min
a

Pr[Φa].

with probability 1− δ. Thus, the estimated value of disparate impact will satisfy

D̂I ,
p̂max
p̂min

≤ ε0
pmax
pmin

≤ ε0DI,

and statistical parity will satisfy

ŜP ,| p̂max − p̂min |≤ ε0 | pmax − pmin |≤ ε0SP,

with probability 1− δ.

Appendix B. Practical Extensions and Design Choices

In this section, we relax assumptions of Boolean classifiers and Boolean attributes and
extend Justicia to verify fairness metrics in a more practical setting. We first discuss the
input classifiers of Justicia in the following.

B.1 Beyond CNF Classifiers.

In the presented SSAT approach for verifying fairness, we assume the classifier Ŷ to be
represented as a CNF formula. In the literature of interpretable machine learning, several
studies have been conducted for learning CNF classifiers in the supervised learning setting,
which include but are not limited to the work of (Angelino et al., 2017; Malioutov and Meel,
2018; Ghosh and Meel, 2019; Yu et al., 2020). However, Justicia can be extended beyond
CNF classifiers, in particular to decision trees and linear classifiers that are widely adopted
in the ML fairness studies (Zemel et al., 2013; Zafar et al., 2017; Xu et al., 2019; Zhang and
Ntoutsi, 2019; Raff et al., 2018; Friedler et al., 2019).
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Encoding Decision Trees as CNF. Existing rule-based classifiers, for example, binary
decision trees can be trivially encoded as CNF formulas. In the binary decision tree, each
node in the tree is a literal. A path from the root to the leaf is a conjunction of literals (hence,
a path is a clause) and the tree itself is a disjunction of all paths (or clauses). In order to
derive a CNF representation φ of the decision tree, we first construct a DNF by considering
all paths terminating at leaves with negative class label (ŷ = 0) and then complement it to
a CNF using De Morgan’s rule. Therefore, for any input that is classified positive by the
decision tree satisfies φ and vice versa. In Justicia learn for learning the least favored group,
we can construct a negated CNF classifier in Eq. 4 by only including paths terminating on
positive labeled leaves.

Encoding Linear Classifiers as CNF. Linear classifiers on Boolean attributes can be
encoded into CNF formulas using pseudo-Boolean encoding (Philipp and Steinke, 2015). We
consider a linear classifier W ·X + b ≥ 0 on Boolean attributes X with weights W ∈ R|X |
and bias b ∈ R. We first normalize W and b in [−1, 1] and then round to integers so that
the decision boundary becomes a pseudo-Boolean constraint, e.g., at-least k constraint. We
then apply pseudo-Boolean constraints to CNF translation to encode the decision boundary
to CNF. This encoding usually introduces additional Boolean variables and results in large
CNF. In order to generate a smaller CNF, we can apply thresholding techniques on the
weights W to consider attributes with higher weights only. For instance, if the weight
|wi| ≤ λ for a threshold λ and wi ∈W , we can set wi = 0. Thus, lower weighted (hence less
important) attributes do not appear in the encoded CNF. Finally, to construct the negated
classifier in the SSAT formula in Eq. 4, we encode W ·X + b < 0 to CNF using at-most k
encoding.

In practical problems, attributes are generally real-valued or categorical. We next discuss
how Justicia can work beyond Boolean attributes.

B.2 Beyond Boolean Attributes.

Classifiers that are already represented in CNF are usually trained on a Boolean abstraction
of the input attributes where each categorical attribute is one-hot encoded and each real-
valued attribute is discretized into a set of Boolean attributes (Lakkaraju et al., 2019; Ghosh
et al., 2020). Thus, Justicia can verify CNF classifiers readily.

Decision Trees. In case of binary decision tree classifiers, the input attributes are nu-
merical or categorical, but each attribute is compared against a constant in each internal
node of the tree. Hence, we fix a Boolean variable for each internal node where the Boolean
assignment to the variable decides one of the two branches to choose from the current node.

Linear Classifiers. Linear classifiers are generally trained on numerical attributes where
we apply following discretization. Consider a numerical attribute x where w is its weight.
We want to discretize x to a set B of Boolean attributes and recalculate the weights of the
variables in B from w. For discretization, we simply consider interval-based approach where
for each interval (or bin) in the continuous space of x, we consider a Boolean variable bi ∈ B
such that bi is assigned > (or 1) when the attribute-value of x lies within the interval and
bi is assigned ⊥ (or 0) otherwise. Let µi be the mean of the interval where bi can be >.
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Figure 4: Runtime comparison of different encodings for varying total protected groups in
the Adult dataset

We then fix the revised weight of bi to be µi · w. We can show trivially that if we consider
infinite number of intervals, x ≈

∑
i µibi.

Appendix C. Additional Experimental Details

C.1 Experimental Setup

Since both Justicia and FairSquare take a probability distribution of the attributes as input,
we perform five-fold cross validation, use the train set for learning the classifier, compute
distribution on the test set and finally verify fairness metrics such as disparate impact and
statistical parity difference on the distribution.

C.2 Comparative Evaluation of Two Encodings

While both Justicia enum and Justicia learn have the same output, the Justicia learn encoding
improves exponentially in runtime than Justicia enum on both decision tree and Boolean
CNF classifiers as we vary the total compound groups in Figure 4. This analysis justifies that
the näıve enumeration-based approach cannot verify large-scale fairness problems containing
multiple protected attributes.
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Table 4: Verification of different fairness enhancing algorithms for multiple datasets and
classifiers using Justicia. Numbers in bold refer to fairness improvement compared against the
unprocessed (orig.) dataset. RW and OP refer to reweighing and optimized-preprocessing
algorithm respectively.

Classifier
Dataset → German

Protected → Age Sex

Algorithm → orig. RW OP orig. RW OP

Logistic
regression

Disparte impact 0.00 0.00 0.31 0.27 0.46 0.17
Stat. parity 0.45 0.03 0.12 0.03 0.02 0.07
Equalized odds 0.65 0.04 0.14 0.10 0.08 0.13

Decision
tree

Disparte impact 0.00 0.56 0.12 0.35 0.37 0.38
Stat. parity 0.35 0.02 0.22 0.05 0.10 0.11
Equalized odds 0.36 0.05 0.28 0.06 0.16 0.17
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