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talel.abdessalem@telecom-paristech.fr

Abstract Modern recommendation systems leverage some forms of col-
laborative user or crowd sourced collection of information. For instance,
services like TripAdvisor, Airbnb and HungyGoWhere rely on user-gener-
ated content to describe and classify hotels, vacation rentals and restau-
rants. By nature of such independent collection of information, the mul-
tiplicity, diversity and varying quality of the information collected result
in uncertainty. Objects, such as the services offered by hotels, vacation
rentals and restaurants, have uncertain scores for their various features.
In this context, ranking of uncertain data becomes a crucial issue. Several
data models for uncertain data and several semantics for probabilistic
top-k queries have been proposed in the literature. We consider here a
model of objects with uncertain scores given as probability distributions
and the semantics proposed by the state of the art reference work of
Soliman, Hyas and Ben-David.
In this paper, we explore the design space of Metropolis-Hastings Markov
chain Monte Carlo algorithms for answering probabilistic top-k queries
over a database of objects with uncertain scores. We are able to devise
several algorithms that yield better performance than the reference al-
gorithm. We empirically and comparatively prove the effectiveness and
efficiency of these new algorithms.

1 Introduction

Modern recommendation systems, in the most general sense of the term, rely
on some forms of collaborative user or crowd sourced collection of information.
For instance, cooperative or crowd sourced information system like TripAdvisor
relies on user generated ratings and reviews to recommend travel plans and
hotels. Airbnb and HungyGoWhere rely on user-generated content to describe,
rank and recommend vacation rentals and restaurants, respectively.

By nature of such independent collection of information, the multiplicity,
diversity and varying quality of the information collected result in uncertainty.
Objects, such as the services offered by hotels, vacation rentals and restaurants,
have uncertain scores quantifying features such as various quality and budget
dimensions.

Ranking is one of the building blocks of recommendation. Given a database
of objects ranked by their scores for the feature of interest, a top-k query returns



the sequence of the k objects with the highest score or rank, ordered by their
score or rank. This sequence is referred to as the top-k. With uncertain scores
and uncertain ranks, a top-k query can only return an uncertain result.

Several methods [14,11,16,5,4,12,13,8,7,15] have been proposed in the liter-
ature that answer probabilistic top-k queries based on different uncertain data
model and semantics. Among these works, Soliman, Hyas and Ben-David [12]
study top-k queries over a database of objects with uncertain scores given as
probability distributions. Here, a probabilistic top-k query returns the sequence
of objects that has the highest probability to be the top-k according to the prob-
ability distributions of the scores. In this paper, we consider probabilistic top-k
queries under this semantics.

The authors of [12] propose several methods to answer such probabilistic
top-k queries. The problem is combinatorial. The proposed methods are either
inefficient with exponential time complexity or ineffective with poor approxima-
tion of the probability of the probabilistic top-k sequence. The most practical
results are obtained with an approximate algorithm that searches the space of
candidate top-k sequences of objects using a Markov chain Monte Carlo method
and that computes the probability of a given sequence to be the top-k using
Monte Carlo integration. We think that the approach is the right one but sus-
pect that it can be further improved. Therefore, in this paper, we explore the
design space for Metropolis-Hastings Markov chain Monte Carlo algorithms to
answer probabilistic top-k queries in a database of objects with uncertain scores.
We devise and present several new algorithms.

We first analytically discuss the ideas of the new algorithms. Then, we em-
pirically evaluate the effectiveness and efficiency of the new algorithms in com-
parison with the reference. The experimental results confirm the superiority of
the new algorithms over the reference algorithm. Surprisingly, it is the simplest
and less involved algorithm that yields the best performance.

2 Related Work

Uncertainty and the Crowd. Content is increasingly generated by end users
and information gathering outsourced. Consequently, the content of modern
databases may be erroneous, noisy and, generally, uncertainty [1].

Yet the very problem of resolving the uncertainty can itself be outsourced
to the crowd. For instance, the authors of [3] propose to use the crowd to
answer top-k and group-by queries. They proposed a variable error model for
controlling erroneous answers from the crowd. The authors of [17] provide a
detailed survey of crowdsourced approaches the top-k problem and discuss how
comparison-based algorithms, rating-based algorithms and hybrid algorithms
can tolerate the errors from the crowd. They provide empirical guidelines for
selecting appropriate algorithms for various scenarios.

Ranking and Top-k Queries over Uncertain Databases. Probabilistic
top-k queries are first proposed in [14]. The uncertain data model consists of



membership probabilities for the objects in the database and possible worlds
defined by Boolean constraints.

The authors [14] propose two types of top-k query semantics referred to as U-
Topk and U-kRanks queries. Each object (tuple) belongs to the database with a
given probability while possible worlds are defined by logical formulae. A U-Topk
query returns the sequence of objects with the highest probability to be top-k
across all possible worlds or most probable top-k. A U-kRanks query returns a
sequence of objects that are individually most probable at their rank over all
possible worlds. It must be noted that it is possible this particular sequence of
objects may not be the most probable top-k.

The authors of [16] also study these two top-k semantics. They present sev-
eral algorithms for both types of queries in terms of computation and memory
consumption.

