
How to Find the Best Rated Items on a Likert
Scale and How Many Ratings Are Enough

Qing Liu1, Debabrota Basu2, Shruti Goel3,
Talel Abdessalem4, Stéphane Bressan5

1,2,5School of Computing, National University of Singapore, Singapore, Singapore
3Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA,

4LTCI/IPAL CNRS, Télécom ParisTech, Université Paris-Saclay, France

Abstract One of the modern pillars of collaborative filtering and recom-
mender systems is collection and exploitation of ratings from users. Likert
scale is a psychometric quantifier of ratings popular among the electronic
commerce sites. In this paper, we consider the tasks of collecting Likert
scale ratings of items and of finding the n-k best-rated items, i.e., the n
items that are most likely to be the top-k in a ranking constructed from
these ratings.
We devise an algorithm, Pundit, that computes the n-k best-rated items.
Pundit uses the probability-generating function constructed from the
Likert scale responses to avoid the combinatorial exploration of the
possible outcomes and to compute the result efficiently. We empirically and
comparatively evaluate with real data sets and discuss the effectiveness
and efficiency of our and competing approaches. Our method is effective
and competitively efficient.
Selection of the best-rated items meets, in practice, the major obstacle
of the scarcity of ratings. We propose an approach that learns from the
available data how many ratings are enough to meet a prescribed error
and recommends how many additional ratings should be proactively
sought. We also empirically evaluate with real data sets the effectiveness
of our method to recommend the collection of additional ratings. The
results show that the approach is practical and effective.

1 Introduction

One of the modern pillars of collaborative filtering and recommender systems [4]
is accumulation and exploitation of reviews and ratings from users. This process
involves three basic steps- quantification of the reviews using a well-defined rating
scale, accumulation of ratings to form a knowledge-base about the products and
exploiting that knowledge-base for recommender and collaborative systems.

Likert scale is a rating scale popular among the electronic commerce sites
and crowdsourced information systems, such as TripAdvisor, Amazon etc. It is
used to quantify the reviews of users regarding the quality of the products and
services. Originally, Likert scale is a 5-valued psychometric scale developed by
Rensis Likert [13]. Each value in the scale gauges the degree of agreement or
disagreement of the user towards a particular question. Instead of restricting

to the classical 5-valued Likert scale, we develop our method for a general L-
valued ordinal scale and experimentally instantiate it on the classical Likert scale.
Hereinafter, we call it an L-valued Likert scale.

Since we settle down with the L-valued Likert scale as our quantifier of user
reviews, the remaining issue are twofold. The first question is how to accumulate
the ratings to create a knowledge-base about the product. But aggregating
individual Likert scale ratings is not always as obvious as it seems to be. For
instance, ranking items using the expectations of the Likert scale responses can
yield incorrect results [8]. The second question is how to exploit the knowledge-
base for recommendation. We consider the task of finding the list of n items that
are most likely to be the top-k in a ranking constructed from the accumulated
ratings as our target recommendation task. For the sake of simplicity, we refer to
this list as the n-k best-rated items. In this paper, we represent the aggregated
ratings as discrete distributions on an L-valued Likert scale, which solves the
first question. Then, let us focus on the second question.

We define the problem of finding the n-k best-rated items as a probabilistic
one (Section 3.1). The uncertainty arises not from the unreliability of users but
from the unavailability of ratings by all the users. We assume that the ratings
from all users are correct and exact. Correctness implies that every user chooses
the value of response in the Likert scale that is true to their knowledge of the
product. Exactness implies that if an user rates an item r, then r unambiguously
represents her response about its quality. These assumptions imply individual
ratings are reliable. The probabilistic formulation of the task is not due to the
aleatoric uncertainty [3]. Rather the uncertainty of the task appears due to
unavailability of the ratings by the universal user-pool. This keeps the knowledge-
base of the system incomplete. The knowledge-base would be complete if the
underlying discrete distribution built from all ratings from all users is available.
This probabilistic formulation of the task is due to the epistemic uncertainty [3]
caused by insufficient ratings.

We develop a polynomial-time algorithm, Pundit, that computes the n-k best-
rated items (Section 3.4). The uncertainty for each individual item is summarized
into the corresponding discrete distribution defined over the L-valued Likert
scale. Pundit exploits the probability-generating functions [9] of the discrete
distributions of the items to avoid the combinatorial exploration of all possible
outcomes and to compute the result efficiently. Algorithms devised in [12] also use
probability-generating functions to answer their top-k query which is modelled
on the uncertainty over existence of items. [12] does not model the epistemic
uncertainty originated from scarcity of reviews. In the present formulation, the
epistemic uncertainty is captured through a discrete distribution defined over the
L-valued Likert scale that evolves with accumulation of ratings. Dynamic nature
of this distribution provides us a single mathematical object to encompass the
uncertainty rather than scanning over all possible knowledge-bases. Above all,
our method is exact whereas the other methods computing the n-k best-rated
items are approximate algorithms like ranking by mean ratings or Monte Carlo
sampling [18] (Section 3.2 and 3.3). We empirically and comparatively evaluate

the effectiveness and efficiency of these methods using Amazon review dataset
(Section 3.5). Experiments validate that our method is competitively efficient.

In practice, the problem is not solved yet. Since selection of the n-k best-rated
items is constrained by insufficient ratings, corresponding discrete distributions
are not “true” representations of the quality of the products rather they are
representatives of the observed or “incomplete” knowledge-base. This uncertainty
engendered from incompleteness of knowledge-base introduces error in the final
ranking. Thus, we revisit our question about how to accumulate the ratings
and twist it slightly to answer how many ratings are enough to form a reliable
approximation of “true” knowledge-base. We use this opportunity to devise the
score distribution error model based on KL-divergence [10] (Section 4.1).This error
model estimate the deviation of the discrete distribution formed with the available
data from the “true” universal distribution portraying the complete knowledge-
base. As we empirically evaluate this model on the Amazon review dataset, we
observe the KL-divergence based model follows inverse law (Section 4.2). Following
this we use the inverse law for KL-divergence based error to recommend how many
additional ratings should be proactively sought to reach a certain error threshold.
The results validate that the approach is practical and effective (Section 4.3).

