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Abstract
The calibration of noise for a privacy-preserving mechanism
depends on the sensitivity of the query and the prescribed pri-
vacy level. A data steward must make the non-trivial choice
of a privacy level that balances the requirements of users and
the monetary constraints of the business entity.
We study various sources of randomness that are involved in
the design of a privacy-preserving mechanism, namely the
explicit randomness induced by the noise distribution and
the implicit randomness induced by the data-generation dis-
tribution. The study leads us to a probabilistic calibration
of privacy-preserving mechanisms with quantifiable privacy
guarantees. We instantiate it for the Laplace mechanism by
providing analytical results.
We propose a cost model that bridges the gap between the
privacy level and the compensation budget estimated by a
GDPR compliant business entity. We illustrate a realistic sce-
nario wherein the use of fine-tuning of the Laplace mecha-
nism avoids the overestimation of the compensation budget.
Additionally, the convexity of the proposed cost model leads
to a unique fine-tuning of privacy level that minimises the
compensation budget.

1 Introduction
(Dwork et al., 2014) quantify the privacy level ε in ε-
differential privacy as an upper bound on the worst-case pri-
vacy loss incurred by a privacy-preserving mechanism. Gen-
erally, a privacy-preserving mechanism perturbs the results
by adding the calibrated amount of random noise to them.
The calibration of noise depends on the sensitivity of the
query and the specified privacy level. In a real-world setting,
a data steward must specify a privacy level that balances the
requirements of the users and monetary constraints of the
business entity. (Garfinkel et al., 2018) report the issues in
deploying differential privacy as the privacy definition by
the US census bureau. They highlight the lack of formal
methods to choose the privacy level. They also report the
empirical studies showing the loss in the utility due to the
application of privacy-preserving mechanisms.

We address the dilemma of a data steward in two ways.
Firstly, we propose a probabilistic quantification of privacy
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levels. Probabilistic quantification of privacy levels provide
a portfolio to the data steward to take quantifiable risks under
the desired utility of the data. We refer to the probabilistic
quantification as privacy at risk. Secondly, we propose a cost
model that links the privacy level to a monetary budget. This
cost model helps the data steward to choose the privacy level
constrained on the estimated budget and vice versa. In the
end, we illustrate a realistic scenario that exemplifies how
the data steward can avoid overestimation of the budget by
using the proposed cost model by using privacy at risk.

The probabilistic quantification of privacy levels depends
on two sources of randomness: the explicit randomness in-
duced by the noise distribution and the implicit randomness
induced by the data-generation distribution. Often, these
two sources are coupled with each other. We require an-
alytical forms of both the implicit and explicit sources of
randomness as well as the analytical form of the query
to derive a privacy guarantee. Computing the probabilistic
quantification is generally a challenging task. Although we
find multiple probabilistic privacy definitions in the litera-
ture (Machanavajjhala et al., 2008; Hall et al., 2012), we
do not find the analytical quantification bridging the ran-
domness and privacy level of a privacy-preserving mecha-
nism. To the best of our knowledge, we are the first to ana-
lytically derive the probabilistic quantification, namely pri-
vacy at risk, for the widely used Laplace mechanism (Dwork
et al., 2006b).

The privacy level proposed by the differential privacy
framework is too abstract a quantity to be integrated in a
business setting. We propose a cost model that maps the
privacy level to a monetary budget. The corresponding cost
model for the probabilistic quantification of privacy levels
is a convex function of the privacy level. Hence, it leads to
a unique probabilistic privacy level that minimises the cost.
We illustrate a realistic scenario in a GDPR compliant busi-
ness entity that needs an estimation of compensation budget
that it needs to pay back to the stakeholders in an unfortunate
event of a personal data breach. The illustration shows that
the use of probabilistic privacy levels avoids overestimation
of the compensation budget without sacrificing utility.

In conclusion, the benefits of the probabilistic quantifica-
tion i.e. the privacy at risk are twofold. It not only quantifies



the privacy level for a given privacy-preserving mechanism
but also facilitates decision-making in problems that focus
on the privacy-utility trade-off and the compensation budget
minimisation.

2 Background
We consider a universe of datasets D. We explicitly men-
tion when we consider that the datasets are sampled from a
data-generation distribution G with support D. Two datasets
of equal cardinality x and y are said to be neighbouring
datasets if they differ in one data point. A pair of neighbour-
ing datasets is denoted by x ∼ y. In this work, we focus on a
specific class of queries called numeric queries. A numeric
query f is a function that maps a dataset into a real-valued
vector, i.e. f : D → Rk. For instance, a sum query returns
the sum of the values in a dataset.

In order to achieve a privacy guarantee, a privacy-
preserving mechanism, which is a randomised algorithm, ex-
plicitly adds noise to the query from a given family of dis-
tributions. Thus, a privacy-preserving mechanism of a given
family,M(f,Θ), for the query f and the set of parameters
Θ of the given noise distribution, is a function that maps a
dataset into a real vector, i.e.M(f,Θ) : D → Rk. We de-
note a privacy-preserving mechanism asM, when the query
and the parameters are clear from the context.
Definition 1. [Differential Privacy (Dwork et al., 2014).] A
privacy-preserving mechanismM, equipped with a query f
and with parameters Θ, is ε-differentially private if for all
Z ⊆ Range(M) and x, y ∈ D such that x ∼ y:

log

(∣∣∣∣P(M(f,Θ)(x) ∈ Z)

P(M(f,Θ)(y) ∈ Z)

∣∣∣∣) ≤ ε.
A privacy-preserving mechanism provides perfect privacy

if it yields indistinguishable outputs for all neighbouring in-
put datasets. The privacy level ε quantifies the privacy guar-
antee provided by ε-differential privacy. For a given query,
a smaller value of ε provides higher privacy. A randomised
algorithm that is ε-differentially private is also ε′-differential
private for any ε′ > ε.

