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Abstract The collection and exploitation of ratings from users are mod-
ern pillars of collaborative filtering. Likert scale is a psychometric quanti-
fier of ratings popular among the electronic commerce sites. In this paper,
we consider the tasks of collecting Likert scale ratings of items and of
finding the n-k best-rated items, i.e., the n items that are most likely to
be the top-k in a ranking constructed from these ratings. We devise an
algorithm, Pundit, that computes the n-k best-rated items. Pundit uses
the probability-generating function constructed from the Likert scale re-
sponses to avoid the combinatorial exploration of the possible outcomes
and to compute the result efficiently. Selection of the best-rated items
meets, in practice, the major obstacle of the scarcity of ratings. We pro-
pose an approach that learns from the available data how many ratings
are enough to meet a prescribed error. We empirically validate with real
datasets the effectiveness of our method to recommend the collection of
additional ratings.

1 Introduction

The collection and exploitation of ratings from users are modern pillars of col-
laborative filtering [6,8]. Likert scale is an ordinal rating scale popular among
the electronic commerce sites and crowdsourced information systems such as
TripAdvisor. Each value in the scale gauges the degree of satisfaction of the user
towards a particular item, e.g., product or service.

Ranking the items based on Likert scale ratings is not always as obvious as it
seems to be. For instance, ranking items using the expectations of the Likert scale
responses can yield incorrect results [5]. Thus, we consider the task of finding
the list of n items that are most likely to be the top-k in a ranking constructed
from the ratings as our target recommendation task. For the sake of simplicity,
we refer to this list as the n-k best-rated items. We define the problem of finding
the n-k best-rated items as a probabilistic one. The uncertainty arises not from
the unreliability of users but from the unavailability of ratings by all the users.
We assume that the ratings from all users are correct and exact.



In this paper, we represent the scores of the items as discrete distributions on
an L-valued Likert scale. We develop a polynomial-time algorithm, Pundit, that
computes the n-k best-rated items. Pundit exploits the probability-generating
functions of the discrete distributions of the items to avoid the combinatorial
exploration of all possible outcomes and to compute the result efficiently. Our
method is exact whereas the other methods like ranking by mean ratings or
Monte Carlo sampling [15] are approximate algorithms.

In practice, the problem is not solved yet. Since selection of the n-k best-rated
items is constrained by insufficient ratings. Corresponding discrete distributions
are not ‘true’ representations of the score of the items. We devise a score distri-
bution error model based on KL-divergence to answer the question “How many
ratings are enough”. This error model estimate the deviation of the discrete dis-
tribution formed with the available data from the ‘true’ universal distribution.
As we empirically evaluate this model on the Amazon review dataset, we observe
the KL-divergence based model follows inverse law. Following this we use the
inverse law for KL-divergence based error to recommend how many additional
ratings should be proactively sought to reach a certain error threshold.

2 Related Work

The problem of finding the n-k best-rated items is related to the probabilistic
threshold top-k query [4] that returns the items having a probability of being
in the top-k over a user specified threshold. [10] proposes a unified way to sum-
marize a category of probabilistic top-k queries. Though the problem definitions
seem similar, the category of probabilistic top-k queries is applicable to the sce-
nario where the existence of an item is uncertain. Each item has a fixed known
score representing its quality. However, the uncertainty modeled in our prob-
lem emerges from the unavailability of the ratings by the universal user-pool
and is expressed as an evolving distribution over a Likert scale. [9] studies the
problem of ranking continuous probabilistic data, where the score of each item
is modelled as a continuous probability distribution. The authors focus on the
probability of an item being ranked at a certain position. This result cannot be
applied directly to our problem since the probability of an item being in top-k is
not simply the sum over the probabilities of it being at different positions in the
ranking. Another variant of these queries is UTop-Rank query [16]. This query
searches for the item that has the highest probability of being ranked within a
certain range of positions. They solve UTop-Rank query based on Monte Carlo
sampling techniques which produce an approximate result. We construct a poly-
nomial time exact algorithm for our problem which is more effective and efficient
than the Monte Carlo method.