Before delving into the details, we discuss the related work in Section 2.

2 Related Work

We study the problem of finding the n-k best rated items. This problem is related
to the probabilistic threshold top-k query [7] that returns the items having a
probability of being in the top-k over a user specified threshold. [12] proposes
a unified way to summarize a category of probabilistic top-k queries. Though
the problem definitions seem similar, this category of probabilistic top-k queries
is applicable to the scenario where the existence of an item is uncertain. Each
item has a fixed known score representing its quality. However, the uncertainty
modelled in our problem emerges from the unavailability of the ratings by the
universal user-pool and is expressed as an evolving distribution over Likert scale.

Eclectic definitions of the uncertain top-k queries are available in the literature.
For example, [11] studies the problem of ranking continuous probabilistic data,
where the score of each item is modelled as a continuous probability distribution.
The authors focus on finding the probability of an item being ranked at a
certain position. This result cannot be applied directly to our problem since the
probability of an item being in top-k is not simply the sum over the probabilities
of it being at different positions in the ranking. Another variant of these queries
is UTop-Rank query [19]. This query searches for the item that has the highest
probability of being ranked within a certain range of positions. They solve
UTop-Rank query based on Monte Carlo sampling techniques that produces an
approximate result. We construct a polynomial time exact algorithm for our
problem that is shown to be more efficient than the Monte Carlo method.

With emergence of the electronic commerce platforms, crowdsourcing based
approaches are proposed for the ranking and top-k problems. The authors of
[6] study the problem of finding the ‘max’ item with the help of the crowd.
They asked the crowd to compare pairs of items. They propose a group of

heuristic algorithms to aggregate the ratings collected from the crowd and to
find the item with the maximal score. [20] determines the maximum item by
asking the crowd to select the item which they believe is the maximum from a
given set. Then, they devise several heuristic max algorithms for aggregating the
responses. Similarly, [1] studies the problem of finding a gold-standard ranking
by aggregating the results of pairwise comparisons with crowdsourcing. This
paper develops an algorithm called Crowd-BT to learn the global ranking with
the crowdsourced responses. [6,1] also consider the quality of the crowd while
developing their methods. Beside this, [22] provides a thorough experimental
study of the crowdsourced top-k queries.

Most of the works in crowdsourcing use the preference judgement scheme.
This scheme is based on the pairwise comparisons accumulated from the crowd
for inferring the global ranking. Hybrid approaches, such as [21,17], combine
preference judgement and absolute judgement, like ratings, to infer the ranking.
These approaches either transform the absolute judgement into the preference
judgement [17] or use the parametric analysis [21] which may not be suitable
for the ordinal data since the intervals between the ordinal values cannot be
presumed equal. In this paper, we adopt the absolute judgement in form of the
correct and exact ratings to infer the global ranking of the items. The score of
the item is modelled as a discrete distribution over an L-valued Likert scale.

3 How to Find the n-k Best-Rated Items?
3.1 Problem Definition

We use similar notations as in [14]. Consider a set of N items, O = {o1, · · · , oN}.
A scoring function s maps the set of items O to a totally ordered domain D, i.e.
s : O → D. (D,≥) denotes a total order and (D, >) is the corresponding strict
total order of O induced by s. We call the image s(o) of an item o ∈ O by the
function s the score of the item. A ranking r : O → SN is an indexing function
induced on O by the total order (D,≥). Here, SN denotes the permutation group
on {1, . . . , N}. It is the set of all possible rankings of N items. For any two
items oi and oj ∈ O, if score of oi is greater than or equal to that of oj , i.e.,
s(oi) ≥ s(oj), we say that oi is ranked equally with or above oj , i.e., r(oi) ≤ r(oj).
This deterministic definition of score function is valid if complete knowledge of
the items is obtained.

But we deal with the incomplete knowledge-base scenario where the score of
each item is constructed from a collection of ratings. The epistemic uncertainty
introduced by insufficiency of ratings prohibits existence of a deterministic score.
Instead, we model the score s(oi) of an item oi ∈ O as a random variable
Xi with a probability mass function fi. Thus, we define the score function as
s : O → {f : L → [0, 1]}. Here, L , {1, . . . , L} is the L-valued Likert scale
and f is a probability mass function defined over the support L. We call f a
score distribution. A score distribution represents and quantifies the underlying
uncertainty at a certain instance. Its evolution through gradual accumulation of
ratings echoes the growth of the knowledge-base.

Example 1. Consider the ith hotel on TripAdvisor, Lakeview. 495 reviews of this
hotel are collected using a 5-valued Likert scale. 125 of the users rate Lakeview

as ‘Excellent(5)’, 207 rate it as ‘Very good(4)’, 106 rate it as ‘Average(3)’, 36
rate it as ‘Poor(2)’ and 21 rate it as ‘Terrible(1)’. After normalizing the count on
different ratings, we get the score s(oi) for this hotel as a score distribution over
{1, . . . , 5} defined by s(oi) = {fi[j]}5j=1 = {0.04, 0.07, 0.22, 0.42, 0.25}.
If x1, · · · , xN ∈ L are the observed ratings of the items, the probability of an
item oi to be ranked in top-k is expressed in Equation 1.

P(r(oi) ≤ k) =
∑

{x1,··· ,xN}∈Sk
i

f1(x1) · · · fN (xN). (1)

Here, Ski is the set of allN -tuples {x1, · · · , xN}, such that for each {x1, · · · , xN}
there exist at least (N − k + 1) number of x’s which are less than or equal to xi.
We call P(r(oi) ≤ k) the positional probability of oi.

