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a b s t r a c t

Brain–computer interfacing is an emerging field of researchwhere signals extracted from thehumanbrain
are used for decisionmaking and generation of control signals. Selection of the right classifier to detect the
mental states from electroencephalography (EEG) signal is an open area of research because of the signal’s
non-stationary and Ergodic nature. Though neural network based classifiers, like Adaptive Neural Fuzzy
Inference System (ANFIS), act efficiently, to deal with the uncertainties involved in EEG signals, we have
introduced interval type-2 fuzzy system in the fray to improve its uncertainty handling. Also, real-time
scenarios require a classifier to detect more than two mental states. Thus, a multi-class discriminating
algorithm based on the fusion of interval type-2 fuzzy logic and ANFIS, is introduced in this paper. Two
variants of this algorithm have been developed on the basis of One-Vs-All and One-Vs-Onemethods. Both
the variants have been tested on an experiment involving the real-time control of robot arm, where both
the variants of the proposed classifier, produces an average success rate of reaching a target to 65% and
70% respectively. The result shows the competitiveness of our algorithm over other standard ones in the
domain of non-stationary and uncertain signal data classification.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Human–machine interaction (HMI) [1] is rapidly evolving as
a potential field of research in applied biomedical and cognitive
science. In this paper, we have dealt with an emerging trend
of HMI called brain–computer interfacing (BCI), where the user
interactswith a computing device or robot directly throughmental
intentions (or commands), generated as signals, from the brain [2].
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A BCI technology is broadly composed of four basic processes,
viz., recording the mental activity (Signal Acquisition); extraction
of the intended action or desired features from that activity (Sig-
nal Processing); generation of the desired action (Mental state de-
tection); and feedback, either through intact sensation, such as
vision, or generated and applied by the prosthetic device (Feed-
back) [3]. Each of the aforementioned processes requires highly
efficient techniques of signal processing, machine learning and
control theory whose functions are to unveil the information em-
bedded within the brain signals for various applications, like in
robotics, communication, and gaming [4–7]. But BCI will be most
helpful in neuro-rehabilitation [8,9] of physically challenged pa-
tients, like those suffering from paralysis, Amyotrophic Lateral
Sclerosis, cerebral palsy, loss of limb [10]. These brain signals are
extracted, decoded and studied with the help of various brain

http://dx.doi.org/10.1016/j.robot.2015.01.007
http://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
http://crossmark.crossref.org/dialog/?doi=10.1016/j.robot.2015.01.007&domain=pdf
mailto:saugatbhattacharyya@live.com
mailto:basudebabrota29@gmail.com
mailto:konaramit@yahoo.co.in
mailto:biomed.ju@gmail.com
http://dx.doi.org/10.1016/j.robot.2015.01.007


S. Bhattacharyya et al. / Robotics and Autonomous Systems 68 (2015) 104–115 105
measures likeMagnetoencephalography, functionalMagnetic Res-
onance Imaging, Electro-corticography, and Electroencephalogra-
phy (EEG) [11,12]. In our analysis, we have preferred to use EEG
signal over other measures because it is portable, easy to use, in-
expensive, and has a higher temporal resolution [10,13].

For every cognitive task performed by the user, a characteristic
brain modality is generated from the brain at different locations.
A BCI technology aims at decoding these brain modalities to con-
trol a robotic device and the selection of brainmodalities for a spe-
cific control task is an important issue in BCI research. Examples
of few frequently used modalities are steady-state visually evoked
potential (SSVEP), slow cortical potential (SCP), P300, event related
desynchronization/synchronization (ERD/ERS) and error related po-
tential (ErRP) [10,14]. In the current study, we aim to control the
movement of a robot arm using five motor imagery mental com-
mands: Forward, Backward, Left, Right and No movement. Using
these commands the subject would attempt to move the arm to-
wards a randomly positioned target (placedwithin the reach of the
robot arm). ERD/ERS signals originates duringmovement planning,
movement imagination or movement execution (collectively, re-
ferred to asmotor imagery signals) [14,15]. Thus, thismodality have
relevance for control purpose in our present study.

In this paper, we have also delineated the importance of
multiclass classification [16,17] in real world problems and how
it can be employed efficiently. In real time scenarios, we often
come across situations, which requires the classifier to detect
more than one mental states. So in case of BCI systems, multiclass
classification is quite important and has a wide scope of usage.

The brain signals recorded using EEG are non-linear, complex,
non-stationary and non-Gaussian. Thus, they are quite challenging
to classify and the problem is nothing but a conundrum. Adaptive
neural fuzzy inference system (ANFIS) is a neural network [18,
19] inspired classifier, which is used to classify complex datasets
using fuzzy inference systems. ANFIS, is a strong and standard
neural fuzzy inference tool but due to its Type-1 fuzzymembership
pattern, it fails to handle noise and uncertainty in case of chaotic
and Ergodic signals. Also, ANFIS is dependent and sensitive to the
parameter sets defined by the user [18]. These shortcomings of
the classical ANFIS algorithm inspired us to associate type-2 fuzzy
[20,21] sets with classical ANFIS for BCI application.