The authors of [11] formulate the query answering problem to the problem of
evaluating probabilities for constraints in disjunctive normal form (thus avoiding
the combinatorial computation of the possible worlds). They propose a Monte
Carlo multi-simulation algorithm that repeatedly chooses at random a possible
world and rank the top-k answers of an SQL query. The ranks of the top-k
answers are guaranteed to be correct and the probability of the answer are
approximate. The paper focuses on conjunctive queries and does not handle
continuous attribute values.

Several other semantics and algorithms have been proposed for possible
worlds data models. For example, the authors of [5] propose top-k query se-
mantics using a threshold. They find the set of objects that have probability
at least p to be in the top-k in all possible worlds. The authors propose both
an exact algorithm based on pruning and an approximate algorithm based on
sampling.

In [4], the authors stress the tradeoffs between reporting high-scoring objects
and objects with a high probability of being in the top-k answer. They argue
the need to present the score distribution of top-k sequences to allow the user
to choose among the results. They thus proposed a new semantics for the top-k
query, which they called c-Typical-Topk, that provides a number of typical top-k
vectors for the user to choose from.

The semantics of top-k query can not only be defined under a possible
worlds semantics, but also under parameterized ranking functions. The authors
of [12,13] study the problem of ranking objects with uncertain scores. The un-
certainty of the result of queries stems from stochastic attribute values. Each
attribute of the objects to rank has a score which is a function over a domain in-
ducing a probability distribution. The authors propose a baseline algorithm and
a branch-and-bound algorithm to compute the result of top-k queries (U-Topk
queries). The complexity of these exact solutions is exponential. The authors
propose a sampling-based Markov chain Monte Carlo approach to compute ap-
proximate answers.



The authors of [8], [7] and [15] also study the problem of ranking objects with
uncertain scores but use different top-k semantics. The authors of [2,6] discuss
and compare several existing top-k semantics.

In this paper, we consider a database of objects with uncertain scores given as
probability distributions. We consider the semantics of U-Topk queries proposed
in [12]: a probabilistic top-k query returns the sequence of objects that has the
highest probability to be the top-k according to the probability distributions
of the scores. Motivated by the good performance results of [13], we decide to
explore the design space for Markov chain Monte Carlo algorithms to answer
probabilistic top-k queries in a database of objects with uncertain scores.

3 Problem Statement

3.1 Top-k Sequence

Let us assume a set O of n objects and a scoring function s from the set of
objects, O, to a totally ordered domain, D. The function s : O 7→ D, where
(D,≥) is a total order and (D, >) is the corresponding strict total order. The
image, s(o), of an object o ∈ O by the function s is called the score of the object.

Along with the scoring function s, a total order (D,≥) induces a ranking on
O. For any two objects oi and oj ∈ O, if score of oi is greater than or equal to
that of oj , i.e., s(oi) ≥ s(oj), we say that oi has equal rank to or higher rank
than oj . For the sake of simplicity, we abuse the notation oi ≥ oj to represent
the fact that oi has equal rank to or higher rank than oj .

The top-k sequence of O for s with (D,≥) is the sequence k objects of O
with the highest ranks in order of their rank.

Definition 1. The top-k sequence of objects in O with s and (D,≥) is the
sequence of k objects π(k) = [o1, · · · , ok] such that ∀o ∈ Ō(π(k)) (o1 ≥ . . . ≥ ok ≥
o), where Ō(π(k)) = O \ π(k).

3.2 Probability of a Sequence over Uncertain Scores

However, in many applications, typically when the score is collected from a
multitude of independent sources, objects do not come with a deterministic
score. In order to model this scenario, we consider that the score s(oi) of an
object oi ∈ O is a random variable Xi with a probability density function fi.
Namely, s : O 7→ {f : D 7→ [0, 1]}.

Each sequence of k objects in O, π(k) = [o1, · · · , ok], has a probability to be
the top-k sequence with the realizations of the random variables in the image of
s and (D,≥).

Definition 2. The probability of a sequence of objects in O, π(k) = [o1, · · · , ok],
to be the top-k with s and (D,≥) is the joint probability function P(∀o ∈ Ō(π(k))
(o1 ≥ . . . ≥ ok ≥ o)).



For the sake of simplicity, we refer this joint probability function P(∀o ∈
Ō(π(k)) (o1 ≥ . . . ≥ ok ≥ o)) as Pr(π(k)) for a sequence π(k) = [oi, · · · , ok] for
the remainder of this paper.

In most applications the features of objects are independent. We therefore
consider that the random variables {Xi}oi∈O, i.e., the individual scores of the
objects, are independent.

The probability, Pr(π(k)), of the sequence π(k) to be the top-k is given by the
n-dimensional integral with dependent limits of Equation 1 as given in [12,13].
The upper limits of the variables {x1, · · · , xk} are {∞, x1, · · · , xk−1} and the
upper limits of the variables {xk+1, · · · , xn} are xk.

Pr(π(k)) =

∫ ∞
−∞

∫ x1

−∞
· · ·

∫ xk−1

−∞

∫ xk

−∞
· · ·

∫ xk

−∞
f1(x1) · · · fn(xn) dxn · · · dx1 (1)

3.3 Calculating the Probability of a Sequence over Uncertain Scores

In practical cases, it is meaningful to consider that the random variables Xi have
bounded continuous density functions. They have a closed interval as support.
That is the scores of objects have a minimum and a maximum value. We use
[li, ui] to denote the lower and upper bounds of the support of the continuous
functions fi, respectively.