In order to satisfy ε-differential privacy, the parameters of
a privacy-preserving mechanism requires a calculated cali-
bration. The amount of noise required to achieve a specified
privacy level depends on the query. If the output of the query
does not change drastically for two neighbouring datasets,
then less noise is required to achieve a given privacy level.
The measure of such fluctuations is called the sensitivity of
the query. The parameters of a privacy-preserving mecha-
nism are calibrated using the sensitivity of the query that
quantifies the smoothness of a numeric query.
Definition 2. [Sensitivity.] The sensitivity of a query f :
D → Rk is defined as

∆f , max
x,y∈D
x∼y

‖f(x)− f(y)‖1.

The Laplace mechanism is a privacy-preserving mech-
anism that adds scaled noise sampled from a calibrated
Laplace distribution to the numeric query.

Definition 3. [Laplace Mechanism (Dwork et al., 2006b).]
Given any function f : D → Rk and any x ∈ D, the Laplace
Mechanism is defined as

L∆f
ε (x) ,M

(
f,

∆f

ε

)
(x) = f(x) + (L1, ..., Lk),

where Li is drawn from Lap
(

∆f

ε

)
and added to the ith

component of f(x).
Theorem 1. [(Dwork et al., 2006b)] The Laplace mecha-
nism, L∆f

ε0 , is ε0-differentially private.

3 Privacy at Risk: A Probabilistic
Quantification of Randomness

The parameters of a privacy-preserving mechanism are cali-
brated using the privacy level and the sensitivity of the query.
A data steward needs to choose appropriate privacy level for
practical implementation. (Lee and Clifton, 2011) show that
the choice of an actual privacy level by a data steward in re-
gard to her business requirements is a non-trivial task. Recall
that the privacy level in the definition of differential privacy
corresponds to the worst case privacy loss. Business users
are however used to taking and managing risks, if the risks
can be quantified. For instance, (Jorion, 2000) defines Value
at Risk that is used by risk analysts to quantify the loss in in-
vestments for a given portfolio and an acceptable confidence
bound. Motivated by the formulation of Value at Risk, we
propose to use the use of probabilistic privacy level. It pro-
vides us a finer tuning of an ε0-differentially private privacy-
preserving mechanism for a specified risk γ.
Definition 4. [Privacy at Risk.] For a given data gener-
ating distribution G, a privacy-preserving mechanism M,
equipped with a query f and with parameters Θ, satisfies
ε-differential privacy with a privacy at risk 0 ≤ γ ≤ 1, if
for all Z ⊆ Range(M) and x, y sampled from G such that
x ∼ y:

P
[
log

∣∣∣∣P(M(f,Θ)(x) ∈ Z)

P(M(f,Θ)(y) ∈ Z)

∣∣∣∣ > ε

]
≤ γ, (1)

where the outer probability is calculated with respect to the
probability space Range(M◦ G) obtained by applying the
privacy-preserving mechanism M on the data-generation
distribution G.

If a privacy-preserving mechanism is ε0-differentially pri-
vate for a given query f and parameters Θ, the for any pri-
vacy level ε ≥ ε0, privacy at risk is 0. Our interest is to quan-
tify the risk γ with which ε0-differentially private privacy-
preserving mechanism also satisfies a stronger ε-differential
privacy, i.e. ε < ε0.

Unifying Probabilistic and Random Differential Privacy.
Interestingly, Equation 1 unifies the notions of probabilis-
tic differential privacy and random differential privacy by
accounting for both sources of randomness in a privacy-
preserving mechanism. (Machanavajjhala et al., 2008) de-
fine probabilistic differential privacy that incorporates the
explicit randomness of the noise distribution of the privacy-
preserving mechanism whereas (Hall et al., 2012) define



random differential privacy that incorporates the implicit
randomness of the data-generation distribution. In proba-
bilistic differential privacy, the outer probability is computed
over the sample space of Range(M) and all datasets are
equally probable.

We do not only coalesce these two aspects but also extend
them by providing analytical results connecting privacy level
with risk for the Laplace mechanism.

3.1 The Case of Explicit Randomness
In this section, we study the effect of the explicit randomness
induced by the noise sampled from Laplacian distribution.
We provide a probabilistic quantification for fine tuning for
the Laplace mechanism. We fine-tune the privacy level for a
specified risk under by assuming that the sensitivity of the
query is known a priori.

For a Laplace mechanism L∆f
ε0 calibrated with sensitivity

∆f and privacy level ε0, we present the analytical formula
relating privacy level ε and the risk γ1 in Theorem 2. The
proof is available in Appendix A.

Theorem 2. The risk γ1 ∈ [0, 1] with which a Laplace
Mechanism L∆f

ε0 satisfies a privacy level ε ≥ 0 is given by

γ1 =
P(T ≤ ε)
P(T ≤ ε0)

, (2)

where T is a random variable dependent on the Laplace
noise Lap(

∆f

ε0
), and follows the BesselK

(
k,

∆f

ε0

)
distribu-

tion.

Figure 1a shows the plot of the privacy level against risk
for different values of k and for a Laplace mechanism L1.0

1.0.
As the value of k increases, the amount of noise added in the
output of numeric query increases. Therefore, for a specified
risk, the privacy at risk level increases with the value of k.

The analytical formula representing γ1 as a function of ε is
bijective. We need to invert it to obtain the privacy level ε for
a privacy at risk γ1. However the analytical closed form for
such an inverse function is not explicit. We use a numerical
approach to compute privacy level for a given privacy at risk
from the analytical formula of Theorem 2.

Result for a Real-valued Query. For the case k = 1, the
analytical derivation is fairly straightforward because it only
involves Laplace and exponential distributions, and does not
require gamma and BesselK-distribution. In this case, we
obtain an invertible closed-form of a privacy level for a spec-
ified risk. It is presented in Equation 3.

ε = ln

(
1

1− γ1(1− e−ε0)

)
(3)

Remarks on ε0. For k = 1, Figure 1b shows the plot
of privacy at risk level ε versus privacy at risk γ1 for the
Laplace mechanism L1.0

ε0 . As the value of ε0 increases, the
probability of Laplace mechanism generating higher value
of noise reduces. Therefore, we observe that for a fixed pri-
vacy at risk, privacy level increases with the value of ε0. The
same observation is made for k > 1.