In this paper,wehave proposed twonovel classificationmethod
based on the fusion of interval type-2 fuzzy system with the
ANFIS structure for multiclass classification. In classical multiclass
literature, ‘one vs all’ and ‘one vs one’ methods [10] are commonly
used among researchers and these methods amalgamates the
results of smaller binary classifiers to give the final hyperplane.
Here, we have used ANFIS architecture for each of the binary
classifiers and then the outputs of each individual binary classifiers
are combined using a type-2 fuzzy to yield the final output.

Here, the EEG features are classified using our proposed type-2
fuzzy setswith the fuzzy inference systemofANFIS tominimize the
adverse effects of uncertainty. This hasmade our algorithmabetter
tool to handle and classify EEG signals. It is more robust, efficient,
user independent and handles the uncertainty of EEG signalsmuch
better than the previous model (classical ANFIS). Our proposed
classifier also shows its competitiveness to discriminate between
multiple classes as compared to other state-of-art classification
algorithms.

The rest of the paper is arranged as follows. In Section 2, we
describe the acquisition system and the robot arm used in this pa-
per. In Section 3, we discuss on the experimental and data process-
ing techniques used for offline classification and online control of
the robot arm. Our proposed multiclass ANFIS networks and their
working procedures are described in Section 4 of this paper. A dis-
cussion on the results of the offline and online experiments using
our proposed classification algorithm are mentioned in Section 5,
followed by the concluding remarks in Section 6.
Fig. 1. Electrode locations in the Emotiv Epoc system.

2. Materials and control methods

In this study, the subject controls the movement of a Jaco robot
arm [22,23] using five motor imagery signals related to following
movement states: forward, backward, left, right and nomovement.
This section gives a brief background on the EEG acquisition system
and the Jaco Robot arm, followed by a discussion on the control
strategy implemented in this study.

2.1. EEG data acquisition system: Emotiv Epoc

The mental states of the users in form of EEG signals are
recorded using an Emotiv Epoc System. It is a high resolution,
multi-channel, wireless neuro-headset which uses a set of 14
sensors (electrodes) and 2 references. The electrodes are arranged
according to the standard 10–20 electrode system [24] and their
locations are AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8 and
AF4 (Fig. 1). The sampling rate of the EEG system is 128 Hz with
a resolution of 0.51 µV. The system comprises of a built-in digital
5th order sinc filter with a bandwidth of 0.2–45 Hz and a digital
notch filter at 50 and 60 Hz.

2.2. Jaco Robot Arm

Jaco Robot Arm, developed by Kinova, is a 6-axis robotic
manipulator with a three fingered hand. The arm has six degrees
of freedom in total with a maximum reach of 90 cm radius sphere
and maximum speed of 30 cm/s. It is made of three sensors: force,
position and acceleration. This arm is suitable for a person with a
disability of the upper arm and can be placed on a wheelchair. The
upper arm of the robot is made of three links which is similar to
the upper limb of the human body, as shown in Fig. 2. An API is
provided from themanufacturers which allows greater freedom of
control by users [22,23].

2.3. Online control scheme

As mentioned earlier, the subject needs to control the move-
ment of the robot arm towards a given target by using five mental
(motor imagery) commands: Forward (F), Backward (B), Left (L),
Right (R) and No movement (N). To stop the movement of robot
arm, the subject would generate a No Movement command by re-
laxing. The rest of the commands are employed to move the robot
arm in their respective directions. For example, if the subjectwants
to move the robot arm in the forward direction, he would need to
imagine moving forward, which would generate a forward com-
mand from the brain signals. The control signals generated accord-
ing to the mental commands are given in Table 1.
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Fig. 2. Jaco Robot Arm setup in our lab.

The control scheme, as shown in Fig. 3, requires the subject
to first observe the current position of the end-link of the robot
arm with relation to the target position and then would plan the
next movement of the robot arm. The motor imagery signals thus
generated are acquired by the Emotiv acquisition system. Next,
the acquired EEG signals are pre-processed to remove any noise
present in the data. Then a feature extraction algorithm is applied
to the filtered data to construct the feature vector. The feature
vector consists of specific information about the different mental
commands, which are based on their characteristic ERD/ERS
waveform. This feature vector is then fed to the classifier to decode
the mental state of the subject. The decoded output is used to
generate the control signal (as shown in Table 1) tomove the robot
arm in the required direction.

3. Experiments and data processing

The first step towardsmovement control of the Jaco robot arm is
for the subject to undergo training. During this phase, the subject
trains itself to generate mental commands needed to control the
robot arm movement. Also, the dataset accumulated during the
training period is used to train the classifier. Based on this training,
Table 1
Control signals generated to move the robot arm according to mental command
generated by the subject.

Mental command Control signal

Forward Move robot forward by 10 units
Backward Move robot backward by 10 units
Left Turn robot in counter-clockwise direction by 10°
Right Turn robot in clockwise direction by 10°
No movement (relax) Stop robot movement

Fig. 4. Timing diagram of a motor imagery trial performed by the subject. The
direction of the arrows provides instruction to the subject.

the classifier produces one of the fivemental commands as outputs
which is further used to generate the control signals.