For bounded continuous density functions f1, · · · , fn, equation 1 can be es-
timated by Monte Carlo Integration [10] if f1(x1), · · · , fn(xn) can be calculated
given x1, · · · , xn[12,13].

Monte Carlo Integration is useful for estimating high dimensional integrals,
which are often expensive to evaluate, by adopting sampling techniques which
take smaller computational effort [9]. Suppose we want to compute

∫
Ω′
f(x)dx,

where Ω′ is a bounded subspace with volume
∫
Ω′
dx. It is circumscribed by

another subspace Ω, i.e., Ω′ ⊆ Ω, whose volume v can be easily computed. Now,
we can sample S points uniformly in Ω. Suppose m of those S samples are in Ω′,
i.e., sample x1, · · · , xm are in Ω′. Then the integral

∫
Ω′
f(x)dx can be estimated

by Equation 2. ∫
Ω′
f(x)dx ≈ m

S
· v · 1

m

m∑
i=1

f(xi) (2)

The approximation error of Equation 2 is O( 1√
S

) [9].

For all practical purposes, one can sample the score xi for each object oi uni-
formly from the corresponding support [li, ui]. One sample xi consists of n scores,
i.e., xi = {xi1, · · · , xin}. After sampling S times, we get samples x1, · · · , xS . Sup-
pose that the scores in sample x1, · · ·xm satisfy ∀o ∈ Ō(π(k))(o1 ≥ · · · ≥ ok ≥ o),
while other samples do not satisfy this condition. We can estimate Pr(π(k)) by
Monte Carlo Integration according to Equation 3 where v =

∏n
i=1(ui− li) is the

volume of the space sampled.

Pr(π(k)) ≈ m

S
· v · 1

m

m∑
i=1

n∏
j=1

fj(x
i
j) (3)



Thus, for general bounded continuous density functions f1, · · · , fn, given a
sequence of k objects π(k), we are able to estimate the probability Pr(π(k)) via
Monte Carlo integration.

If the cumulative distribution function (cdf) of each fi can easily be com-
puted, i.e., Fi(x) =

∫ x
li
fi(y)dy can easily be computed given x, then we can

compute Pr(π(k)) as the k-dimensional integral with dependent limits of Equa-
tion 4.

Pr(π(k)) =

∫ ∞
−∞

∫ x1

−∞
...

∫ xk−1

−∞
f1(x1)...fk(xk) · (

∏
oi∈Ō(π(k))

Fi(xk))dxk...dx1 (4)

We only need to sample the scores for k objects with equation 4 to estimate
Pr(π(k)) via Monte Carlo Integration. One sample consists of k scores x1, · · · , xk,
i.e., x1 = {x1

1, · · · , x1
k}. After sampling S times, we get samples x1, · · · , xS .

Suppose scores in samples x1, · · ·xm satisfy o1 ≥ · · · ≥ ok, while other samples
do not satisfy this condition. Equation 4 can be estimated using Equation 5.

Pr(π(k)) ≈ m

S
· v · 1

m

m∑
i=1

(

k∏
j=1

fj(x
i
j)

∏
oj∈Ō(π(k))

Fj(x
i
k)) (5)

3.4 Probabilistic Top-k Sequence

In this paper, we study the top-k query that returns the probabilistic top-k
sequence (Definition 3) of objects in O given the probability density functions
fi of the random variables s(oi) = Xi for each of the objects oi ∈ O. In order to
find the probabilistic top-k sequence, we calculate and maximize the probability
of sequences of k objects in O, π(k), to be a top-k sequence.

Definition 3. The probabilistic top-k sequence of objects in O with s and
(D,≥) is the sequence of k objects π(k) = [o1, · · · , ok] that maximizes the joint
probability function P(∀o ∈ Ō(π(k)) (o1 ≥ . . . ≥ ok ≥ o)).

For answering the top-k query and calculating the probabilistic top-k se-
quence, a naive optimal approach consists in calculating Pr(π(k)) for every pos-
sible sequence π(k) and returning the π(k) with the highest Pr(π(k)). This ap-
proach is combinatorial in n and k, since there are n!

(n−k)! possible sequences

to examine. In [13], the authors proposed a Branch-and-Bound alternative to
find the sequence π(k) with the highest Pr(π(k)) optimally. The idea of this ap-
proach is based on the following property. Given a sequence π(k) with length
k, any sequence π(x) with length x ≤ k and Pr(π(x)) < Pr(π(k)) can be safely
pruned from the candidate results since Pr(π(x)) upper-bounds the probability
of any top-k sequence extended from π(x). The complexity of this approach is
still combinatorial in n an k.



Soliman’s Algorithm In order to calculate the probabilistic top-k sequence
efficiently, Soliman, Hyas and Ben-David [12,13] propose an approximate algo-
rithm that searches the space of candidate probabilistic top-k sequences using
a Markov chain Monte Carlo algorithm. The idea is to sample the state, i.e., a
ranking over n objects, from a target distribution and hope that the states visit
the probabilistic top-k sequence we seek.