3.2 The Case of Implicit Randomness
In this section, we study the effect of the implicit random-
ness induced by the data-generation distribution to provide
a fine tuning for the Laplace mechanism. We fine-tune the
risk for a specified privacy level without assuming that the
sensitivity of the query.

If one takes into account randomness induced by the data-
generation distribution, all pairs of neighbouring datasets are
not equally probable. This leads to estimation of sensitivity
of a query for a specified data-generation distribution. If we
have access to an analytical form of the data-generation dis-
tribution and to the query, we could analytically derive the
sensitivity distribution for the query. In general, we have ac-
cess to the datasets, but not the data-generation distribution
that generates them. We, therefore, statistically estimate sen-
sitivity by constructing an empirical distribution. We call the
sensitivity value obtained for a specified risk from the empir-
ical cumulative distribution of sensitivity the sampled sensi-
tivity (Definition 5). However, the value of sampled sensitiv-
ity is simply an estimate of the sensitivity for a specified
risk. In order to capture this additional uncertainty intro-
duced by the estimation from the empirical sensitivity dis-
tribution rather than the true unknown distribution, we com-
pute a lower bound on the accuracy of this estimation. This
lower bound yields a probabilistic lower bound on the spec-
ified risk. We refer to it as empirical risk. For a specified
absolute risk γ2, we denote by γ̂2 corresponding empirical
risk.

For the Laplace mechanism L
∆Sf
ε calibrated with sam-

pled sensitivity ∆Sf and privacy level ε, we evaluate the
empirical risk γ̂2. We present the result in Theorem 3. The
proof is available in appendices.

Theorem 3. Analytical bound on the empirical risk, γ̂2, for

Laplace mechanism L
∆Sf
ε with privacy level ε and sampled

sensitivity ∆Sf for a query f : D → Rk is

γ̂2 ≥ γ2(1− 2e−2ρ2n) (4)

where n is the number of samples used for estimation of the
sampled sensitivity and ρ is the accuracy parameter. γ2 de-
notes the specified absolute risk.

The error parameter ρ controls the closeness between the
empirical cumulative distribution of the sensitivity to the
true cumulative distribution of the sensitivity. Lower the
value of the error, closer is the empirical cumulative distri-
bution to the true cumulative distribution. Figure 2 shows
the plot of number of samples as a function of the privacy at
risk and the error parameter. We observe that as the value of
the error reduces the number of samples in order to achieve
the same privacy at risk exponentially increases. Let us now
present the sketch of the derivation of the analytical bound
on the empirical risk in Theorem 3.

Let, G denotes the data-generation distribution, either
known apriori or constructed by subsampling the available
data. We adopt the procedure of (Rubinstein and Aldà, 2017)
to sample two neighbouring datasets with p data points each.
We sample p − 1 data points from G that are common to
both of these datasets and later two more data points. From
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Figure 1: Privacy level ε for varying privacy at risk γ1 for Laplace mechanism
L1.0
ε0 . In Figure 1a, we use ε0 = 1.0 and different values of k. In Figure 1b, for

k = 1 and different values of ε0.
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Figure 2: Number of samples n for varying
privacy at risk γ2 for different error parame-
ter ρ.

those two points, we allot one data point to each of the two
datasets.

Let, Sf = ‖f(x)−f(y)‖1 denotes the sensitivity random
variable for a given query f , where x and y are two neigh-
bouring datasets sampled from G. Using n pairs of neigh-
bouring datasets sampled from G, we construct the empir-
ical cumulative distribution, Fn, for the sensitivity random
variable.
Definition 5. For a given query f and for a specified risk γ2,
sampled sensitivity, ∆Sf , is defined as the value of sensitivity
random variable that is estimated using its empirical cumu-
lative distribution function, Fn, constructed using n pairs
of neighbouring datasets sampled from the data-generation
distribution G.

∆Sf , F−1
n (γ2)

If we knew analytical form of the data generation distri-
bution, we could analytically derive the cumulative distri-
bution function of the sensitivity, F , and find the sensitivity
of the query as ∆f = F−1(1). Therefore, in order to have
the sampled sensitivity close to the sensitivity of the query,
we require the empirical cumulative distributions to be close
to the cumulative distribution of the sensitivity. We use this
insight to derive the analytical bound in the Theorem 3.

3.3 The Case of Explicit and Implicit
Randomness

In this section, we study the combined effect of both explicit
randomness induced by the noise distribution and implicit
randomness in the data-generation distribution respectively.
We do not assume the knowledge of the sensitivity of the
query.

We estimate sensitivity using the empirical cumulative
distribution of sensitivity. We construct the empirical dis-
tribution over the sensitivities using the sampling technique
presented in the earlier case. Since we use the sampled sen-
sitivity (Definition 5) to calibrate the Laplace mechanism,
we estimate the empirical risk γ̂3.

For Laplace mechanism L
∆Sf
ε0 calibrated with sampled

sensitivity ∆Sf and privacy level ε0, we present the analyti-
cal bound on the empirical sensitivity γ̂3 in Theorem 4 with
proof in the appendix.

Theorem 4. Analytical bound on the empirical risk γ̂3 ∈
[0, 1] to achieve a privacy level ε > 0 for Laplace mech-

anism L
∆Sf
ε0 with sampled sensitivity ∆Sf of a query f :

D → Rk is

γ̂3 ≥ γ3(1− 2e−2ρ2n) (5)

where n is the number of samples used for estimating the
sensitivity, ρ is the accuracy parameter. γ3 denotes the spec-
ified absolute risk.