Eleven right-handed subjects (6 female and 5 male) with
normal vision and no prior disability or illness have participated in
this study. The experimentwould require the EEG signals to be free
from any other unknown environmental stimulus (noise), so the
subjects would imagine kinesthetic tasks based on a visual stimuli
projected on a screen in a well-lit, empty, sound-proof, isolated
room.

Prior to data acquisition, the subjects is informed of the various
details of the experiment. Then, the subjects are required to fill and
sign a consent form. The procedures of the experiments conducted
abide by the requirements set in the Helsinki Declaration of 1975,
revised in 2000.

This section describes the experimental and data analysis
techniques applied to undertake the training procedure alongwith
the details on online experimentation implemented in this study.

3.1. Stimuli generation

A visual stimuli is used in this study to provide instructions
to the subject on the mental task he has to perform during the
training phase. The visual cue contains instructions for five mental
commands: Forward, Backward, Left, Right and No movement, in
form of direction of an arrow, as shown in Fig. 4.

The training of each subject is undertaken over seven different
sessions and one session is performed on a single day. It had been
observed that by 7 sessions, each subject had produced a consistent
EEG response, which resulted in obtaining a training accuracy of
more than 80%. Each session comprises a total of 100 repetitive
Fig. 3. Block diagram of the online control scheme (Abbreviation: F—Forward, B—Backward, L—Left, R—Right, N—No movement).
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trials where each mental tasks is repeated 20 times. The generic
timing structure of each trial is shown in Fig. 4. First, a fixation
‘+’ is displayed on screen for one second which is an instruction
for the subject to get ready. Next, the task instructions in form
of arrows are displayed on screen randomly for 3 s. During this
period the subjectmentally performs the task given. For generation
of the ‘No movement’ command, a blank screen is displayed in
place of the arrows. Then, a blank screen is displayed for 2 s during
which the subject is allowed to relax. This period also prevents the
overlapping of consecutive mental states on the EEG signal.

3.2. Data preprocessing

ERD/ERS modalities, generated during mental imagery tasks,
are found to be prevalent in the µ (8–12 Hz) and central β
(16–24 Hz) bands [10,24]. For this purpose, we have designed an
elliptical band-pass filter of order 12, pass-band attenuation of 1 dB
and stop-band attenuation of 50 dB to extract movement related
information in the bandwidth of 8–25Hz from the raw EEG signals.
Also, this step allows the removal of environmental and cognitive
noises (background EEG) from the signal. An elliptical filter is used
because of its equi-ripple behavior in the pass-band and stop-band
and has a steeper roll-off characteristic when compared to other
standard filters [25].

After the filtering step, during offline training phase, the EEG
data pertaining to 3 s of motor imagery tasks are extracted from
each trial for further processing. Each 3 s of data are further
partitioned into 500 ms data vectors, on which further processing
is performed. But during online experimentation, after incoming
EEG is filtered, data vectors of 500 ms before the current time is
created for processing. Then the data in both offline and online
cases is normalized to the interval [0, 1].

3.3. Feature extraction using multi-fractal detrended fluctuation
analysis

If a time-series signal repeats itself on the subintervals of the
signal, then it possesses scale invariant structures. For EEG signals,
the scale invariant structures of inter-spike interval of firing of
the neurons are capable of discriminating between the neural
activities of brain. Alterations in scale invariant structure of bio-
signals indicate adaptability of physiological processes which can
be quantified using Detrended fluctuation analysis (DFA) [26,27].
Another salient feature of DFA is that it is not affected by non-
stationarity of a signal and can measure long range correlations of
such signals. But time series with complicated temporal behavior
necessitate different scaling exponents for different part of the
series. In such case multi-fractal analysis is performed which
provides multiple scaling exponents to completely describe the
behavior of the time series for different scaling parameters. Thus,
multi-fractal detrended fluctuation analysis (MFDFA) allows the
formalism of non-stationary signals for characterization of the
time series [26,27]. The steps required to calculate the MFDFA
estimates are summarized below:

Let, xk is a time series of lengthN of compact support that xk = 0
for an insignificant amount of values.
I. First, compute the sequence of summary displacements

(Profile) P(i) by

P(i) =

i
k=1

[xk − x], i = 1, . . . ,N. (1)

II. Then, partition P(i) in a number of non-overlapping segments
denoted by Nl = N/l, of equal length l. The same process is
repeated from end to start to the series to consider the small
parts that can remain at the end of the series. Thus we obtain
total 2Nl segments.
III. In this step, detrend the profile P(i), i = 1, . . . ,N , for each seg-
ment of length l, by applying least square fit on each segment
and calculating their respective variance, which is given as

F 2(l, v) =
1
l

l
i=1

{P[(v − 1)l + i] − yv(i)}2

where v is a segment such that v = 1, . . . ,Nl, and

F 2(l, v) =
1
l

l
i=1

{P[N − (v − Nl)l + i] − yv(i)}2

(2)

for v = Nl + 1, . . . , 2Nl, where yv(i) is the fitting polynomial
in the segment v.