Figure 1 is an example of the Markov chain in Soliman’s algorithm. A state
in the Markov Chain is a ranking over all the n objects, e.g., the ranking at step
t is πt. To generate the next state, this approach shuffles the rank of the objects
by swapping two objects randomly according to the pairwise probabilities. More
specifically, to generate a candidate state πt+1, they randomly pick a rank r in
current state, move the object o(r) at rank r downward if r ∈ [1, k], otherwise
move the object upward. The movement is done by swapping the object o(r) with
o(r + 1) with probability Pr(o(r + 1) > o(r)) if r ∈ [1, k] or swapping o(r) with
o(r−1) with probability Pr(o(r) > o(r−1)) if r /∈ [1, k]. Swapping is conducted
one by one and stops at the first uncommitted swap. Do the above swapping for
multiple number of randomly picked ranks, i.e., multiple r-s. Then the proposal
distribution Pr(πt+1|πt) is the product of the probabilities of all the committed
swaps since each swap in committed independently. Finally, the candidate state

πt+1 is accepted with probability α = min(
Pr(π

(k)
t+1)·Pr(πt|πt+1)

Pr(π
(k)
t )·Pr(πt+1|πt)

, 1).

𝑜1

𝑜2

𝑜3

⋮

𝑜1

𝑜3

𝑜2

⋮

𝑜3

𝑜1

𝑜2

⋮

Pr(𝜋1|𝜋0) Pr(𝜋2|𝜋1)

𝜋0 𝜋1 𝜋2

Figure 1. An Example of Markov chain

In this paper, we explore the design space and devise several Metropolis-
Hastings Markov chain Monte Carlo algorithms which answer the top-k query
efficiently. We will elaborate our algorithms in next section.

4 Markov chain Monte Carlo Algorithms

In this section, we propose several variants of a Markov chain Monte Carlo
algorithm based on different ways of generating the candidate state: by swapping
objects in the sequence or by sampling or re-sampling scores.

First of all, we present the general framework of the Markov chain Monte
Carlo approaches in Algorithm 1. We use variable “BestSeq” to remember the
most probable top-k sequence we have seen so far and “Pr(BestSeq)” as its prob-
ability (Line 1-2). The initial state of a Markov Chain is generated by sampling



the score for each object from the corresponding score distribution. Sorting the
scores gives us a ranking over n objects. This ranking is used as the initial state
(Line 4). A bad initial state may trap the random walk in a region for many steps.
The authors of [12,13] proposed to run multiple independent Markov Chains with
independent initial states (Line 3). The candidate states in the Markov Chain
are generated in different ways as we will elaborate in this section (Line 7). Each
candidate state is accepted with the acceptance probability α which guarantees
that the chain converges to the target distribution with sufficient number of
steps (Line 8). Update the most probable top-k sequence seen so far (Line 10-
11). Finally, return the most probable sequence of length k as the probabilistic
top-k sequence (Line 12).

Algorithm 1: Framework of Markov chain Monte Carlo Algorithms

Input: Score distributions f1, · · · , fn
Output: The probabilistic top-k sequence π(k)

1 BestSeq ← null;
2 Pr(BestSeq) ← 0;
3 for Chain ID = 1 to C do
4 Generate the initial state π0;
5 for Step t = 1 to L do
6 Set state πt = πt−1;
7 Generate a candidate state π′t(with Different Algorithms);
8 Set πt = π′t with probability α;

9 if Pr(π
(k)
t ) > Pr(BestSeq) then

10 BestSeq ← π
(k)
t ;

11 Pr(BestSeq) ← Pr(π
(k)
t ) ;

12 Return BestSeq;

The First Variant (Swap) In this algorithm, a state is a ranking over n
objects. To generate a candidate state πt+1 from current state πt, we pick two
ranks r1 and r2 randomly such that r1 ∈ [1, k] and r2 ∈ [1, n], swap the object
o(r1) at rank r1 with the object o(r2) at rank r2. This simple process generates a
candidate state πt+1. The proposal distribution Pr(πt+1|πt) = 1

k ·
1
n . The candi-

date state πt+1 is accepted with probability α = min(
Pr(π

(k)
t+1)· 1

kn

Pr(π
(k)
t )· 1

kn

=
Pr(π

(k)
t+1)

Pr(π
(k)
t )

, 1).

This Markov Chain generates samples from the target distribution Pr(π(k)).

The Second Variant (SwapEXP) Actually, we are more interested in the
sequences of length k that have higher probabilities of being the probabilistic
top-k sequence. We refer “good states” to the states that contain the top-k
sequence of objects, π(k), of high probability Pr(π(k)). We want to sample from



the target distribution where good states have higher probabilities. Thus, we
design the following weighted target distribution for the Markov chain:

P̂ r(π(k)) = C−1
β exp(βPr(π(k))) (6)

where C−1
β is a normalizing constant. β is a parameter, where a larger β means

the target distribution P̂ r(π(k)) puts heavier weight on the good states.
With this weighted target distribution, we can generate the candidate state

by swapping two objects as described in Swap algorithm and accept the candi-

date state with probability α = min(
P̂ r(π

(k)
t+1)

P̂ r(π
(k)
t )

= exp(β(Pr(π
(k)
t+1)−Pr(π(k)

t ))), 1).

From this formula a′ = exp(β(Pr(π
(k)
t+1) − Pr(π

(k)
t ))), we can see that when

Pr(π
(k)
t+1) > Pr(π

(k)
t ), a′ is very likely to exceed 1 with a large β. Thus, the

candidate state πt+1 is more likely to be accepted. On the contrary, when

Pr(π
(k)
t+1) < Pr(π

(k)
t ), a′ is approaching 0. Thus, the candidate state πt+1 is

more likely to be rejected.