Example 2. Suppose there are three items, o1, o2 and o3. If k = 1, i = 2, {x1 =
5, x2 = 1, x3 = 5} is not in S1

2 . Because it consists no rating lower than or equal
to x2. But {x1 = 1, x2 = 1, x3 = 1} is in S1

2 . Because ratings of o1 and o3 are
equal to the rating of o2.

Leveraging the structure of Equation 1, score distributions and ranking
functions, we define the query for finding the n-k best-rated items. We call
it the n-top-k query. The n-top-k query searches for the sequence of n items,
Ω = [o1, . . . , on], such that P(r(o1) ≤ k) ≥ · · · ≥ P(r(on) ≤ k), and P(r(on) ≤
k) ≥ P(r(oi′) ≤ k) for all oi′ /∈ Ω. This means that the items in Ω are ranked
according to their probability to belong in the top-k and probability of other
N − n items to be in top-k is less than that of any item in Ω.

3.2 Mean Score Ranking Algorithm

A natural intuition to answer the n-top-k query is first to rank the objects
according to the mean of their score distributions and then to choose the top-n
of them. We call it the Mean Score Ranking algorithm.

Example 3. Assume that there are two items o1 and o2 and their score
distributions are {0.3, 0.05, 0.65, 0, 0} and {0.05, 0.5, 0.45, 0, 0}. Suppose we are
interested in the 1-top-1 query. Since mean scores of o1 and o2 are 2.35 and
2.4 respectively, Mean Score Ranking returns o2. Through direct calculations,

we get P(r(o1) ≤ r(o2)) = P(s(o1) ≥ s(o2)) =
∑L
l=1 P(s(o1) ≥ l)P(s(o2) = l) =

1× .05+0.7×0.5+0.65×0.45 = 0.6925. Similarly, we get P(r(o2) ≤ r(o1)) = 0.64.
Thus, the 1-top-1 query should return o1. Thus, Mean Score Ranking is not
always correct.
3.3 Exhaustive Search and A Monte Carlo Approximation

A näıve approach of solving the n-top-k query is to search through all possible
ratings of the N items, and to determine for each combination if it is in Ski . If
it belongs to Ski , use its probability to calculate the positional probability of
Equation 1. The number of all possible rating combinations is LN . Thus, the
näıve approach is exponentially explosive and impractical. Hence, [19] proposed a
Monte Carlo search to approximate the positional probability from the observed
ratings. The intuition is to rank each item based on the frequency with which
it appears in top-k. But Monte Carlo may get stuck at the local minima or
may ask for consideration of several initial configurations. Using Monte Carlo is
expensive. It returns us an approximate solution which can be suboptimal.

3.4 Pundit: An Exact Algorithm for n-top-k Query

Motivated by the shortcomings of the basic algorithms, we develop an exact
algorithm, Pundit, that answers the n-top-k query in polynomial time. The idea
is to construct a degree N polynomial such that its coefficients are dependent on
the positional probability. Following this, we apply the fast Fourier transform
(FFT) to calculate the positional probability for each item oi. Once the positional
probabilities are fixed, we get the n items with the highest positional probabilities
as the answer to the n-top-k query.

Construction of the Polynomial. We observe that by construction “rank
of oi is higher than or equal to k, i.e., r(oi) ≤ k” is equivalent to the fact that
“at least N − k items other than oi have scores lower than or equal to score of
item oi, i.e., s(oi)”.

This fact includes k mutually exclusive cases. Case j ∈ {1, · · · , k} occurs if
exactly N − k + j − 1 items other than oi have scores lower than or equal to
s(oi) and other k − j scores are higher than s(oi). Thus, if we can calculate the
probability for each of the k cases, the positional probability is the sum of the
probabilities of these k cases.

We threshold the score functions to capture the notion of positional probability
that emerges due to thresholding of the ranking function. We look into the
probability distribution P(s(oi) = l) for a given l. We would show that the
notion of l would introduce a threshold k on r. As we have planned to shift our
calculations to polynomials, we express the distribution P(s(oi) = l) in terms of
probability-generating function Fi(x, l). We construct it as shown in Equation 2.

Fi(x, l) ,
∏
j 6=i

(P(s(oj) ≤ l) + P(s(oj) > l)x) (2)

In Equation 2, P(s(oj) ≤ l) denotes the probability that score of oj is lower
than or equal to l. For a given l, Fi(x, l) is a polynomial of x. In particular,
the coefficient of the term xk equals to P(

∑
j 6=i I(s(oj) > l) = k) [12]. Here,

I(s(oj) > l) is the indicator function that returns 1 or 0 depending on whether
s(oj) > l is true or not.

If s(oi) = l, the coefficient of the term xk−j is the probability that there
are exactly k − j items having scores higher than s(oi) for j ∈ {1, · · · , k}. This,
in turn, means there are exactly N − k + j − 1 items having scores lower than
or equal to s(oi). Thus, the coefficient of xk−j exactly quantifies the jth case.
We observe similar relations between all the k cases and the coefficients of the
probability-generating function.

Probability-generating function [9] is a common technique employed to com-
pute the probability of a discrete random variable. It is also applied by [12] for
their top-k queries. In our problem, the quality of the item and the corresponding
uncertainty is quantified with a discrete score distribution instead of a fixed score
like [12]. Due to the inherently different uncertainties modelled in our and [12]’s
problem formulations, we cannot apply their fixed score setting and also their
scheme. Thus, we propose an alternative scheme to construct the generating
functions and to solve the n-top-k problem.