IV. Then, calculate the qth order fluctuation function by averaging
over all segments, as follows

Fq(l) =


1
2Nl

2Nl
v=1

[F 2(l, v)]q/2

1/q

(3)

where q can take any value other than zero. To determine the
dependency of generalized q dependent fluctuations on time
scale l, repeat steps II to IV.

V. Lastly, determine the scaling behavior of the fluctuating func-
tions by analyzing the log–log plots of Fq(l) versus l for each
value of q.

Fq(l) ∼ lh(q) (4)

where, h(q) is the q-dependent generalized Hurst expo-
nent [26]. It is to be noted that for long-range power-law cor-
rected series xi, Fq(l) increases as power-law for large values of
l.
In this study, we have used MFDFA of 3rd order fitting polyno-

mial (i.e. yv(i)) and varied q in the range −5 to 5 with 101 discrete
intervals. An example of the 3rd order local Hurst components (Ht),
probability distribution of local Hurst components (Ph) and mul-
tifractal spectrum of local Hurst components (Dh) from electrode
location FC5 is illustrated in Fig. 5. The feature vector is prepared
from the probability distribution of Hurst components and its di-
mension for both offline and online experimentation is 45 (for each
electrode).

4. Type-2 fuzzy based multi-class ANFIS algorithm

This section begins with background descriptions ofmulti-class
classification, ANFIS architecture and interval type-2 fuzzy system.
The final sub-section describes our proposed algorithm which is a
combination of the three methods.

4.1. Multiclass classification

In real world problems, we often face situations, where the
observations may belong to more than two classes unlike the
binary classification or the dichotomies. Under this kind of scenario
a training data point may belong to one of the N different classes
and one’s aim is to find an approximation function f of a classifier
so that it can predict accurately for an unknown entry to which of
the N classes it belongs.

There exist two widely used state-of-art approaches for the
multiclass classification problems, which are quite apparent and
trivial. The first one is one vs. all (OVA) classification approach and
the other is one vs. one (OVO) classification approach.

In OVA approach (Fig. 6), we build N different classifiers
where each classifier corresponds to each individual classes.
This approach reduces the problem into N binary classification
problems,where each of the binary classifiers discriminates a given
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Fig. 5. An example of the Local Hurst Component (Ht), Probability distribution (Ph) and Multifractal spectrum (Dh) of a motor imagery signal from electrode location FC5.
Fig. 6. Multi-class classification using OVA (N = 3).
class from rest of the classes [10,28]. For example, the ith classifier
will give positive results for the data points belonging to the ith
class and negative result for data points belonging to the other
N − 1 classes. If fi is hyperplane for the ith classifier, the final
multiclass classifier hyperplane function can be defined as,

f (−→x ) = arg max
i∈{1,..,N}

fi(
−→x ). (5)

In OVO approach (Fig. 7), N(N − 1)/2 binary classifiers to
discriminate between data points of ith and jth classes [10,28].
Here, the classifier between ith and jth classes can be defined by
the hyperplane fij, where fij gives positive output for data points
belonging to class i and negative result for data points in class j.
Thus themulticlass problem can be defined as finding a hyperplane
function f (−→x ) such that,

f (−→x ) = argmax
i


j

fij(
−→x )


. (6)

One of the basic problem faced by these methods is the way the
piecewise hyper-planes constructed by individual OVO and OVA
are fused to generate the final output hyper-plane. But inefficient
fusions often cause discrepancies and high computational com-
plexity. Thus, in this study, we have proposed a simple yet effi-
cient approach of incorporating outputs of individual dichotomies
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Fig. 7. Multi-class classification using OVO (N = 3).
of OVA and OVO using type-2 inference system, which will be ex-
plained in the final sub-section.

4.2. Adaptive Neural Fuzzy Inference System (ANFIS)

ANFIS is a very popular and efficient adaptive neural network
and fuzzy based algorithm used in classification problems. It was
first proposed by Jang in [18] based on the adaptive neural net-
work structures and Takagi–Sugeno model based fuzzy inference
systems [29].

In the ANFIS model, the neuro-fuzzy network model is imple-
mented in such a way that the adaptive neural network is used to
tune the parameters of fuzzy inference system. Due to adaptive
approach of ANFIS it can be used to classify the EEG signal very
efficiently and the fuzzy layers are used to capture the stochastic
nature of the EEG signals.

Besides that, the analysis of Takagi–Sugeno model based ANFIS
shows that there is no constraint on the node functions of adaptive
network except the piecewise differentiability and no constraint
on the architecture except it would be feed-forward type. Due to
this features, the compatibility and effectiveness of ANFIS model
in case of non-stationary, complex and stochastic signal like EEG is
quite apparent.