The Third Variant (ReSample) In this algorithm, a state is a ranking
over n objects. Once we have the initial states, a re-sampling technique can
be adopted to generate a candidate state. Specifically, to generate a candi-
date state, we randomly pick a rank r from [1, n] and re-sample the score of
object o(r) at rank r from its score distribution fo(r). Then redo the sort-
ing over the n objects according to the new scores. This process generates a
new ranking over n objects, which is regarded as a candidate state πt+1. Sup-
pose the rank of o(r) in the candidate state is r′. If r′ > r, it means the ob-
ject o(r) jumps to a lower rank, then the proposal distribution Pr(πt+1|πt) =
1
n

min(uo(r),s(o(r
′)))−max(lo(r),s(o(r

′+1)))

uo(r)−lo(r)
, where o(r′) is the object at rank r′, s(o(r′))

is its score at time step t. Else if r′ < r, the object o(r) jumps to a higher rank,

the proposal distribution Pr(πt+1|πt) = 1
n

min(uo(r),s(o(r
′−1)))−max(lo(r),s(o(r

′)))

uo(r)−lo(r)
.

Else (i.e., r = r′), Pr(πt+1|πt) = 1
n

min(uo(r),s(o(r
′−1)))−max(lo(r),s(o(r

′+1)))

uo(r)−lo(r)
. The

proposal distribution Pr(πt+1|πt) reflects the probability that the object o(r) is
picked at step t and it jumps to the new rank r′ via re-sampling. Pr(πt|πt+1) =
1
n

min(uo(r),s(o(r−1)))−max(lo(r),s(o(r+1)))

uo(r)−lo(r)
. The candidate state πt+1 is accepted with

probability α = min(
Pr(π

(k)
t+1)·Pr(πt|πt+1)

Pr(π
(k)
t )·Pr(πt+1|πt)

, 1).

The Forth Variant (ReSampleEXP) In this algorithm, we generate the
candidate state as described in ReSample algorithm and adopt the weighted
target distribution as in Equation 6. Thus, the candidate state πt+1 is accepted

with probability α = min(Pr(πt|πt+1)
Pr(πt+1|πt)

· exp(β(Pr(π
(k)
t+1)− Pr(π(k)

t ))) , 1).

The Fifth Variant (ReSampleAll) The initial state is generated in the same
way as in previous Markov chain Monte Carlo Algorithms. To generate a candi-



date state πt+1, this algorithm re-samples the score for each of the n objects and
sort them according to the newly sampled scores. This process generates a new
ranking over n objects, which is regarded as the candidate state. The proposal

distribution Pr(πt+1|πt) = Pr(π
(k)
t+1). The candidate state πt+1 is accepted with

probability α = min(
Pr(π

(k)
t+1)·Pr(πt|πt+1)

Pr(π
(k)
t )·Pr(πt+1|πt)

= 1, 1) = 1. In this algorithm, the can-

didate state is generated from the space of the ranking and is independent from
current state.

For simplicity, in the rest of this paper, we refer Soliman to the Soliman’s al-
gorithm which is the baseline algorithm, Swap, SwapEXP, ReSample, ReSampleEXP
and ReSampleAll to our five variants of Markov chain Monte Carlo algorithms.

5 Performance Evaluation

In this section, we evaluate the performance of our proposed algorithms in com-
parison with the baseline Soliman’s algorithm. We explain the settings of our
experiments in Section 5.1. Then, in Section 5.2 we evaluate the effectiveness in
terms of the probability of the probabilistic top-k sequence found by different al-
gorithms, the higher probability means the better performance of the algorithm.
In Section 5.3, we discuss the efficiency of different algorithms analytically and
empirically.

5.1 Experimental Set-up

Synthetic Datasets We evaluate the Markov chain Monte Carlo algorithms
based on a series of synthetic datasets. We prefer to use synthetic data in this
paper, since it lets us study a wide range of patterns of the score intervals,
i.e., each synthetic dataset represents one pattern of how the score intervals
overlap. Specifically, in each dataset, the score interval [li, ui] of each object oi
is generated by drawing a median score, i.e., li+ui

2 , from a predefined median
score distribution. The width of the interval is drawn from a predefined width
distribution. The predefined median score distribution and the width distribution
are summarized in Table 1, where G(µ, σ) represents Gaussian distribution with
mean µ and standard deviation σ defined on [0,1] and U [l, r] represents uniform
distribution on the support [l, r]. Uniform distributions are used as score density
functions in the experiments.

Table 1. Distributions

Setting 1 Setting 2 Setting 3 Setting 4 Setting 5

median score G(0.5, 0.05) G(0.5, 0.2) G(0.5, 0.8) G(0.5, 3.2) U [0, 1]

width G(0.5, 0.05) G(0.5, 0.2) G(0.5, 0.8) G(0.5, 3.2) U [0, 1]

We generate 5× 5 = 25 datasets in total. In each dataset, the median scores
and the widths of the score intervals are drawn from one of the settings in



Table 1, i.e., Median score with setting i and width with setting j generate the
(i− 1) ∗ 5 + jth dataset. For example, the dataset where the median scores are
drawn from G(0.5, 0.05) and the widths are drawn from G(0.5, 0.05) represents
the set of objects that have a high degree of overlaps. In this case, the objects
have very similar score intervals. For the dataset that the median scores are
drawn from U [0, 1], the widths are drawn from G(0.5, 0.05), it represents the
pattern that the score intervals are scattered and there are fewer overlaps of the
score intervals. Thus, these datasets present different patterns of overlapping
of the score intervals and reflect different levels of uncertainty of finding the
probabilistic top-k sequence.