Crowdsourcing-based approaches have been proposed for the ranking and
top-k problems in recent years. For example, [3,2] study the problem of finding
the ‘max’ item or ranking the items by asking the crowd to compare pairs of
items. Then, heuristic algorithms or learning approaches are proposed to ag-
gregate the opinions collected from the crowd and to find the item with the



maximal score. Beside these, [18] provides a thorough experimental study of the
crowdsourced top-k queries. Most of the works in crowdsourcing use the prefer-
ence judgement scheme which is based on the pairwise comparisons results from
the crowd for inferring the global ranking. Hybrid approaches, such as [17,14],
combine preference judgement and absolute judgement, like ratings, to infer the
ranking. These approaches either transform the absolute judgement into the
preference judgement [14] or use the parametric analysis [17] which may not be
suitable for the ordinal data[5]. In this paper, we adopt the absolute judgement
in form of the correct and exact ratings to infer the ranking of the items. The
score of the item is modeled as a discrete distribution over a L-valued Likert
scale.

3 How to Find the n-k Best-Rated Items?

3.1 Problem Definition

We use similar notations as in [11]. Consider a set of N items, O = {o1, · · · , oN}.
A scoring function s maps the set of items O to a totally ordered domain D, i.e.
s : O → D. (D,≥) denotes a total order and (D, >) is the corresponding strict
total order of O induced by s. We call the image s(o) of an item o ∈ O by the
function s the score of the item. A ranking r : O → SN is an indexing function
induced on O by the total order (D,≥). Here, SN denotes the permutation
group on {1, . . . , N}. It is the set of all possible rankings of N items. For any
two items oi and oj ∈ O, if score of oi is greater than or equal to that of oj , i.e.,
s(oi) ≥ s(oj), we say that oi is ranked equally with or above oj , i.e., r(oi) ≤ r(oj).

In our problem, the score of each item is constructed from a collection of
ratings. This epistemic uncertainty introduced by insufficiency of ratings pro-
hibits existence of a deterministic score. Thus, we model the score s(oi) of an
item oi ∈ O as a random variable Xi with a probability mass function fi. We
define the score function as s : O → {f : L → [0, 1]}. Here, L , {1, . . . , L} is
the L-valued Likert scale and f is a probability mass function defined over the
support L. For example, L is {1, . . . , 5} for a 5-valued Likert scale. We call f a
score distribution.

If x1, · · · , xN ∈ L are the observed ratings for the N items correspondingly,
the probability of an item oi to be ranked in top-k is expressed in Equation 1.

P(r(oi) ≤ k) =
∑

{x1,··· ,xN}∈Sk
i

f1(x1) · · · fN (xN ). (1)

Here, Sk
i is the set of allN -tuples {x1, · · · , xN}, such that for each {x1, · · · , xN}

there exist at least (N − k+ 1) number of x’s which are less than or equal to xi.
We call P(r(oi) ≤ k) the positional probability of oi.

Example 1. Suppose there are three items, o1, o2 and o3. If k = 1, i = 2, {x1 =
5, x2 = 1, x3 = 5} is not in S1

2 . Because it consists no rating lower than or equal
to x2. But {x1 = 1, x2 = 1, x3 = 1} is in S1

2 . Because ratings of o1 and o3 are
equal to the rating of o2.



We are looking for the list of n items Ω = [o1, . . . , on] that are most likely
to be the top-k. That is, P(r(o1) ≤ k) ≥ · · · ≥ P(r(on) ≤ k), and P(r(on) ≤
k) ≥ P(r(oi′) ≤ k) for all oi′ /∈ Ω. This means that the items in Ω are ranked
according to their positional probability and probability of other N −n items to
be in top-k is less than that of any item in Ω.

3.2 An Exact Algorithm for Finding the n-k Best-Rated Items

Approaches like ranking by the mean scores and Monte Carlo approaches give
approximate results. Here, we develop an exact algorithm, Pundit, that finds the
n-k best-rated items in polynomial time. The idea is to construct a degree N
polynomial such that its coefficients are dependent on the positional probability.
In the following, we will explain how to construct such a polynomial and then how
to compute the coefficients. Once we can compute the positional probabilities
efficiently, the n items with the highest positional probabilities are the result.

Construction of the Polynomial. We observe that by construction “rank
of oi is higher than or equal to k, i.e., r(oi) ≤ k” is equivalent to the fact that “at
least N − k items other than oi have scores lower than or equal to score of item
oi, i.e., s(oi)”. This fact includes k mutually exclusive cases. Case j ∈ {1, · · · , k}
occurs if exactly N−k+j−1 items other than oi have scores lower than or equal
to s(oi) and other k − j scores are higher than s(oi). Thus, if we can calculate
the probability for each of the k cases, the positional probability is the sum of
the probabilities of these k cases.

In order to calculate the probability of each of the k cases, we construct a
probability-generating function as shown in Equation 2. This construction con-
nects the probability of each of the k cases to the coefficients of the polynomial.