Fig. 8 shows a prototype of the ANFIS used in our work. It
contains five layers as described briefly below,

4.2.1. Layer 1
Every node in this layer is an adaptive nodewith a node function

where x (or y) is the input to node I and Ai (or Bi−2) is a linguistic
label and output of the layer O1

i is the membership grade of fuzzy
set A (say A1, A2, B1 or B2) and it specifies the degree to which the
given input x (or y) satisfies the quantifier A.

O1
i = µAi(x) (7)

where, x is the input of the ith node and Ai is the linguistic variable
associated with the transfer function of the corresponding node.
Here, we have chosen the membership function as a normalized
bell shaped curve, given by

µAi(x) =
1

1 +


x−ci
ai

2bi (8)
where, ai, bi and ci are the parameters corresponding to the node
function of the ith node. The parameters corresponding to this
layer are called the premise parameters or antecedence parameters.

4.2.2. Layer 2
Every node in this layer is a fixed node labeledΠ , whose output

is the product of all the incoming signals, where each node output
represents the firing strength of a rule.

O2
i = wi = µAi(x) × µBi(y) (9)

where, i = 1, 2, . . . ,D andD is the dimension of the corresponding
input vectors −→x and −→y .

4.2.3. Layer 3
Every node in this layer is a fixed node labeled N , as shown in

Fig. 8. The ith node of this layer normalizes the firing strength of
the previous node with respect to firing strengths of others.

O3
i = wi =

wi
i

wi
. (10)

4.2.4. Layer 4
Every node in this layer is an adaptive node shown as square

nodes in Fig. 8. The output of this node is given by

O4
i = wifi = wi(pix + qiy + ri) (11)

where, wi is the output of ith node of layer 3 and {pi, qi, ri} are
referred as the consequent parameters.

4.2.5. Layer 5
The single node in this layer is a fixed node which acts as

an accumulator and it adds up all the outputs coming from the
previous layer to give the final classifier function as,

O5
i =


i

wifi =


i

wifi
i

wi
. (12)

Thus, by using the above shown architecture we have con-
structed an adaptive network which is functionally equivalent to
a type-3 fuzzy inference system. The operation of the ANFIS as a
type-3 fuzzy inference system and the corresponding mappings
are shown in Fig. 9.
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Fig. 8. Architecture of 5 layered ANFIS.
Fig. 9. Fuzzy reasoning mechanism for ANFIS.
4.3. Interval type-2 fuzzy inference system

In the path of evolution of sets and logic, it was seen that classi-
cal sets with their binary membership functions are unable to cor-
respond the human knowledge with the inference systems used to
control different processes or logic systems. From this perspective,
Zadeh in [30] proposed fuzzy sets and logicwhere each of the fuzzy
sets. These fuzzy sets imitate the human thought process to handle
the uncertainties involved in the input–output system of fuzzy in-
ference system. Each of the fuzzy sets contains a continuous mem-
bership function which describes the possibility of a number to be
a member of that fuzzy set. This approach showed its effective-
ness as an inference system for vast number of applications. But
as researchers investigate more about the working procedure and
uncertainty handling property of fuzzy sets, it became quite clear
the uncertainty handling property of these type-1 or classical fuzzy
sets is not up to the mark as type-1 fuzzy sets handle uncertainties
by defining precise and crispmembership functions [31]. Therefore,
the way to define MFs in type-1 fuzzy logic system (FLS) restricts
the ability of type-1fuzzy sets and FLS to model and minimize the
effect of uncertainties. This problem is actually faced when Type-
1 ANFIS is implemented on non-stationary and uncertain systems
like EEG.
A type-2 FLS has the potential to outperform a type-1 FLS
because a type-2 fuzzy set is represented by more parameters
than a type-1 fuzzy set [32]. Unlike a type-1 fuzzy set whose
membership function (MF) is defined precisely, the MF of a type-
2 fuzzy set is defined blurrily and consisted of a set of admissible
type-1 MFs called the footprint of uncertainty (FOU) of a type-2
MF [33]. Once a type-2MF is reduced to a type-1MF, the blurriness
of the MF will no longer exist and it becomes a precise MF as
defined in a type-1 FLS. Therefore, type-2 fuzzy logic can be viewed
as a generalization of type-1 fuzzy logic, or on the other hand,
type-2 fuzzy sets and MFs can also be considered as an extension
of type-1 fuzzy sets and MFs with the increased ability to handle
uncertainties existing in MFs and FLS.

4.4. Interval type-2 fuzzy based multiclass ANFIS algorithm

In our proposed classification technique, binary ANFIS classi-
fiers are used as the basic components of the OVA and OVO ap-
proach. Here, an interval type-2 fuzzy logic is used to combine the
different outputs of the ANFIS classifiers to produce a final opti-
mal result. The amalgamation of the three techniques, is coined as
Interval Type-2 Fuzzy Logic ANFIS fusion (IT2FLF-ANFIS) algorithm.
While fusing the results of each individual binary classifier, it is
observed that different classes have their own distribution around



S. Bhattacharyya et al. / Robotics and Autonomous Systems 68 (2015) 104–115 111
Fig. 10. Ideal representation of themembership functions distribution for distance
as inputs to IT2FL inference engine.

hyper-planes and also the accuracy of classification between same
two classes may vary depending on problems. This uncertainty in-
volved in the variance of error and bias while constructing hyper-
planes inspired us to use type-2 fuzzy logic fusion methods. Here,
the type-2 fuzzy fusion block is adopted by us to unite all the piece-
wise hyper-planes to construct an efficient one with least discrep-
ancies and regions of conflicts because type-2 fuzzy sets are more
efficient in handling uncertainties than type-1 fuzzy sets [34]. The
implementation of interval type-2 in the two variant approaches:
OVA and OVO are explained in the following sub-sections.