The error parameter ρ controls the closeness between
the empirical cumulative distribution of the sensitivity to
the true cumulative distribution of the sensitivity. Figure 3
shows the dependence of the error parameter on the num-
ber of samples. In Figure 3a, we observe that the for a fixed
number of samples and a privacy level, the privacy at risk de-
creases with the value of error parameter. For a fixed number
of samples, smaller values of the error parameter reduce the
probability of similarity between the empirical cumulative
distribution of sensitivity and the true cumulative distribu-
tion. Therefore, we observe the reduction in the risk for a
fixed privacy level. In Figure 3b, we observe that for a fixed
value of error parameter and a fixed level of privacy level,
the risk increases with the number of samples. For a fixed
value of the error parameter, larger values of the sample size
increase the probability of similarity between the empirical
cumulative distribution of sensitivity and the true cumula-
tive distribution. Therefore, we observe the increase in the
risk for a fixed privacy level.

Effect of the consideration of implicit and explicit ran-
domness is evident in the analytical expression for γ3 in
Equation 6. Proof is available in Appendix C. The privacy
at risk is composed of two factors whereas the second term
is a privacy at risk that accounts for inherent randomness.
The first term takes into account the implicit randomness of
the Laplace distribution along with a coupling coefficient η.
We define η as the ratio of the true sensitivity of the query to
its sampled sensitivity.

γ3 ,
P(T ≤ ε)
P(T ≤ ηε0)

· γ2 (6)
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Figure 3: Dependence of error and number of samples on the privacy at risk for Laplace mechanism L

∆Sf

1.0 . For the figure on
the left hand side, we fix the number of samples to 10000. For the Figure 3b we fix the error parameter to 0.01.

4 Minimising Compensation Budget for
Privacy at Risk

Many service providers collect users’ data to enhance user
experience. In order to avoid misuse of this data, we require
a legal framework that not only limits the use of the collected
data but also proposes reparative measures in case of a data
leak. General Data Protection Regulation (GDPR)1 is such a
legal framework.

Section 82 in GDPR states that any person who suffers
from material or non-material damage as a result of a per-
sonal data breach has the right to demand compensation
from the data processor. Therefore, every GDPR compli-
ant business entity that either holds or processes personal
data needs to secure a certain budget in the worst case sce-
nario of the personal data breach. In order to reduce the risk
of such an unfortunate event, the business entity may use
privacy-preserving mechanisms that provide provable pri-
vacy guarantees while publishing their results. In order to
calculate the compensation budget for a business entity, we
devise a cost model that maps the privacy guarantees pro-
vided by differential privacy and privacy at risk to monetary
costs. The discussions demonstrate the usefulness of prob-
abilistic quantification of differential privacy in a business
setting.

Cost Model for Differential Privacy. Let E be the com-
pensation budget that a business entity has to pay to every
stakeholder in case of a personal data breach when the data
is processed without any provable privacy guarantees. Let
Edpε be the compensation budget that a business entity has
to pay to every stakeholder in case of a personal data breach
when the data is processed with privacy guarantees in terms
of ε-differential privacy.

Privacy level, ε, in ε-differential privacy is the quantifier
of indistinguishability of the outputs of a privacy-preserving

1https://eugdpr.org/

mechanism when two neighbouring datasets are provided
as inputs. When the privacy level is zero, the privacy-
preserving mechanism outputs all results with equal prob-
ability. The indistinguishability reduces with increase in the
privacy level. Thus, privacy level of zero bears the lowest
risk of personal data breach and the risk increases with the
privacy level. Edpε needs to be commensurate to such a risk
and, therefore, it needs to satisfy the following constraints.

1. For all ε ∈ R≥0, Edpε ≤ E.

2. Edpε is a monotonically increasing function of ε.

3. As ε → 0, Edpε → Emin where Emin is the unavoid-
able cost that business entity might need to pay in case of
personal data breach even after the privacy measures are
employed.

4. As ε→∞, Edpε → E.

There are various functions that satisfy these constraints.
In absence of any further constraints, we model Edpε as de-
fined in Equation 7.

Edpε , Emin + Ee−
c
ε (7)

Edpε has two parameters, namely c > 0 and Emin ≥ 0. c
controls the rate of change in the cost as the privacy level
changes and Emin is a privacy level independent bias. For
this study, we use a simplified model with c = 1 and
Emin = 0.

Cost Model for Privacy at Risk. Let, Eparε0 (ε, γ) be the
compensation that a business entity has to pay to every stake-
holder in case of a personal data breach when the data is pro-
cessed with an ε0-differentially private privacy-preserving
mechanism along with a probabilistic quantification of pri-
vacy level. Use of such a quantification allows use to provide
a stronger a stronger privacy guarantee viz. ε < ε0 for a spec-
ified privacy at risk at most γ for Thus, we calculate Eparε0



using Equation 8.

Eparε0 (ε, γ) , γEdpε + (1− γ)Edpε0 (8)

Existence of Minimum Compensation Budget. We want
to find the privacy level, say εmin, that yields the lowest
compensation budget. We do that by minimising Equation 8
with respect to ε.

Lemma 1. Eparε0 (ε, γ) is a convex function of ε.

By Lemma 1, there exists a unique εmin that minimises
the compensation budget for a specified parametrisation, say
ε0. Since the risk γ in Equation 8 is itself a function of pri-
vacy level ε, analytical calculation of εmin is not possible in
the most general case. When the output of the query is a real
number, we derive the analytic form (Equation 3) to compute
the risk under the consideration of explicit randomness. In
such a case, εmin is calculated by differentiating Equation 8
with respect to ε and equating it to zero. It gives us Equa-
tion 9 that we solve using any root finding technique such as
Newton-Raphson method[ (Press, 2007)] to compute εmin.

1

ε
− ln

(
1− 1− eε

ε2

)
=

1

ε0
(9)

Illustration. Suppose that the health centre in a university
that complies to GDPR publishes statistics of its staff health
checkup, such as obesity statistics, twice in a year. In Jan-
uary 2018, the health centre publishes that 34 out of 99 fac-
ulty members suffer from obesity. In July 2018, the health
centre publishes that 35 out of 100 faculty members suffer
from obesity. An intruder, perhaps an analyst working for an
insurance company, checks the staff listings in January 2018
and July 2018, which are publicly available on website of the
university. The intruder does not find any change other than
the recruitment of John Doe in April 2018. Thus, with high
probability, the intruder deduces that John Doe suffers from
obesity. In order to avoid such a privacy breach, the health
centre decides to publish the results using the Laplace mech-
anism. In this case, the Laplace mechanism operates on the
count query.