Algorithm 1: DAC-FFT

Input: Probabilities pl1, · · · , p
l
N of O\{oi}

Output: The coefficient vector Cl of Fi(x, l,O)
1 if N == 1 then

2 Cl(0)← pl1; Cl(1)← 1− pl1;

3 Return Cl;

4 Divide the set O into two sub sets O1 and O2 evenly;

5 Cl
1 ← DAC-FFT(pl1, · · · , p

l
bN/2c); C

l
2 ← DAC-FFT(plbN/2c+1, · · · , p

l
N);

6 Cl ← iFFT (FFT(Cl
1)× FFT(Cl

2));

7 Return Cl;

Coefficients Calculation. As we have constructed the probability-generating
polynomial with coefficients related to the positional probabilities, the next step
is to calculate these coefficients efficiently. Since the qth coefficient is given by
P(
∑
j 6=i I(s(oj) > l) = q), we reconstruct the generating function of Equation 2

into the polynomial expression of x.

Fi(x, l) = c0(l)x0 + · · ·+ cN−1(l)xN−1 (3)

where cq(l) represents the qth coefficient. Since P(s(oi) > l) and P(s(oj) ≤
l) are independent events for i 6= j, the qth coefficient is given by cq(l) =∑
A⊂O∧|A|=q

(∏
oj∈A P(s(oj) > l)

)(∏
oj∈O\A P(s(oj) ≤ l)

)
. P(s(oj) ≤ l) and

P(s(oj) > l) can be computed directly from the score distributions of items.
Thus, the coefficients c0(l), · · · , cN−1(l) can be computed in O(N2) time by
expanding Equation 2 into Equation 3.

We propose a fast Fourier transform (FFT) [2] based scheme for faster
computation of these coefficients. FFT is a commonly adopted technique for
facilitating the multiplication of polynomials. Here, we propose an efficient
divide-and-conquer algorithm which applies FFT to compute the coefficients
c0(l), · · · , cN−1(l). We summarize this divide-and-conquer algorithm in Algorithm
1. plj is used as the shorthand notation for the positional probability P(s(oj) ≤ l).

At the first step, we evenly divide the set of items O into two subsets O1 and
O2. Let Fi(x, l,O) denote the probability-generating polynomial defined on set O.
Then, Fi(x, l,O) =

∏
j 6=i∧oj∈O(P(s(oj) ≤ l) + P(s(oj) > l)x). where Fi(x, l,O1)

and Fi(x, l,O2) denote the polynomials defined on O1 and O2. Let Cl denote the
vector of coefficients in Fi(x, l,O). Cl1 and Cl2 denote the vector of coefficients
in Fi(x, l,O1) and Fi(x, l,O2), correspondingly. Then, the qth coefficient in Cl

is Cl(q) =
∑q
i=0 C

l
1(i) × Cl2(q − i) ,∀q ∈ {0, · · · , N − 1}. It implies that Cl

is convolution of the sub-vectors Cl1 and Cl2. Thus, we can evaluate Cl(q) in
O(NlogN) time by employing FFT and inverse FFT [2]. Each recursive call
of Algorithm 1 includes two sub-problems and a convolution calculation which
takes O(NlogN) by applying FFT. Thus, the runtime of DAC-FFT is T (N) =
2T (N2) +O(NlogN) = O(Nlog2N). Once c0(l), · · · , cN−1(l) are computed, the
positional probability for an L-valued Likert scale is calculated using P(r(oi) ≤
k) =

∑L
l=1(c0(l) + · · ·+ ck−1(l))P(s(oi) = l).

Pundit: The Algorithm. Since calculating the positional probability P(r(oi)
≤ k) for each item takes O(Nlog2N) time, it would take O(N2log2N) time for

Algorithm 2: Pundit
Input: Score distributions f1, · · · , fN
Output: Answer to the n-top-k query

1 for l = 1 : L do

2 Calculate pl1, · · · , p
l
N for a given l;

3 Cl ← DAC-FFT(pl1, · · · , p
l
N);

4 for oi ∈ O do
5 P(r(oi) ≤ k)← 0;
6 for l = 1 : L do

7 C[0]← Cl[0]/pli;
8 for ind = 1 : k − 1 do

9 C[ind]← (Cl[ind]− (1− pli)× C[ind− 1])/pli;

10 P(r(oi) ≤ k)← P(r(oi) ≤ k) + (
∑k−1

ind=0 C[ind])P(s(oi) = l);

11 Return n items with highest P(r(oi) ≤ k);

all the items. Here, we propose two techniques to accelerate the calculation. We
name this algorithm, Pundit, that answers the n-top-k query in Algorithm 2.
Time complexity of Algorithm 2 is O(Nlog2N +Nk).

The first technique is to pre-compute the coefficient Cl of F ′ =
∏
oj∈O(P(s(oj)

≤ l) + P(s(oj) > l)x) for all 1 ≤ l ≤ L. Using the shorthand notation, we get

Fi(x, l) = F ′
[
pli + (1− pli)x

]−1
. Thus, we need to compute the set of coefficients

once for each l and all the coefficients can be deduced correspondingly. Secondly,
we observe that explicit calculation of all the coefficients is not needed. For
answering n-top-k query, we calculate only the first k coefficients c0(l), · · · , ck−1(l)
as shown in Line 6-9. Following this, Line 10 computes the positional probability.
Once the positional probabilities for all the N items are computed, the answer to
the n-top-k query is the set of n items that have the highest positional probability.

3.5 Performance Evaluation

In this section, we compare performance of Pundit with two baseline algorithms
Mean Score Ranking and Monte Carlo, as described in Sections 3.2 and 3.3.

Datasets and Set-up. We use the Amazon review dataset1[16,15] with six
categories of products– ‘Apps for Android’, ‘Beauty’, ‘Books’, ‘Cell phones and
Accessories’, ‘Electronics’ and ‘Movies and TVs’. Each review contains a rating
for an item collected using a 5-valued Likert scale. This dataset is collected from
May 1996 to July 2014. We set k = 3 as a default value. Actually, we find that
varying k does not affect the results of Pundit much. All experiments are run on
a Windows PC with 3.4 GHz Intel Core and 8 GB memory.