Parameters We run 10 Markov chains for each algorithm, the length of each
chain grows from 1 to 100000. In the experiments, we watch how different al-
gorithms behave as more states are generated (i.e., as the length of the chain
increases) in terms of the probability of the probabilistic top-k sequence. Gelman-
Rubin statistic is used to diagnose the convergence of the chains. For each of
the algorithm, we use the same set of initial states such that the comparison
is fair. The sample size for Monte Carlo Integration is 1000000. In the target
distribution P̂ r(π(k)), we set β = 1010.

We set k = 5, n = 1000 unless otherwise is specified. That is, we are seeking
for 5 objects from 1000 objects. The space of the sequences of length k is large,
i.e., there are around 9.9E14 (990 trillion), sequences of length k in total. Thus,
it is inefficient to traverse all the sequences of length k to find the probabilistic
top-k sequence.

5.2 Effectiveness

Effect of Weighted Target Distribution Each data point in each sub-figure
of Figure 2 and Figure 3 is the probability of the probabilistic top-k sequence
found by the corresponding algorithm under certain number of steps in the
Markov chain. These two figures show how a different target distribution for the
Markov chain affects the performance.

Figure 2 compares the Swap algorithm and the SwapEXP algorithm in terms
of the probability of the probabilistic top-k sequence they found. We can see
that Swap and SwapEXP do not dominate each other, the performance of these
two algorithms are similar over the 25 datasets in general. To be more specific,
SwapEXP reaches a local optimal state earlier than Swap. However, there is a
minor trend that Swap will outperform SwapEXP with sufficient number of steps.

Figure 3 compares the performance of the ReSample algorithm and the
ReSampleEXP algorithm. In Figure 3, we can observe that the ReSampleEXP al-
gorithm outperforms the ReSample algorithm in all the 25 datasets.

The weighted target distribution P̂ r(π(k)) has different effects on the Swap

and the ReSample algorithm. We explain this results as follows. With the weighted
target distribution that has a large β, the SwapEXP and the ReSampleEXP algo-
rithm are more likely to accept the candidate states that have a higher proba-
bility than that of current state (i.e., the “better” candidate states) and reject



the candidate states that have a lower probability than the current state (i.e.,
the “worse” candidate states), while Swap and ReSample will accept the “worse”
candidate states with a certain probability. SwapEXP (ReSampleEXP) spends more
steps searching the neighbor states since it only jumps to the “better” candidate
states. Thus, it finds a local optimal state faster than Swap (ReSample).

The effect of the weighted target distribution is also related to the sampling
strategy. Under the “swap” strategy, it is hard to jump to a better local optimal
state. While “re-sample” is more effective in generating a better candidate state.
ReSample is worse than ReSampleEXP since it probably rejects too many “better”
candidate states.

Effectiveness Figure 4 presents probabilities of the probabilistic top-k sequence
found by our proposed Markov chain Monte Carlo algorithms and by the Soli-
man’s algorithm. The high the probability, the better the algorithm.

We can observe from figure 4 that ReSampleAll outperforms all the other al-
gorithms in general. The superiority of the ReSampleAll algorithm is especially
obvious in Dataset 1-5 where the score intervals have high degree of overlap-
ping. The second best algorithm is the ReSampleEXP algorithm. The Soliman

algorithm is the worst among the six algorithms.
Different ways of generating the candidate states results in the different per-

formance of the six algorithm. The way of generating a candidate state de-
termines whether an algorithm can reach an optimal state. The ReSampleAll

algorithm generates the candidate state by sampling directly from the probabil-
ity distribution, i.e., Pr(π(k)), of sequences of length k. The probabilistic top-k
sequence will be sampled with the highest probability, which is probably the
reason why ReSampleAll performs well.

The idea of ReSampleAll and ReSample are similar except that ReSample

generates states in a lighter-weight fashion of re-sampling the score for only
one object at each step. ReSampleAll accepts all the candidate states while
ReSample may reject a “better” candidate state, which is probably the reason
why ReSample performs badly. ReSampleEXP fixes this problem of ReSample by
accepting the “better” candidates with high probability. However, ReSampleEXP
tends to stick to current local optimal state and not jumps to a better state
efficiently.

The Soliman algorithm performs badly for the reason that it rarely generates
a candidate state that has a different top-k sequence with the top-k sequence of
current state. This is an intrinsic drawback of its process of generating candidate
states where the top-k objects would be changed by the swap with very low
probability. As a result, the top-k sequence in the candidate state is the same
to the top-k sequence in current state in most steps. Thus, Soliman is not able
to search a sufficient number of sequence in the top-k sequence space.