In order to control the amount of noise, the health centre
needs to appropriately set the privacy level. Suppose that the
health centre decides to use the expected mean absolute er-
ror, defined in Equation 10, as the measure of effectiveness
for the Laplace mechanism.

E
[
|L1
ε(x)− f(x)|

]
=

1

ε
(10)

Equation 10 makes use of the fact that the sensitivity of the
count query is one. Suppose that the health centre requires
the expected mean absolute error of at most two in order to
maintain the quality of the published statistics. In this case,
the privacy level has to be at least 0.5.

In order to compute the budget, the health centre requires
an estimate of E. (Moriarty et al., 2012) show that the in-
cremental cost of premiums for the health insurance with
morbid obesity ranges between $5467 to $5530. With ref-
erence to this research, the health centre takes $5500 as an
estimate of E. For the staff size of 100 and the privacy level
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Figure 4: Variation in the budget for Laplace mechanismL1
ε0

under privacy at risk considering explicit randomness in the
Laplace mechanism for the illustration in Section 4.

0.5, the health centre uses Equation 7 in its simplified setting
to compute the total budget of $74434.40.

Is it possible to reduce this budget without degrading the
effectiveness of the Laplace mechanism? We show that it
is possible by fine-tuning the Laplace mechanism. Under
the consideration of the explicit randomness introduced by
the Laplace noise distribution, we show that ε0-differentially
private Laplace mechanism also satisfies ε-differential pri-
vacy with risk γ, which is computed using the formula in
Theorem 2. Fine-tuning allows us to get a stronger privacy
guarantee, ε < ε0 that requires a smaller budget. In Figure 4,
we plot the budget for various privacy levels. We observe
that the privacy level 0.274, which is same as εmin com-
puted by solving Equation 9, yields the lowest compensa-
tion budget of $37805.86. Thus, by using privacy at risk, the
health centre is able to save $36628.532 without sacrificing
the quality of the published results.

Bounds on the Privacy at Risk. For a fixed budget, say
B, re-arrangement of Equation 8 gives us an upper bound
on the privacy level ε. We use the cost model with c = 1
and Emin = 0 to derive the upper bound. If we have a max-
imum permissible expected mean absolute error T , we use
Equation 10 to obtain a lower bound on the privacy at risk
level. Equation 11 illustrates the upper and lower bounds
that dictate the permissible range of ε that a data publisher
can promise depending on the budget and the permissible
error constraints.

1

T
≤ ε ≤

[
ln

(
γE

B − (1− γ)Edpε0

)]−1

(11)

Thus, the privacy level is constrained by the effectiveness
requirement from below and by the monetary budget from
above. (Hsu et al., 2014) calculate upper and lower bound on
the privacy level in the differential privacy. They use a differ-
ent cost model owing to the scenario of research study that
compensates its participants for their data and releases the
results in a differentially private manner. Their cost model is
different than our GDPR inspired modelling.



5 Related Work
Researchers have proposed different privacy-preserving
mechanisms to make different queries differentially private.
These mechanisms can be broadly classified into two cate-
gories. In one category, the mechanisms explicitly add cal-
ibrated noise, such as Laplace noise in the work of (Dwork
et al., 2006c) or Gaussian noise in the work of (Dwork et al.,
2014), to the outputs of the query. In the other category,
(Chaudhuri et al., 2011; Zhang et al., 2012; Acs et al., 2012;
Hall et al., 2013) propose mechanisms that alter the query
function so that the modified function satisfies differentially
privacy. Privacy-preserving mechanisms in both of these cat-
egories perturb the original output of the query and make it
difficult for a malicious data analyst to recover the original
output of the query. These mechanisms induce randomness
using the explicit noise distribution. Calibration of these
mechanisms require the knowledge of the sensitivity of the
query. (Nissim et al., 2007) consider the implicit randomness
in the data-generation distribution to compute an estimate of
the sensitivity. The authors propose the smooth sensitivity
function that is an envelope over the local sensitivities for
all individual datasets. Local sensitivity of a dataset is the
maximum change in the value of the query over all of its
neighboring datasets. In general, it is not easy to analytically
estimate the smooth sensitivity function for a general query.
(Rubinstein and Aldà, 2017) also study the inherent random-
ness in the data-generation algorithm. They do not use the
local sensitivity. We adopt their approach of sampling the
sensitivity from the empirical distribution of the sensitivity.
They use order statistics to choose a particular value of the
sensitivity. We use the risk, which provides a mediation tool
for business entities to assess the actual business risks, on
the sensitivity distribution to estimate the sensitivity.

In order to account for both sources of randomness, re-
finements of ε-differential privacy are proposed in order to
bound the probability of occurrence of worst case scenarios.
(Machanavajjhala et al., 2008) propose probabilistic differ-
ential privacy that considers upper bounds of the worst case
privacy loss for corresponding confidence levels on the noise
distribution. Definition of probabilistic differential privacy
incorporates the explicit randomness induced by the noise
distribution and bounds the probability over the space of
noisy outputs to satisfy the ε-differential privacy definition.
(Dwork and Rothblum, 2016) propose Concentrated differ-
ential privacy that considers the expected values of the pri-
vacy loss random variables for the corresponding. Defini-
tion of concentrated differential privacy incorporates the ex-
plicit randomness induced by the noise distribution but con-
sidering only the expected value of privacy loss satisfying
ε-differential privacy definition instead of using the confi-
dence levels limits its scope.

(Hall et al., 2013) propose random differential privacy that
considers the privacy loss for corresponding confidence lev-
els on the implicit randomness in the data-generation dis-
tribution. Definition of random differential privacy incorpo-
rates the implicit randomness induced by the data-generation
distribution and bounds the probability over the space of
datasets generated from the given distribution to satisfy the
ε-differential privacy definition. (Dwork et al., 2006a) define

approximate differential privacy by adding a constant bias to
the privacy guarantee provided by the differential privacy. It
is not a probabilistic refinement of the differential privacy.