4.4.1. One versus all—interval type-2 fuzzy logic-ANFIS fusion (OVA-
IT2FLF-ANFIS)

As mentioned earlier in Section 4.1, the OVA approach needs
N binary ANFIS classifiers to discriminate each classes from
corresponding (N − 1) classes. The ith classifier constructs the
hyperplane fi and N such fi’s are combined to generate the final
output.

In OVA-IT2FLF-ANFIS approach, the type-2 fuzzy sets fuses
the outputs of each individual classifier and its distance from
its corresponding hyper-plane fi. For example, say, a data point
x belongs to class 1, then its distance from its corresponding
hyperplane, say, f1 should be positive or zero. On the contrary, if
the distance is negative, than x will not belong to class 1. Now,
as the distance becomes more positive, the possibility that x will
belong to class i will increase and would be independent of the
discrepancies introduced by other (N − 1) classifiers. Thus, the
discrete classifier output and the distance from each individual
ANFIS classifier are used to construct the type-2 fuzzy sets. Here,
we have set the base point of positive and negative membership
function (MF) around −0.25 and 0.25, respectively (as illustrated
in Fig. 10). The admissible range of the corresponding type-2 MFs
is set to 0.1–0.2.

As the systemhasN distinct inputs fromeach of theN classifiers
and each of the inputs have two possibilities, therewill be 2N fuzzy
rules where the ith rule is defined as,

IF x is A1, x is A2, . . . , x is AN ,

THEN x is Oi
(13)

where, A1, A2, . . . , AN is {negative or positive} classifier output
or distance values and Oi in {O1, . . . ,ON}, which is the set of all
possible output sets. For simplicity, let the consequences of these
fuzzy rules consider the distance inputs of N classifiers. Thus,
if for one data input A1 yields a ‘positive’ value and the other
classifiers produces ‘negative’ value, then the consequence of the
corresponding fuzzy rule will be the output fuzzy set O1. Based
on the same considerations the consequences of other rules will
occur. In the inference part of the fuzzy model, we use the product
t-norm operation and join it under the max operation and supstar
composition [35,36]. Now the resultant output type-2 fuzzy sets
are de-fuzzified using the center of the set method. The centers
Fig. 11. Ideal representation of the membership functions distribution for
centroidal distance as inputs to IT2FL inference engine.

of sets are calculated using Karnik–Mendel algorithm [37] and the
iterative algorithm [36]. The corresponding crisp values will be in
the range [1,N], which are rounded up to the nearest integer and
the final output signify the class in which the data point belongs.

4.4.2. One versus one—interval type-2 fuzzy logic-ANFIS fusion (OVO-
IT2FLF-ANFIS)

To implement the OVO approach, the outputs of N(N − 1)/2
binary ANFIS classifiers are required to get the final output (see
Section 4.1). In case of designing the interval type-2 fuzzy logic
based fusion algorithm for OVO (OVO-IT2FLF-ANFIS), distance
alongwith the binary classifier output does not qualify as sufficient
inputs to the inference engine. As the decisions generated by
each of the classifiers sometimes may lead to confusions due to
unwanted overlap between the zones segregated by the classifiers.
Thus, the distances of the data point from the centroids of each of
the classes are also considered as another input. These distances
help the fusion system to identify the data points which belong
to the region of confusion, which actually belongs to one of
the N classes. The classification system used in OVO, which is
a bit different from OVA can be mapped with fuzzy linguistic
variables [36] distance from the hyper-planes and centroidal
distances. The base points of the MFs for the distance values have
been set similar to the one used in OVA-IT2FLF-ANFIS classifier,
as the principles to determine the class of an unknown data
point using the distance information is the same. Similar to the
construction of the distance MFs, here, the centroidal distance can
take two forms—near and far, whose ideal representation is shown
in Fig. 11. When the distance of a certain data point form the
centroid of a certain class becomes ‘near’, the possibility that it will
belong to that class will be highest and as it becomes ‘far’, it can be
concluded that the data point does not belong to the corresponding
class.

As the systemhasN distinct inputs fromeach of theN classifiers
and each of the inputs have twopossibilities, therewill be 2N(N−1)/2

fuzzy rules where the ith rule can be defined as,

IF x is A1, x is A2, . . . , x is AN , x is C1, x is C2, . . . , x is CN

THEN x is Oi
(14)

where, A1, A2, . . . , AN is {negative or positive} classifier output or
distance values, C1, C2, . . . , CN is {near or far} values and Oi in
{O1, . . . ,ON}, which is the set of all possible output sets.