When evaluating the performance of the algorithms, we remove the items
from each dataset which has less than 100 reviews. The remaining number of
items N in each dataset is summarized in Table 1. We aggregate the ratings
for each item to construct the score distributions of the items. We measure the
efficiency and effectiveness of the three algorithms based on this filtered dataset.
For effectiveness, Pundit returns the optimal ranking list for the n-top-k query
while Mean Score Ranking and Monte Carlo algorithms return the approximate
results.

1 http://jmcauley.ucsd.edu/data/amazon/

Table 1. Pundit vs. Mean Score Ranking

Dataset N
Runtime(seconds) Normalized F∗ Distance

Pundit MeanScoreRanking n = 10 n = 30 n = 50 n = 70 n = 90
Apps for Android 3418 0.32 0.05 0.291 0.333 0.289 0.270 0.249
Beauty 2687 0.26 0.06 0.364 0.312 0.288 0.295 0.289
Books 28897 2.59 0.21 0.200 0.215 0.231 0.227 0.229
Cell phones and accessories 5245 0.48 0.09 0.527 0.441 0.420 0.379 0.358
Electronics 13077 1.17 0.12 0.309 0.215 0.241 0.266 0.268
Movies and TVs 8392 0.75 0.10 0.127 0.228 0.249 0.244 0.227

Metric of Comparison. We use a variation of Spearman’s footrule distance,
F ∗ [5], to measure the discrepancy between the list of n-k best-rated items
returned by Pundit and that of the baseline algorithms. F ∗ distance measures
the total displacement of the items which appear in either of the two lists.
More specifically, F ∗(list1, list2) =

∑
oi∈list1∪list2 |r(oi)

list1 − r(oi)list2 |, where

r(oi)
lista is the rank of oi in lista. If oi only appears in one of the two lists, say

list1, then replace r(oi)
list2 with a natural choice n+ 1. We choose F ∗ distance

for the reason that it is a metric and satisfies the interpolation criterion [5]. The
maximum value of the F ∗ distance is n(n+ 1) for the lists of length n that share
no items. F ∗ attends the minimum value 0 for the lists that have all the items
in common. So, the normalized F ∗ distance equals to F ∗ distance divided by
n(n+ 1). Shorter normalized F ∗ distance implies better approximation of the
baseline algorithm.

Pundit versus Mean Score Ranking. Table 1 enlists runtime of Pundit
and Mean Score Ranking respectively. In this experiment, we set n as the N
of the corresponding category. We observe that Pundit is efficient. For exam-
ple, Pundit is able to rank around 30,000 items of the ‘Books’ dataset in 3
seconds. Mean Score Ranking is faster than Pundit, since its time complexity is
O(Nlogn). But as shown in Section 3.2, ranking the items according to the mean
score does not always return a correct answer. In Table 1, we also present the
normalized F ∗ distance between the two lists of n-k best-rated items returned by
Pundit and that returned by Mean Score Ranking. It elaborates change in the
normalized F ∗ distance for different categories of items and also with increasing
length of the list n. We observe that the normalized F ∗ distance decreases as
n increases for ‘Beauty’ and ‘Cell phones and Accessories’ categories. But for
the other categories the trend is not monotonous. Thus, we can hardly conclude
about the influence of increasing n on the performance of Mean Score Ranking.

Pundit versus Monte Carlo. In figure 1, we depict the execution times of
Pundit and Monte Carlo with increasing number of samples. We also instantiate
the ‘goodness’ of approximation of the Monte Carlo algorithm in terms of the
normalized F ∗ distance. All the results of Monte Carlo are averaged over 15
random runs. Intuitively, more samples improve performance of the Monte Carlo

algorithm. This is observed in Figure 1 since the F ∗ distance decreases as the
number of samples increases. However, as shown in Figure 1, execution time
of the Monte Carlo method increases proportionally to the number of samples
and to the number of items in the dataset. This shows that the Monte Carlo

algorithm is not efficient. The Pundit algorithm, instead, can generate the exact
n-k best-rated items within 5 seconds for all datasets.

0 500 1000 1500 2000 2500 3000
0

0.5

1

n=10
N

or
m

al
iz

ed
 F

* D
is

ta
nc

e
n=30
n=50
n=70
n=90

0 500 1000 1500 2000 2500 3000
0

50

100

T
im

e(
se

co
nd

s)

Monte Carlo

Pundit

Number of Samples

(a) Apps for Android

0 500 1000 1500 2000 2500 3000
0

0.5

1

n=10

N
or

m
al

iz
ed

 F
* D

is
ta

nc
e

n=30

n=50
n=70

n=90

0 500 1000 1500 2000 2500 3000
0

50

100

T
im

e(
se

co
nd

s)

Monte Carlo

Pundit

Number of Samples

(b) Beauty

0 500 1000 1500 2000 2500 3000
0

0.5

1

n=10

N
or

m
al

iz
ed

 F
* D

is
ta

nc
e

n=30
n=50

n=70
n=90

0 500 1000 1500 2000 2500 3000
0

500

1000

T
im

e(
se

co
nd

s)Monte Carlo

Pundit

Number of Samples

(c) Books

0 500 1000 1500 2000 2500 3000
0

0.5

1

n=10

N
or

m
al

iz
ed

 F
* D

is
ta

nc
e

n=30
n=50

n=70
n=90

0 500 1000 1500 2000 2500 3000
0

20

40

60

80

100

120

140

T
im

e(
se

co
nd

s)
Monte Carlo

Pundit

Number of Samples

(d) Cell Phones and Acces-
sories

0 500 1000 1500 2000 2500 3000
0

0.5

1

n=10

N
or

m
al

iz
ed

 F
* D

is
ta

nc
e

n=30

n=50

n=70
n=90

0 500 1000 1500 2000 2500 3000
0

50

100

150

200

250

300

350

T
im

e(
se

co
nd

s)