The Swap and SwapEXP algorithms try to fix Soliman’s drawback by involving
one of the current top-k objects in a swap. However, Swap and SwapEXP are
not smart enough because of their randomness in selecting the two objects for
swapping.
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Figure 2. Probabilities of the Probabilistic Top-k Sequence Found by Swap and
SwapEXP
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Figure 3. Probabilities of the Probabilistic Top-k Sequence Found by ReSample and
ReSampleEXP



0 5 10
x 10

4

10
−8

10
−7

10
−6

10
−5

Chain Length

P
ro

ba
bi

lit
y

 

 

Soliman
Swap
SwapEXP
ReSample
ReSampleEXP
ReSampleAll

(a) Dataset1

0 5 10
x 10

4

10
−8

10
−7

10
−6

10
−5

Chain Length

P
ro

ba
bi

lit
y

 

 

Soliman
Swap
SwapEXP
ReSample
ReSampleEXP
ReSampleAll

(b) Dataset2

0 5 10
x 10

4

10
−8

10
−7

10
−6

10
−5

Chain Length

P
ro

ba
bi

lit
y

 

 

Soliman
Swap
SwapEXP
ReSample
ReSampleEXP
ReSampleAll

(c) Dataset3

0 5 10
x 10

4

10
−8

10
−7

10
−6

10
−5

Chain Length

P
ro

ba
bi

lit
y

 

 

Soliman
Swap
SwapEXP
ReSample
ReSampleEXP
ReSampleAll

(d) Dataset4

0 5 10
x 10

4

10
−8

10
−7

10
−6

10
−5

Chain Length

P
ro

ba
bi

lit
y

 

 

Soliman
Swap
SwapEXP
ReSample
ReSampleEXP
ReSampleAll

(e) Dataset5

0 5 10
x 10

4

10
−8

10
−7

10
−6

10
−5

Chain Length

P
ro

ba
bi

lit
y

 

 

Soliman
Swap
SwapEXP
ReSample
ReSampleEXP
ReSampleAll

(f) Dataset6

0 5 10
x 10

4

10
−8

10
−7

10
−6

10
−5

Chain Length

P
ro

ba
bi

lit
y

 

 

Soliman
Swap
SwapEXP
ReSample
ReSampleEXP
ReSampleAll

(g) Dataset7

0 5 10
x 10

4

10
−8

10
−7

10
−6

10
−5

Chain Length

P
ro

ba
bi

lit
y

 

 

Soliman
Swap
SwapEXP
ReSample
ReSampleEXP
ReSampleAll

(h) Dataset8

0 5 10
x 10

4

10
−8

10
−7

10
−6

10
−5

Chain Length

P
ro

ba
bi

lit
y

 

 

Soliman
Swap
SwapEXP
ReSample
ReSampleEXP
ReSampleAll

(i) Dataset9

0 5 10
x 10

4

10
−8

10
−7

10
−6

10
−5

Chain Length

P
ro

ba
bi

lit
y

 

 

Soliman
Swap
SwapEXP
ReSample
ReSampleEXP
ReSampleAll

(j) Dataset10

0 5 10
x 10

4

10
−8

10
−7

10
−6

10
−5

Chain Length

P
ro

ba
bi

lit
y

 

 

Soliman
Swap
SwapEXP
ReSample
ReSampleEXP
ReSampleAll

(k) Dataset11

0 5 10
x 10

4

10
−8

10
−7

10
−6

10
−5

Chain Length

P
ro

ba
bi

lit
y

 

 

Soliman
Swap
SwapEXP
ReSample
ReSampleEXP
ReSampleAll

(l) Dataset12

0 5 10
x 10

4

10
−8

10
−7

10
−6

10
−5

Chain Length

P
ro

ba
bi

lit
y

 

 

Soliman
Swap
SwapEXP
ReSample
ReSampleEXP
ReSampleAll

(m) Dataset13

0 5 10
x 10

4

10
−8

10
−7

10
−6

10
−5

Chain Length

P
ro

ba
bi

lit
y

 

 

Soliman
Swap
SwapEXP
ReSample
ReSampleEXP
ReSampleAll

(n) Dataset14

0 5 10
x 10

4

10
−8

10
−7

10
−6

10
−5

Chain Length

P
ro

ba
bi

lit
y

 

 

Soliman
Swap
SwapEXP
ReSample
ReSampleEXP
ReSampleAll

(o) Dataset15

0 5 10
x 10

4

10
−8

10
−7

10
−6

10
−5

Chain Length

P
ro

ba
bi

lit
y

 

 

Soliman
Swap
SwapEXP
ReSample
ReSampleEXP
ReSampleAll

(p) Dataset16

0 5 10
x 10

4

10
−8

10
−7

10
−6

10
−5

Chain Length

P
ro

ba
bi

lit
y

 

 

Soliman
Swap
SwapEXP
ReSample
ReSampleEXP
ReSampleAll

(q) Dataset17

0 5 10
x 10

4

10
−8

10
−7

10
−6

10
−5

Chain Length

P
ro

ba
bi

lit
y

 

 

Soliman
Swap
SwapEXP
ReSample
ReSampleEXP
ReSampleAll

(r) Dataset18

0 5 10
x 10

4

10
−8

10
−7

10
−6

10
−5

Chain Length

P
ro

ba
bi

lit
y

 

 

Soliman
Swap
SwapEXP
ReSample
ReSampleEXP
ReSampleAll

(s) Dataset19

0 5 10
x 10

4

10
−8

10
−7

10
−6

10
−5

Chain Length

P
ro

ba
bi

lit
y

 

 

Soliman
Swap
SwapEXP
ReSample
ReSampleEXP
ReSampleAll

(t) Dataset20

0 5 10
x 10

4

10
−8

10
−7

10
−6

10
−5

Chain Length

P
ro

ba
bi

lit
y

 

 