The consequences of these fuzzy rules consider the binary
classifier output and distance inputs of N classifiers and centroidal
distances of data point from centroids of N classes. For example,
if for one data input, if A1 classifies an output as ‘positive’ and C1
classifies an output as ‘near’, and the rest of the A and C classifiers
yield ‘negative’ and ‘far’ output, respectively, then the consequence



112 S. Bhattacharyya et al. / Robotics and Autonomous Systems 68 (2015) 104–115
of the corresponding fuzzy rule will be the output fuzzy set O1. The
other fuzzy rules will also yield the corresponding consequences
on a similar basis.

Now, the final inference engine and the defuzzifier or output
processing block [38] of the used fuzzy fusion model OVA-IT2FLF-
ANFIS, is a replicate of the inference and defuzzifier unit of OVO-
IT2FLF-ANFIS. So, here too, we get an integer in the range [1,N]
signifying the class in which the data point belongs.

5. Results and discussion

The results of our proposed multi-class classification algorithm
and our robot control strategy for 11 subjects is discussed in this
section. First, we describe the performance of the two variants
of our multiclass IT2FLF-ANFIS classifier: OVA-IT2FLF-ANFIS and
OVO-IT2FLF-ANFIS and provides a statistical comparison with the
following standard classifiers: Linear Discriminant Analysis (LDA),
k-Nearest Neighbor (kNN), Support Vector Machine (SVM) and
Naïve Bayesian (NB) [39,40] using both OVA and OVO method
for multi-class classification. Then, in the following section we
examine the performance of our online control strategy using both
the proposed classifiers.

The processing and detection of the mental states from the
EEG signals has been done in MATLAB 2012b platform run on a
computer with the following specifications: Intel core i7 processor
@ 3.25 clock speed, 8 GB RAM and 64 bit Windows 7 operating
system.

5.1. Offline training

The feature vector used for training the classifiers are prepared
from the probability distribution of the local Hurst component
(as mentioned in Section 3.3) from each session (of each subject).
As each 7 session is made of 100 trials of data, then the final
size of the feature vector is 700 (trials) × 14 (electrodes) × 45
(features). The total feature vector is thendivided into two separate
datasets: training and validation, using k-fold cross validation
technique [40]. The performance of the classifiers are determined
by the values obtained by the average of twometrics: classification
accuracy (C.A.) and area under the ROC curve (AUC) [41], over 10
runs (k = 10).

The C.A. and AUC of the two proposed OVA-T2FLF-ANFIS and
OVO-IT2FLF-ANFIS classifiers are given in Table 2. As noted from
the table, the recognition rate for the five mental states: For-
ward, Backward, Left, Right and No movement is more than 80%
for both the variants of the classifier with Subject 1 produc-
ing the best result for both the classifiers (OVA-T2FLF-ANFIS:
C.A. = 96%, AUC = 92.86% and OVO-IT2FLF-ANFIS: C.A. = 99.50%,
AUC = 97.37%). It is also noted that OVOmethod performs slightly
better than OVA approach in terms of classification accuracy.

The performance of our proposed OVA-T2FLF-ANFIS and
OVO-IT2FLF-ANFIS classifier combination has been compared
with its competitors: LDA, kNN, SVM and NB using Friedman
Test [42]. Tomaintain parity in the comparison process,multi-class
classification of the competitor algorithms are also done using OVA
and OVO approach.

According to the null hypothesis in this context, all the
classifiers are equivalent and hence their ranks Rj should be equal.
The Friedman statistic is given by

χ2
F =

12N
k(k + 1)


j

R2
j −

k(k + 1)2

4


(15)

with k−1 degrees of freedom is distributed accordingly to χ2
F with

k−1 degrees of freedom,where k is the number of algorithms to be
compared andN is the number of parameters used for comparison.
Table 2
Offline performance analysis of the proposed OVA-IT2FLF-ANFIS and OVO-IT2FLF-
ANFIS classifier for 11 subjects.

Subject ID OVA-IT2FLF-ANFIS OVO-IT2FLF-ANFIS
C.A. AUC C.A. AUC

1 96.00 92.86 99.50 97.37
2 86.00 82.50 88.00 80.70
3 80.00 80.00 80.00 80.00
4 86.00 85.45 87.50 87.67
5 92.50 90.00 90.00 90.00
6 89.25 89.25 94.50 92.34
7 90.00 89.44 90.00 88.67
8 85.00 83.23 92.00 88.00
9 87.50 85.00 88.50 85.00

10 94.50 92.10 96.75 92.53
11 91.25 90.00 93.50 93.50
Mean 88.91 87.26 90.93 88.71

Table 3
Statistical validation of the proposed OVA-IT2FLF-ANFIS and OVO-IT2FLF-ANFIS
using Friedman test.