Monte Carlo

Pundit

Number of Samples

(e) Electronics

0 500 1000 1500 2000 2500 3000
0

0.5

1

n=10

N
or

m
al

iz
ed

 F
* D

is
ta

nc
e

n=30

n=50
n=70
n=90

0 500 1000 1500 2000 2500 3000
0

200

400

T
im

e(
se

co
nd

s)

Monte Carlo

Pundit

Number of Samples

(f) Movies and TVs

Figure 1. Pundit vs. Monte Carlo[19]

4 How Many Ratings Are Enough?

Though we have formulated an exact algorithm, Pundit, for finding n-k best-
rated item using the observed collection of ratings, the problem is not solved
yet. For real applications, ratings of some items are either missing or insufficient.
For example, more than 30000 books in the Amazon book dataset have only one
rating while the entire population of our datasets is 8726569. If we try to find the
10 best-rated books from this dataset, we would get 10 books which are rated
as 5-star by only one user. But the knowledge-base formed by one review is not
only ‘incomplete’ but statistically insignificant and probably biased. Thus, the
question that naturally appears is– “how many ratings are enough to build a
knowledge-base that would be representative of the true one?” Since seeking for
more ratings takes higher cost in terms of money or resources, answering the
aforementioned question introduces a cost-effective perspective of crowdsourcing.

In Section 4.1, we investigate the estimation error of the score distribution
of an item if we have a finite number of ratings. This model allows us to set a
threshold in the required number of ratings for an item if we want to construct
a knowledge-base without introducing remarkable error. We instantiate and
evaluate applicability of the error model for such purpose in Section 4.3.

4.1 Score Distribution Error Model

Following the structure of Section 3.1, ‘incomplete’ knowledge-base formed by
accumulation of a certain number of ratings is represented by observed score
distribution f . We represent the ‘true’ knowledge-base about the quality of an
item by the oracle score distribution f∗ constructed with all the ratings from the
universal user pool. For brevity, we call f∗ and f the oracle distribution and the
observed distribution respectively. Now, we model the discrepancy between the

oracle distribution and the observed distribution using KL-divergence. We apply
it to analyse evolution of the observed distribution with accumulation of ratings.

The Optimization Problem. Let us consider the scenario when m reviews
of an item are collected in the form of L-valued Likert scale. Suppose z1, · · · , zL
are the number of ratings for each of the L values, such that

∑L
i=1 zi = m.

This is analogous to running m trials of an experiment that produces L possible
outputs and obtaining the ith output zi times. If the probability of getting the
ith output is p∗i , probability of reaching such a review pool can be represented
by a multinomial distribution. Mathematically, we express the corresponding
probability density function by Equation 4.

P(z1, · · · , zL) =
m!

z1! · · · zL!
p∗1
z1 · · · p∗L

zL . (4)

Here, p∗i is the probability of an user rating the item i according to the oracle
distribution. Thus, P(z1, · · · , zL) is the probability of obtaining zi users rating
the item i after accumulation of m ratings. Now, we construct the observed score
distribution fm from these m ratings as a collection of empirical frequencies of
an user rating a certain value zi

m . In order to model the information gap between
the observed distribution fm and the oracle distribution f∗, we define a distance
Dist(f, f∗). This allows us to define the expected error of the observed score
distribution by its expected distance from the oracle. Mathematically, we express
the expected score distribution error as EKL

m ,
∑

P(z1, · · · , zL) Dist(fm, f∗).
The sum is calculated over all {z1, · · · , zL} in the set of all possible L-partitions
of m, P (L,m). Thus, the expected error depends on three factors– the number of
ratings m, the oracle distribution f∗ and the distance function Dist. As m is given
at an instance and the oracle distribution f∗ is constructed with the universal
review pool, modelling the expected error reduces to choice of the distance
function. Since KL-divergence [10] quantifies the expected information per sample
to discriminate between the uncertainty encompassed by one distribution against
the other, we choose KL divergence as the eligible choice of distance function
between the oracle and the observed score distributions. Thus, the expected error
can be written as in Equation 5.

EKL
m =

∑
{z1,··· ,zL}∈P (L,m)

(
m! p∗1

z1 · · · p∗L
zL

z1! · · · zL!

L∑
i=1

(
zi
m

log
zi
mp∗i

))
(5)

We want to find the minimal number of ratings m∗ such that the expected
error between the oracle and the observed distribution is less than a predefined
threshold ε. Our objective is mathematically expressed in Equation 6.

m∗ = arg min
m

m such that, EKL
m ≤ ε. (6)

Efficient Solution. In order to compute m∗ using Equation 6, we need to
compute EKL

m . EKL
m depends on the oracle distribution, which is a choice, and

the observed distribution fm, which is an observable. The choice of f∗ is crucial
as we observe different oracle distributions introduce different representations
of the true knowledge-base and different levels of difficulty for calculating the

0 200 400 600 800 1000
10

−3

10
−2

10
−1

10
0

Number of Ratings

E
mK

L

(42,0.05)

(204,0.01)

(405,0.005)

(a) Apps for Android

0 200 400 600 800 1000
10

−3

10
−2

10
−1

10
0

Number of Ratings

E
mK

L

(43,0.05)

(203,0.01)

(402,0.005)

(b) Beauty

0 200 400 600 800 1000
10

−3

10
−2

10
−1

10
0

Number of Ratings

E
mK

L

(42,0.05)

(205,0.01)

(405,0.005)

(c) Books

0 200 400 600 800 1000
10

−3

10
−2

10
−1

10
0

Number of Ratings

E
mK

L

(42,0.05)