(Kifer and Machanavajjhala, 2012) define Pufferfish pri-
vacy framework, and its variant by (Bassily et al., 2013), that
considers randomness due to data-generation distribution as
well as noise distribution. Despite the generality of their ap-
proach, the framework relies on the domain expert to define
a set of secrets that they want to protect.

In this work, we consider the widely used Laplace mecha-
nism proposed by (Dwork et al., 2006c). The Laplace mech-
anism adds Laplacian noise to the query output. (Xiao et al.,
2011; Zhang et al., 2012; Acs et al., 2012) use Laplace
mechanism by providing the calibration by computing sen-
sitivity of the query.

(Ghosh and Roth, 2015; Chen et al., 2016) propose game
theoretic methods that provide the means to evaluate the
monetary cost of differential privacy. Our approach is in-
spired by the approach by the work of (Hsu et al., 2014).
They model the cost under a scenario of a research study
wherein the participants are reimbursed for their participa-
tion. Our cost modelling is driven by the scenario of secur-
ing a compensation budget in compliance with GDPR. Our
requirement differs from the requirements for the scenario
in the work of (Hsu et al., 2014). In our case, there is no
monetary incentive for participants to share their data.

6 Conclusion and Future Works
In this paper, we provide a means to fine-tune the privacy
level of a privacy-preserving mechanism by conducting a
study of various sources of randomness. Such a fine-tuning
leads to probabilistic quantification on privacy levels with
quantified risks. We instantiate the analytical derivations
for the Laplace mechanism. We propose a cost model that
bridges the gap between the privacy level and the compensa-
tion budget estimated by a GDPR compliant business entity.
We show the existence of a privacy level that yields the min-
imum compensation budget under the proposed fine-tuning.

Such a fine-tuning may be fully analytically computed in
cases where the data-generation, or the sensitivity distribu-
tion, the noise distribution and the query are analytically
known and take convenient forms. We are now looking at
such convenient but realistic cases.
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A Proof of Theorem 2 (Section 3.1)
Although a Laplace mechanism L∆f

ε induces higher amount
of noise on average than a Laplace mechanism L∆f

ε0 for ε <
ε0, there is a non-zero probability that L∆f

ε induces noise
commensurate to L∆f

ε0 . This non-zero probability guides us
to calculate the privacy at risk γ1 for the privacy at risk level
ε. In order to get an intuition, we illustrate the calculation of
the overlap between two Laplace distributions as an estima-
tor of similarity between the two distributions.

Definition 6. [Overlap of Distributions, (Papoulis and Pil-
lai, 2002)] The overlap, O, between two probability distri-
butions P1, P2 with support X is defined as

O =

∫
X

min[P1(x), P2(x)] dx.

Lemma 2. The overlapO between two probability distribu-
tions, Lap(

∆f

ε1
) and Lap(

∆f

ε2
), such that ε2 ≤ ε1, is given

by

O = 1− (exp (−µε2/∆f )− exp (−µε1/∆f )),

where µ =
∆f ln (ε1/ε2)

ε1−ε2 .

Using the result in Lemma 2, we note that the overlap
between two distributions with ε0 = 1 and ε = 0.6 is 0.81.
Thus,L∆f

0.6 induces noise that is more than 80% times similar
to the noise induced by L∆f

1.0 . Therefore, we can loosely say
that at least 80% of the times a Laplace MechanismL∆f

1.0 will
provide the same privacy as a Laplace Mechanism L∆f

0.8 .
Although the overlap between Laplace distributions with

different scales offers an insight into the relationship be-
tween different privacy levels, it does not capture the con-
straint induced by the sensitivity. For a given query f , the
amount of noise required to satisfy differential privacy is
commensurate to the sensitivity of the query. This calibra-
tion puts a constraint on the noise that is required to be in-
duced on a pair of neighbouring datasets. We state this con-
straint in Lemma 3, which we further use to prove that the
Laplace Mechanism L∆f

ε0 satisfies (ε, γ1)-privacy at risk.

Lemma 3. For a Laplace Mechanism L∆f
ε0 , the difference in

the absolute values of noise induced on a pair of neighbour-
ing datasets is upper bounded by the sensitivity of the query.

Proof. Suppose that two neighbouring datasets x and y are
given input to a numeric query f : D → Rk. For any output
z ∈ Rk of the Laplace Mechanism L∆f

ε0 ,

k∑
i=1

(|f(yi)− zi| − |f(xi)− zi|) ≤
k∑
i=1

(|f(xi)− f(yi)|)

≤ ∆f .

We use triangular inequality in the first step and Definition 2
of sensitivity in the second step.

We write Exp(b) to denote a random variable sampled
from an exponential distribution with scale b > 0. We write
Gamma(k, θ) to denote a random variable sampled from a
gamma distribution with shape k > 0 and scale θ > 0.

Lemma 4. [(Papoulis and Pillai, 2002)] If a random vari-
able X follows Laplace Distribution with mean zero and
scale b, |X| ∼ Exp(b).

Lemma 5. [(Papoulis and Pillai, 2002)] IfX1, ..., Xn are n
i.i.d. random variables each following the Exponential Dis-
tribution with scale b,

∑n
i=1Xi ∼ Gamma(n, b).

Lemma 6. IfX1 andX2 are two i.i.d. Gamma(n, θ) random
variables, the probability density function for the random
variable T = |X1 −X2|/θ is given by

PT (t) =
22−ntn−

1
2Kn− 1

2
(t)

√
2πΓ(n)

where Kn− 1
2

is the modified Bessel function of second kind.

Proof. Let X1 and X2 be two i.i.d. Gamma(n, θ) random
variables. Characteristic function of a Gamma random vari-
able is given as

φX1
(z) = φX2

(z) = (1− ιzθ)−n.