Fi(x, l) ,
∏
j 6=i

(P(s(oj) ≤ l) + P(s(oj) > l)x) (2)

In Equation 2, P(s(oj) ≤ l) denotes the probability that score of oj is lower
than or equal to l. For a given l, Fi(x, l) is a polynomial of x. In particular,
the coefficient of the term xk equals to P(

∑
j 6=i I(s(oj) > l) = k) [10]. Here,

I(s(oj) > l) is the indicator function that returns 1 or 0 depending on whether
s(oj) > l is true or not. This implies that the coefficient of the term xk is the
probability that there are exactly k items having scores higher than l. If s(oi) = l,
the coefficient of the term xk−j is the probability that there are exactly k−j items
having scores higher than s(oi). Thus, the coefficient of xk−j exactly quantifies
the jth (j ∈ {1, · · · , k}) case.

Now, we just need to think about how to compute the coefficients in Equation
2 efficiently.

Coefficients Calculation. We reconstruct the generating function of Equa-
tion 2 into the polynomial expression of x.

Fi(x, l) = c0(l)x0 + · · ·+ cN−1(l)xN−1 (3)

where cq(l) represents the qth coefficient. The coefficients c0(l), · · · , cN−1(l) can
be computed in O(N2) time by expanding Equation 2 into Equation 3.



We propose an efficient divide-and-conquer algorithm which applies Fast
Fourier transform (FFT) to compute the coefficients c0(l), · · · , cN−1(l) more
efficiently. Time complexity of this divide-and-conquer algorithm is O(Nlog2N).
Due to the limitation of space, we refer the readers to our technical report [1]
for more details of the efficient computation of the coefficients.

Pundit: The Algorithm. Once c0(l), · · · , cN−1(l) are computed, the po-
sitional probability for a L-valued Likert scale is calculated using P(r(oi) ≤
k) =

∑L
l=1(c0(l) + · · · + ck−1(l))P(s(oi) = l). Once the positional probabili-

ties for all the N items are computed, the n items that have the highest po-
sitional probabilities are the n-k best-rated items. Calculating the positional
probability P(r(oi) ≤ k) for each item takes O(Nlog2N) time, it would take
O(N2log2N) time for all the items. Here, we propose two techniques to acceler-
ate the computation. The first technique is to pre-compute the coefficient Cl of
F ′ =

∏
oj∈O(P(s(oj) ≤ l)+P(s(oj) > l)x) for all 1 ≤ l ≤ L. Using the shorthand

notation, we get Fi(x, l) = F ′
[
pli + (1− pli)x

]−1
, where pli = P(s(oi) ≤ l). Thus,

we need to compute the set of coefficients once for each l and all the coefficients
can be deduced correspondingly. Secondly, we observe that explicit calculation
of all the coefficients is not needed, we calculate only the first k coefficients
c0(l), · · · , ck−1(l). Time complexity of Pundit reduces to O(Nlog2N +Nk).

4 How Many Ratings Are Enough?

Though we have formulated an exact algorithm, Pundit, for finding n-k best-
rated items, the problem is not solved yet. For real applications, ratings of some
items are either missing or insufficient. For example, more than 30000 books
in our Amazon book dataset have only one rating while the entire population
of our datasets is 8726569. If we try to find the 10 best-rated books from this
dataset, we would get 10 books which are rated as 5-star by only one user. This
result is statistically insignificant and probably biased. Thus, the question that
naturally appears is– “how many ratings are enough to construct the score of
an item?” We investigate error of the score distribution of an item if we have a
finite number of ratings. This model allows us to set a threshold in the required
number of ratings for ranking the items without introducing remarkable error.

4.1 Score Distribution Error Model

We represent the ‘true’ score of an item by the oracle score distribution f∗

constructed with all the ratings from the universal user pool while the observed
score distribution f is constructed with a limited number of ratings. For brevity,
we call f∗ and f the oracle distribution and the observed distribution respectively.

The Optimization Problem. Consider the scenario when m ratings of an
item are collected in the form of L-valued Likert scale. Suppose z1, · · · , zL are
the number of ratings for each of the L values, such that

∑L
i=1 zi = m. Such a

rating pool can be represented by a multinomial distribution, P(z1, · · · , zL) =



m!
z1!···zL!p

∗
1
z1 · · · p∗L

zL . Here, {p∗1, · · · , p∗L} is the oracle distribution f∗ of this item.
The observed distribution fm based on m ratings is { z1m , · · · ,

zL
m }.