(202,0.01)

(402,0.005)

(d) Cell Phones and Accessories

0 200 400 600 800 1000
10

−3

10
−2

10
−1

10
0

Number of Ratings

E
mK

L
(43,0.05)

(203,0.01)

(403,0.005)

(e) Electronics

0 200 400 600 800 1000
10

−3

10
−2

10
−1

10
0

Number of Ratings

E
mK

L

(42,0.05)

(204,0.01)

(404,0.005)

(f) Movies and TVs

Figure 2. EKL
m (Normalized) Between Oracle Distribution and Observed Distribution

with Different Number of Ratings

score distribution error. For example, if the oracle distribution is {0, 0, 0, 0, 1},
then just one sample may lead to 0 error. As we focus on the method for efficient
calculation of the error, let us assume f∗ is either given as a model parameter
or constructed from the user-pool of a given dataset. But even when the oracle
distribution is given, the expected error is not easy to calculate. Because we sum
over the set P (m,L) that contains

(
m+L−1
L−1

)
elements. It makes exact calculation

of EKL
m combinatorially expensive.

Thus, we propose a sampling approach to estimate the expected error based
on the Ergodic Theorem [18]. It states that if we keep on sampling from an
underlying distribution using an aperiodic and irreducible Markov chain and
evaluate a function for each sample, then the mean of the function over the samples
converges to the ‘true’ expected value of the function. For us, the underlying
distribution is the oracle distribution. The target function is the KL divergence
between the observed and the oracle distribution. Now, we construct a Markov
chain [18] as our sampling scheme to approximately evaluate the expected error.
We define a state in the chain as an L-tuple of ratings {z1, · · · , zL} ∈ P (L,m).
Given the oracle distribution f∗, we generate a sample from the corresponding
multinomial distribution as the initial state of the Markov chain. Similarly, we
continue generating the next states by independently drawing samples from the
multinomial distribution. For each state, we evaluate the KL divergence. The
Markov chain is aperiodic since at any iteration the probability to return to
the same step as the present one is positive. The Markov chain is irreducible
since all states are connected. Thus, according to the Ergodic Theorem, as we
repeatedly generate a chain of states using this scheme, the mean of the sampled
error converges to EKL

m . Once we are able to calculate a sufficient approximation
of EKL

m efficiently, we can formulate the relation between EKL
m and m. This allows

us to find the m∗ either empirically or analytically.

0 0.5 1 1.5 2 2.5 3

x 10
4

0.025

0.03

0.035

0.04

0.045

0.05

0.055

Total Number of Ratings

E
mK

L

(a) 43 Ratings

0 0.5 1 1.5 2 2.5 3

x 10
4

5

6

7

8

9

10

11
x 10

−3

Total Number of Ratings

E
mK

L

(b) 205 Ratings

0 0.5 1 1.5 2 2.5 3

x 10
4

0

1

2

3

4

5

6
x 10

−3

Total Number of Ratings

E
mK

L

(c) 405 Ratings

Figure 3. The Predicted EKL
m (Normalized) versus the Observed EKL

m (Normalized)
with Total Number of Ratings of an Item

4.2 Experimental Investigation of Error Models

Dataset and Set-up. We use the Amazon review dataset described in
Section 3.5. When evaluating the error model, we consider only the items with
more than 500 reviews. All ratings of each of the items are accumulated to
construct the oracle distribution for each of them. Once we obtain the oracle
distributions, we focus on uncovering the relation between the score distribution
error and the number of ratings m. In the experiments, we increase the number
of ratings accumulated for the items of each category and then observe evolution
of the error.

Score Distribution Error and Number of Ratings. In Figure 2, we
present a smooth curve that fits the evolution of the error. We observe that
the score distribution error decreases with increase in the number of ratings.
This observation proves that this error model is consistent. Because the observed
score distribution, that represents ‘incomplete’ knowledge-base, would converge
to the oracle distribution, that represents the ‘complete’ knowledge-base, with
accumulation of more ratings, i.e., information about the item. We also observe
that it fits with the hyperbolic equation EKL

m = c
m . For the 6 categories, c is a

constant between 2.01 and 2.024. The points shown on the curves reinstantiate
this observation. Thus, decay of the expected score distribution error follows
the inverse law. Evolution of the error is almost category independent as it
quantifies the evolution of observed distribution with accumulation of ratings. The
distributions ‘homogenize’ the items by reducing the corresponding knowledge-
base into numbers on L-valued Likert scale. Thus, the score distribution error
depends on the convergence process of an ‘incomplete’ knowledge-base to a
‘complete’ one by accumulation of ratings but not on the exact object names or
categories.

4.3 Model in Action

As we have constructed the error model and analysed it, here we want to verify
the effectiveness of the empirical laws to predict “how many ratings are enough”.
As the score distribution error follows the inverse law, thresholding the error
to ε returns us an m∗ = c

ε . For example, the observed inverse law for Apps for
Android items is EKL

m = 2.021
m . This predicts that we need at least 405 ratings to

reach error less than 0.005. Figure 2 also echoes this prediction. This experiment
is to verify that if it is effective to use these empirical laws of error model to
predict the number of ratings required to bound the error.

Since variance of the total number of ratings for an item is the largest for
Apps for Android category, we choose it as the test case for our experiment.
Apps for Android consists of 906 items with the total number of ratings varying
from 500 to 25368. In this experiment, first we leverage the empirical laws to
predict the m∗ to reach below the error threshold ε. Then, we randomly pick m∗

ratings for each item to construct the observed distribution and calculate the
KL divergence between the observed distribution and the oracle distribution. We
repeat this for 1000 times for each item and consider the mean of the normalized
KL divergences as the corresponding score distribution error.