Therefore,

φX1−X2
(z) = φX1

(z)φ∗X2
(z) =

1

(1 + (zθ)2)n

Probability density function for the random variable X1 −
X2 is given by,

PX1−X2(x) =
1

2π

∫ ∞
−∞

e−izxφX1−X2(z)dz

=
21−n|xθ |

n− 1
2Kn− 1

2
(|xθ |)√

2πΓ(n)θ

whereKn− 1
2

is the Bessel function of second kind. Let, T =

|X1−X2

θ |. Therefore,

PT (t) =
22−ntn−

1
2Kn− 1

2
(t)

√
2πΓ(n)

We denote this probability distribution as BesselK(n, θ).

Lemma 7. If X1 and X2 are two i.i.d. Gamma(n, θ) ran-
dom variables and |X1−X2| ≤M , then T ′ = |X1−X2|/θ
follows Truncated BesselK(n, θ,M) distribution with prob-
ability density function:

PT ′(t
′) =

PT (t′)

PT (T ≤M)
,

where PT is the probability density function of
BesselK(n, θ).



Lemma 8. For Laplace Mechanism L∆f
ε0 with query f :

D → Rk and for any output Z ⊆ Range(L∆f
ε0 ), ε ≤ ε0,

γ1 , P

[
log

∣∣∣∣∣P(L∆f
ε0 (x) ∈ Z)

P(L∆f
ε0 (y) ∈ Z)

∣∣∣∣∣ ≤ ε
]

=
P(T ≤ ε)
P(T ≤ ε0)

,

where T follows BesselK(k,∆f/ε0).

Proof. Let, x ∈ D and y ∈ D be two datasets such that
x ∼ y. Let f : D → Rk be some numeric query. Let Px(z)
and Py(z) denote the probabilities of getting the output z for
Laplace mechanisms L∆f

ε0 (x) and L∆f
ε0 (y) respectively. For

any point z ∈ Rk and ε 6= 0,

Px(z)

Py(z)
=

k∏
i=1

exp
(
−ε0|f(xi)−zi|

∆f

)
exp

(
−ε0|f(yi)−zi|

∆f

)
=

k∏
i=1

exp

(
ε0(|f(yi)− zi| − |f(xi)− zi|)

∆f

)

= exp

(
ε

[
ε0
∑k
i=1(|f(yi)− zi| − |f(xi)− zi|)

ε∆f

])
.

(12)

By Definition 3,

(f(x)− z), (f(y)− z) ∼ Lap(∆f/ε0). (13)

Application of Lemma 4 and Lemma 5 yields,
k∑
i=1

(|f(xi)− zi|) ∼ Gamma(k,∆f/ε0). (14)

Using Equations 13, 14, and Lemma 3, 7, we get(
ε0
∆f

k∑
i=1

|(|f(yi)− z| − |f(xi)− z|)|

)
∼ TruncatedBesselK(k,∆f/ε0,∆f ). (15)

since,
∑k
i=1 |(|f(yi)− z| − |f(xi)− z|)| ≤ ∆f . There-

fore,

P

([
ε0
∆f

k∑
i=1

|(|f(yi)− z| − |f(xi)− z|)|

]
≤ ε

)
=

P(T ≤ ε)
P(T ≤ ε0)

,

(16)
where T follows BesselK(k,∆f/ε0). Analytically,

P(T ≤ x) ∝
(

1F2(
1

2
;

3

2
− k, 3

2
;
x2

4
)
√
π4kx]

)
−(

21F2(k;
1

2
+ k, k + 1;

x2

4
)x2kΓ(k)

)
where 1F2 is the regularised generalised hypergeometric
function as defined in (Askey and Daalhuis, 2010). From
Equation 12 and 16,

P
[
log

∣∣∣∣P(Lε0(x) ∈ S)

P(Lε0(y) ∈ S)

∣∣∣∣ ≤ ε] =
P(T ≤ ε)
P(T ≤ ε0)

.

This completes the proof of Theorem 2.

Corollary 1. Laplace Mechanism L∆f
ε0 with f : D → Rk is

(ε, δ)-probabilistically differentially private where

δ =

{
1− P(T≤ε)

P(T≤ε0) ε ≤ ε0
0 ε > ε0

and T follows BesselK(k,∆f/ε0).

B Proof of Theorem 3 (Section 3.2)
Proof. Let, x and y be any two neighbouring datasets sam-
pled from the data generating distribution G. Let, ∆Sf be
the sampled sensitivity for query f : D → Rk. Let, Px(z)
and Py(z) denote the probabilities of getting the output z for

Laplace mechanisms L
∆Sf
ε (x) and L

∆Sf
ε (y) respectively.

For any point z ∈ Rk and ε 6= 0,

Px(z)

Py(z)
=

k∏
i=1

exp
(
−ε|f(xi)−zi|

∆Sf

)
exp

(
−ε|f(yi)−zi|

∆Sf

)
= exp

(
ε
∑k
i=1(|f(yi)− zi| − |f(xi)− zi|)

∆Sf

)

≤ exp

(
ε
∑k
i=1 |f(yi)− f(xi)|

∆Sf

)

= exp

(
ε‖f(y)− f(x)‖1

∆Sf

)
(17)

We used triangle inequality in the penultimate step.
Using the trick in the work of (Rubinstein and Aldà,

2017), we define following events. Let, B∆Sf denotes the
set of pairs neighbouring dataset sampled from G for which
the sensitivity random variable is upper bounded by ∆Sf .

Let, C
∆Sf
ρ denotes the set of sensitivity random variable

values for which Fn deviates from the unknown cumulative
distribution of S, F , at most by the accuracy value ρ. These
events are defined in Equation 18.

B∆Sf , {x, y ∼ G such that ‖f(y)− f(x)‖1 ≤ ∆Sf }

C
∆Sf
ρ ,

{
sup
∆
|FnS (∆)− FS(∆)| ≤ ρ

}
(18)

P(B∆Sf ) = P(B∆Sf |C
∆Sf
ρ )P(C

∆Sf
ρ ) (19)

+ P(B∆Sf |Cρ∆Sf )P(C
∆Sf
ρ )

≥ P(B∆Sf |C
∆Sf
ρ )P(C

∆Sf
ρ )

= Fn(∆Sf )P(C
∆Sf
ρ )

≥ γ2 · (1− 2e−2ρ2n) (20)

In the last step, we use the definition of the sampled sensitiv-
ity to get the value of the first term. The last term is obtained
using DKW-inequality, as defined in (Massart et al., 1990),



where the n denotes the number of samples used to build
empirical distribution of the sensitivity, Fn.