In order to model the information gap between the observed distribution fm

and the oracle distribution f∗, we define the expected score distribution error
as EKL

m ,
∑

P(z1, · · · , zL) Dist(fm, f∗) with a distance function Dist(fm, f∗).
The sum is calculated over all {z1, · · · , zL} in the set of all possible L-partitions
of m, P (m,L). Thus, the expected error depends on three factors– the num-
ber of ratings m, the oracle distribution f∗ and the distance function Dist. As
m is given at an instance and the oracle distribution f∗ is constructed with
the universal review pool, modeling the expected error reduces to choice of the
distance function. Since KL-divergence [7] quantifies the expected information
per sample to discriminate between the uncertainty encompassed by one dis-
tribution against the other, we choose KL divergence as the eligible choice of
distance function between the oracle and the observed score distributions. Thus,
the expected error can be written as in Equation 4.

EKL
m =

∑
{z1,··· ,zL}∈P (m.L)

(
m! p∗1

z1 · · · p∗L
zL

z1! · · · zL!

L∑
i=1

(
zi
m

log
zi
mp∗i

))
(4)

We want to find the minimal number of ratings m∗ such that the expected
error between the oracle and the observed distribution is less than a predefined
threshold ε. Our objective is mathematically expressed in Equation 5.

m∗ = arg min
m

m such that, EKL
m ≤ ε. (5)

Efficient Solution. In order to compute m∗ in Equation 5, we need to com-
pute EKL

m . EKL
m depends on the oracle distribution, which is a choice, and the

observed distribution fm, which is observable. As we focus on the method for
efficient calculation of the error, let us assume f∗ is either given as a model pa-
rameter or constructed from the user-pool of a given dataset. But even when the
oracle distribution is given, the expected error is not easy to compute. Because
we sum over the set P (m,L) that contains

(
m+L−1
L−1

)
elements. It makes exact

calculation of EKL
m combinatorially expensive.

Thus, we propose a sampling approach to estimate the expected error based
on the Ergodic Theorem [15]. Due to the limitation of space, we refer readers to
our technical report [1] for more details of the computation of the expected error.
Once we are able to calculate a sufficient approximation of the expected error
EKL

m efficiently, we can formulate the relation between EKL
m and m. This allows

us to find the minimal number of ratings required (m∗) to reach a prescribed
error.

4.2 Experimental Investigation of Error Models

Dataset and Set-up. We use Amazon review dataset1[13,12] with six cat-
egories of products– ‘Apps for Android’, ‘Beauty’, ‘Books’, ‘Cell phones and

1 http://jmcauley.ucsd.edu/data/amazon/
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Figure 1. Expected Error EKL
m with Different Number of Ratings

Accessories’, ‘Electronics’ and ‘Movies and TVs’. Each review contains a rating
for an item collected using a 5-valued Likert scale. This dataset is collected from
May 1996 to July 2014. We consider only the items with more than 500 reviews.
The remaining number of items is summarized in Figure 1. We only show the
results on three datasets in Figure 1 due to the limitation of space, the results
on other datasets are similar to those in Figure 1 [1]. We aggregate the ratings
for each item to construct the oracle distributions of the items. Once we obtain
the oracle distributions, we focus on uncovering the relation between the score
distribution error and the number of ratings m. In the experiments, we increase
the number of ratings accumulated for the items and then observe evolution of
the error.

Score Distribution Error and Number of Ratings. In Figure 1, we
present a smooth curve that fits the evolution of the error. We observe that the
score distribution error decreases with increase in the number of ratings. This
observation proves that this error model is consistent. Because the observed score
distribution would converge to the oracle distribution with accumulation of more
ratings, i.e., information about the item.

We also observe that decay of the expected score distribution error follows
the inverse law, it fits with the hyperbolic equation EKL

m = c
m . For the six cat-

egories, c is a constant between 2.01 and 2.024. Also, evolution of the error is
almost category independent as it quantifies the evolution of observed distribu-
tion with accumulation of ratings. Thus, the score distribution error depends on
the accumulation of ratings but not on the exact object names or categories.
Now, we are able to answer the question “How many ratings are enough”. For
example, in order to restrict the score distribution error to a prescribed value
0.005, we need around 405 ratings for each item.

5 Conclusion

In this paper, we study the problem of finding the n-k best-rated items by
exploiting the ratings from the users. We devise an exact algorithm, Pundit, that



solves this problem efficiently. We develop the score distribution error model to
quantify the effect of the accumulation of ratings and to answer “how many
ratings are enough”. Then, we uncover the fact that the score distribution error
follows the inverse law, which enable us to predict minimal number of ratings
that should be sought to meet a prescribed error.
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