Figure 3 simultaneously plots the predicted score distribution error that
should be reached with a predicted number of ratings (the black line) and the
observed score distribution error for different objects under this amount of ratings
(the blue dots). In particular, we show three settings with 43, 205 and 405 number
of ratings respectively. Figure 3 shows that the observed score distribution error
is almost always lower than the predicted error. Thus, this prediction method
almost surely advises to collect the number of ratings that would never enhance
the error above the desired threshold. But we also do not want the observed m∗ to
be much less than the predicted one. Since collecting ratings require investment of
certain resources, thus a cost-effective prediction should never overpredict much
beside not enhancing the error. Since p-value statistically quantifies deviation
of the observed score distribution errors from the predicted ones, we calculate
the p-values for 43, 205 and 405 ratings and they are respectively 1.64e − 17,
3.16e − 275 and 3.10e − 293. These values being less than 0.05 substantiate
that the deviation of the number of ratings actually needed to reach the error
threshold from the predicted m∗ is not statistically large. Figure 3 also shows
that the observed error asymptotically reaches the predicted error as the total
number of ratings of an item, i.e., its user pool, gets larger. It is intuitive since
the oracle constructed from a huge user-pool would need more number of ratings
to construct an approximate representative of it. This shows that leveraging
the empirical laws of score distribution error to predict the number of ratings
required to reach an error threshold is a simple but effective approach.

5 Conclusion

In this paper, we study the problem of finding the n-k best-rated items by
exploiting the accumulated ratings from the users. We devise an exact algorithm,
Pundit, that solves this problem efficiently. We empirically and comparatively
evaluate the effectiveness and efficiency of our approach and the competing ones
with the Amazon review dataset. We develop the score distribution error model
to quantify the effect of the accumulation of ratings and to answer “how many
ratings are enough?”. We instantiate this model using the Amazon review dataset
to uncover the fact that the error follows the inverse law. Following that, we put
this inverse law in action to predict minimal number of ratings that should be
accumulated to meet a prescribed error. Experiments validate that this empirical
approach is effective. Though we present only the score distribution error as the
predictor, we are developing and testing another error model comparing the lists
of n-k best-rated items obtained by Pundit. We are also theoretically analysing

the emergence of the inverse law. We are planning to deploy the error model as a
prediction system that would recommend a crowdsourcing platform the number
of ratings that has to be accumulated to meet a prescribed error.

References
1. Chen, X., Bennett, P.N., Collins-Thompson, K., Horvitz, E.: Pairwise ranking

aggregation in a crowdsourced setting. In: WSDM. pp. 193–202 (2013)
2. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex

fourier series. Mathematics of computation 19(90), 297–301 (1965)
3. Der Kiureghian, A., Ditlevsen, O.: Aleatory or epistemic? does it matter? Structural

Safety 31(2), 105–112 (2009)
4. Ekstrand, M.D., Riedl, J.T., Konstan, J.A., et al.: Collaborative filtering recom-

mender systems. Foundations and Trends in Human–Computer Interaction 4(2),
81–173 (2011)

5. Fagin, R., Kumar, R., Sivakumar, D.: Comparing top k lists. SIAM 17(1), 134–160
(2003)

6. Guo, S., Parameswaran, A., Garcia-Molina, H.: So who won?: dynamic max discovery
with the crowd. In: SIGMOD. pp. 385–396 (2012)

7. Hua, M., Pei, J., Zhang, W., Lin, X.: Ranking queries on uncertain data: a proba-
bilistic threshold approach. In: SIGMOD. pp. 673–686 (2008)

8. Jamieson, S., et al.: Likert scales: how to (ab)use them. Medical education 38(12),
1217–1218 (2004)

9. Johnson, N.L., Kemp, A.W., Kotz, S.: Univariate Discrete Distributions. John
Wiley & Sons (2005)

10. Kullback, S., Leibler, R.A.: On information and sufficiency. The annals of mathe-
matical statistics 22(1), 79–86 (1951)

11. Li, J., Deshpande, A.: Ranking continuous probabilistic datasets. VLDB 3(1-2),
638–649 (2010)

12. Li, J., Saha, B., Deshpande, A.: A unified approach to ranking in probabilistic
databases. VLDB 2(1), 502–513 (2009)

13. Likert, R.: A technique for the measurement of attitudes. Archives of psychology
144, 1–55 (1932)

14. Liu, Q., Basu, D., Abdessalem, T., Bressan, S.: Top-k queries over uncertain scores.
In: On the Move to Meaningful Internet Systems: OTM 2016 Conferences. pp.
245–262 (2016)

15. McAuley, J., Pandey, R., Leskovec, J.: Inferring networks of substitutable and
complementary products. In: SIGKDD. pp. 785–794 (2015)

16. McAuley, J., Targett, C., Shi, Q., van den Hengel, A.: Image-based recommendations
on styles and substitutes. In: SIGIR. pp. 43–52 (2015)

17. Niu, S., Lan, Y., Guo, J., Cheng, X., Yu, L., Long, G.: Listwise approach for rank
aggregation in crowdsourcing. In: WSDM. pp. 253–262 (2015)

18. Robert, C.P., Casella, G.: Monte Carlo Statistical Methods. Springer (2004)
19. Soliman, M.A., Ilyas, I.F., Ben-David, S.: Supporting ranking queries on uncertain

and incomplete data. VLDB 19(4), 477–501 (2010)
20. Venetis, P., Garcia-Molina, H., Huang, K., Polyzotis, N.: Max algorithms in crowd-

sourcing environments. In: WWW. pp. 989–998 (2012)
21. Ye, P., Doermann, D.: Combining preference and absolute judgements in a crowd-

sourced setting. In: ICML. pp. 1–7 (2013)
22. Zhang, X., Li, G., Feng, J.: Crowdsourced top-k algorithms: An experimental

evaluation. VLDB 9(8), 612–623 (2016)