Soliman
Swap
SwapEXP
ReSample
ReSampleEXP
ReSampleAll

(u) Dataset21

0 5 10
x 10

4

10
−8

10
−7

10
−6

10
−5

Chain Length

P
ro

ba
bi

lit
y

 

 

Soliman
Swap
SwapEXP
ReSample
ReSampleEXP
ReSampleAll

(v) Dataset22

0 5 10
x 10

4

10
−8

10
−7

10
−6

10
−5

Chain Length

P
ro

ba
bi

lit
y

 

 

Soliman
Swap
SwapEXP
ReSample
ReSampleEXP
ReSampleAll

(w) Dataset23

0 5 10
x 10

4

10
−8

10
−7

10
−6

10
−5

Chain Length

P
ro

ba
bi

lit
y

 

 

Soliman
Swap
SwapEXP
ReSample
ReSampleEXP
ReSampleAll

(x) Dataset24

0 5 10
x 10

4

10
−8

10
−7

10
−6

10
−5

Chain Length

P
ro

ba
bi

lit
y

 

 

Soliman
Swap
SwapEXP
ReSample
ReSampleEXP
ReSampleAll

(y) Dataset25

Figure 4. Probabilities of the Probabilistic Top-k Sequence Found by the Six Algo-
rithms: Soliman, Swap, SwapEXP, ReSample, ReSampleEXP, ReSampleAll
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(q) Dataset17
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(v) Dataset22
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(x) Dataset24
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(y) Dataset25

Figure 5. Convergence of the Markov chains Generated by the Six Algorithms:
Soliman, Swap, SwapEXP, ReSample, ReSampleEXP, ReSampleAll



Generally, all of the six algorithms reach a relatively good state (compared to
the initial states) within 5000 steps. After 5000 steps, the probability returned
by each algorithm increases slowly.

5.3 Efficiency

Analytical Evaluation In Table 2, we refer the Time Complexity to the worst
case time complexity of generating the candidate state in each algorithm.

In Soliman’s algorithm, each step consists of multiple swaps. There are nk
swaps in maximum for generating the candidate state. So, time complexity of
Soliman is O(nk). Time complexity of Swap or SwapEXP is O(1) since each step
consists of only one swap. In ReSample algorithm, the new rank of the picked
object can be determined within n comparisons in maximum. Thus, time com-
plexity of ReSample is O(n). In ReSampleAll algorithm, re-sampling the score for
each object takes O(n). Then, choosing the top-k highest scores takes O(nlogk).
So, time complexity of ReSampleAll is O(nlogk).

Table 2. Worst Case Time Complexity of Generating Next State

Soliman Swap(EXP) ReSample(EXP) ReSampleAll

Time Complexity O(nk) O(1) O(n) O(nlogk)

Convergence Figure 5 shows the convergence of the six algorithms within
100000 steps. We use Gelman-Rubin Convergence Diagnostic to evaluate the
convergence of the multiple Markov chains generated by different algorithms.
The test compares the variance within and across chains. When chains mix, the
test approaches 1. Values that are far higher than 1 mean poor convergence.

We can see that the algorithms, i.e. SwapEXP and ReSampleEXP, with the

weighted target distributions P̂ r(π(k)) do not converge well. Convergence means
that the states in the chain are samples following the target distribution. As
the target distributions P̂ r(π(k)) put very high weights on the good states, only
when all the states are the good states, will the chains converge. Thus, it is
harder for a Markov chain with a weighted target distribution to converge.

Gelman-Rubin Convergence Diagnostic is a test of relative convergence. There-
fore, as shown by the performance of ReSampleEXP, it is possible for an algorithm
to be generally effective yet not to converge well.

Other algorithms converge well in general except that Soliman does not
converge well in the Datasets 1-5. That means samples in the chains generated by
the Swap, ReSample and ReSampleAll algorithms follow the target distribution
Pr(π(k)) after 50000 steps.

Runtime In practice, all the algorithms can generate the candidate states fast.
The main consumption of the runtime lies in the computation of the probability



of the top-k sequence where the Monte Carlo integration is adopted. In our
implementation, we cache in memory the probabilities of the top-k sequences
seen so far. Thus, if we encounter an already seen sequence, there is no need
to recompute its probability. We record the average runtime of one step for
each algorithm, the results are shown in Table 3. In our experiments, Soliman’s
algorithm runs fast. This is due to its inability to discover easily new top-k
sequences, it tends to remain on the same top-k sequence when moving from a
current state to a candidate state. In contrast, ReSampleAll tends to discover
a new top-k sequence at most of the states, thus, it is slower than Soliman’s
algorithm.

Table 3. Runtime Per Step of the Algorithms (seconds)

Soliman Swap SwapEXP ReSample ReSampleEXP ReSampleAll

Runtime Per Step 0.0058 1.9128 0.1163 0.0523 0.0071 0.9056

6 Conclusion

We study top-k queries over uncertain data. We consider probabilistic top-k
queries that return the sequence of objects that has the highest probability to be
the top-k according to a probability distributions of the scores. Finding such most
probable top-k is combinatorial. Efficient algorithms are approximate. Markov
chain Monte Carlo approaches are promising. We explore the design space for
Metropolis-Hastings Markov chain Monte Carlo algorithms. We are able to de-
vise several algorithms and verify through extensive empirical evaluation that
they are more effective than the state of the art approach. Surprisingly, the most
effective approach, ReSampleAll, is based on a simple sampling.
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