From Equation 17, we understand that if ‖f(y)− f(x)‖1
is less than or equals to the sampled sensitivity then the

Laplace mechanism L
∆Sf
ε satisfies ε-differential privacy.

Equation 20 provides the lower bound on the probability of
the event ‖f(y) − f(x)‖1 ≤ ∆Sf . Thus, combining Equa-
tion 17 and Equation 20 completes the proof.

C Proof of Theorem 4 (Section 3.3)
Proof of Theorem 4 builds upon the ideas from the proofs for
the rest of the two cases. In addition to the events defined in
Equation 18, we define an additional event A

∆Sf
ε0 , defined

in Equation 21, as a set of outputs of Laplace mechanism

L
∆Sf
ε0 that satisfy the constraint of ε-differential privacy for

a specified privacy at risk level ε.

A
∆Sf
ε0 ,

{
z ∼ L

∆Sf
ε0 : log

∣∣∣∣∣L
∆Sf
ε0 (x)

L
∆Sf
ε0 (y)

∣∣∣∣∣ ≤ ε, x, y ∼ G
}

(21)
Corollary 2.

P(A
∆Sf
ε0 |B

∆Sf ) =
P(T ≤ ε)
P(T ≤ ηε0)

where T follows BesselK(k,∆Sf /ε0) and η =
∆f

∆Sf
.

Proof. We provide the sketch of the proof. Proof follows
from the proof of Lemma 8. For a Laplace mechanism cal-
ibrated with the sampled sensitivity ∆Sf and privacy level
ε0, Equation 15 translates to,(

ε0
∆Sf

k∑
i=1

|(|f(yi)− z| − |f(xi)− z|)|

)
∼

Truncated BesselK(k,∆Sf /ε0,∆f ).

since,
∑k
i=1 |(|f(yi)− z| − |f(xi)− z|)| ≤ ∆f . Using

Lemma 7 and Equation 16,

P(A
∆Sf
ε0 ) =

P(T ≤ ε)
P(T ≤ ηε0)

where T follows BesselK(k,∆Sf /ε0) and η =
∆f

∆Sf
.

For this case, we do not assume the knowledge of the
sensitivity of the query. Using the empirical estimation pre-
sented in Section 3.2, if we choose the sampled sensitivity
for privacy at risk γ2 = 1, we obtain an approximation for
η.
Lemma 9. For a given value of accuracy parameter ρ,

∆f

∆∗Sf
= 1 +O

(
ρ

∆∗Sf

)

where ∆∗Sf = F−1
n (1). O

(
ρ

∆∗Sf

)
denotes order of ρ

∆∗Sf
,

i.e., O
(

ρ
∆∗Sf

)
= k ρ

∆∗Sf
for some k ≥ 1.

Proof. For a given value of accuracy parameter ρ and any
∆ > 0,

Fn(∆)− F (∆) ≤ ρ
Since above inequality is true for any value of ∆, let ∆ =
F−1(1). Therefore,

Fn(F−1(1))− F (F−1(1)) ≤ ρ
Fn(F−1(1)) ≤ 1 + ρ (22)

Since a cumulative distribution function is 1-Lipschitz [(Pa-
poulis and Pillai, 2002)],
|Fn(F−1

n (1))− Fn(F−1(1))| ≤ |F−1
n (1)− F−1(1)|

|Fn(F−1
n (1))− Fn(F−1(1))| ≤ |∆∗Sf −∆f |

ρ ≤ ∆f −∆∗Sf

1 +
ρ

∆∗Sf
≤ ∆f

∆∗Sf
where we used result from Equation 22 in step 3. Introducing

O
(

ρ
∆∗Sf

)
completes the proof.

Lemma 10. For Laplace Mechanism L
∆Sf
ε0 with sampled

sensitivity ∆Sf of a query f : D → Rk and for any Z ⊆
Range(L

∆Sf
ε ),

P
[
log

∣∣∣∣P(Lε0(x) ∈ Z)

P(Lε0(y) ∈ Z)

∣∣∣∣ ≤ ε] ≥ P(T ≤ ε)
P(T ≤ ηε0)

γ2(1−2e−2ρ2n)

where n is the number of samples used to find sampled sen-
sitivity, ρ ∈ [0, 1] is a accuracy parameter and η =

∆f

∆Sf
.

The outer probability is calculated with respect to support
of the data-generation distribution G.

Proof. The proof follows from the proof of Lemma 8 and
Lemma 10. Consider,

P(A
∆Sf
ε0 ) ≥ P(A

∆Sf
ε0 |B

∆Sf )P(B∆Sf |C
∆Sf
ρ )P(C

∆Sf
ρ )

≥ P(T ≤ ε)
P(T ≤ ηε0)

· γ2 · (1− 2e−2ρ2n) (23)

The first term in the final step of Equation 23 follows from
the result in Corollary 2 where T follows BesselK(k,

∆Sf

ε0
).

It is the probability with which the Laplace mechanism

L
∆Sf
ε0 satisfies ε-differential privacy for a given value of

sampled sensitivity.

Probability of occurrence of eventA
∆Sf
ε0 calculated by ac-

counting for both explicit and implicit sources of random-
ness gives the risk for privacy level ε. Thus, the proof of
Lemma 10 completes the proof for Theorem 4.

Comparing the equations in Theorem 4 and Lemma 10,
we observe that

γ3 ,
P(T ≤ ε)
P(T ≤ ηε0)

· γ2 (24)

The privacy at risk, as defined in Equation 24, is free from
the term that accounts for the accuracy of sampled estimate.
If we know cumulative distribution of the sensitivity, we do
not suffer from the uncertainty of introduced by sampling
from the empirical distribution.