Classifier algorithm Classification accuracy Rank (Rj)

OVA-IT2FLF-ANFIS 88.91 2
OVO-IT2FLF-ANFIS 90.93 1
OVA-LDA 78.57 10
OVO-LDA 79.43 9
OVA-KNN 82.67 8
OVO-KNN 82.13 7
OVA-SVM 85.16 6
OVO-SVM 86.25 3
OVA-NB 85.75 4.5
OVO-NB 85.75 4.5

In this study, the mean of the classification accuracy (over 11
subjects) is considered as the number of parameters, thus, N = 1
and k is the number of classification algorithms which is 10.

Table 3 provides the mean classification accuracy for the clas-
sification techniques and their corresponding ranks based on their
accuracy. Using the ranks Rj from Table 3, χ2

F is calculated as 8.945
for both the features which is greater than χ2

9,0.95 = 3.325. This
means that for (k − 1 = 10 − 1 =) 9 degrees of freedom one
can say the null hypothesis is wrong for a confidence level of 95%
and hence, the classifiers are not equivalent rather they are ranked
according to Rj. This justifies our claim of using our proposed al-
gorithms as the classifier rather than other standard classifiers, in
this study.

5.2. Real-time robot arm control performance (online testing)

Following the training of the classifiers, the system is ready
to perform online control of the Jaco robot arm. The setup of the
online experimentation is shown in Fig. 12(a)where the yellowball
is target position. The subject controls the directional motion of
the robot arm using the mental commands, mentioned in Table 1.
The subject performed this experiment over 20 runs using both
the proposed algorithm. In each run, the subject would attempt
to reach the target using the robot arm. During real-time testing,
there was no time constraint imposed on the subject and he/she
would attempt to reach the target in his/her own time. Each run
ended with the robot arm either reaching the target or the subject
giving up in between.

The online performance of our proposed classifiers are deter-
mined by the following metric: (i) percentage (%) success rate, and
(ii) Information Transfer Rate (ITR) [43]. The % success rate is de-
fined by the number of times the subjectwas successful in reaching
the targetwithin a positional error of 5%with relation to the target.
ITR (Bt ) represents the bit rate of the method. Its representation in
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Fig. 12. Illustrations of a subject attempting to move towards the target (yellow ball). (a) Initial position of the robot arm, (b) the subject moves the arm forward to align
it with the target, (c) the subject moves the robot in clockwise direction (mental command: right), (d) the subject again moves the robot in clockwise direction (mental
command: right) and finally reaches the target. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 4
Online performance analysis of the proposed OVA-IT2FLF-ANFIS and OVO-IT2FLF-ANFIS classifier for 11
subjects.

Subject ID OVA-IT2FLF-ANFIS OVO-IT2FLF-ANFIS
% success rate ITR % success rate ITR

1 75.00 23.47 80.00 33.70
2 60.00 22.97 80.00 33.11
3 50.00 24.42 60.00 33.74
4 60.00 24.38 65.00 32.22
5 60.00 23.93 70.00 32.30
6 65.00 23.83 65.00 33.01
7 70.00 22.53 75.00 33.74
8 70.00 24.13 70.00 32.50
9 60.00 22.30 65.00 32.25

10 70.00 24.00 65.00 33.15
11 70.00 22.10 75.00 33.12
Mean 64.50 23.46 70.00 32.98
Average time taken by the classifier 137 s 198 s
Average time taken to reach target by the subjects 685 s 916 s
bits/min is given as

Bt =


log2 N + P log2 P + (1 − P) log2

1 − P
N − 1


×

60
T

(16)

where, N represents the number of possible states which is 5 in
the present context and P represents the classification accuracy
between 0 and 1. T is the time needed to convey each action in
second/symbol i.e., time interval from the issue of a command to
the classified output of the same.

The % success rate and ITR for the two proposed classifier for
11 subjects are shown in Table 4. Maintaining parity with the
performance during offline training, here too, the OVO-IT2FLF-
ANFIS performs better than theOVA-IT2FLF-ANFIS in terms of their
success rate. The best result is given by Subject 1 where he reaches
the target (within 5% error) 80% of the time, i.e., 18 times over 20
runs with an ITR of 33.70 bits/min.

It is noted fromTable 4 that OVO approach takesmuch longer to
produce an output than OVA. Such wide difference in computation
may be attributed to the large number of sub-classifiers the OVO
approach employs to yield a result compared to that of OVA
(mentioned in Section 4.1). Table 4 also includes the average
time taken by the subject to reach the target. Snapshots of a
subject performing the experiment to reach the target usingmotor
imagery signals are shown in Fig. 12.

6. Conclusion and future direction

In this paper, two variants of multi-class classification algo-
rithm:OVA-IT2FLF-ANFIS andOVO-IT2FLF-ANFIS have been devel-
oped towards recognition of motor imagery mental states in real
time. For this purpose, we devised an experiment inwhich the sub-
ject would generate five mental commands: forward, backward,
left, right and nomovement and employedmulti-fractal detrended
fluctuation analysis to create the feature vector. In the initial stages
of the experiment, the subjects and proposed classifiers are trained
and the performance of the training is determined by the classifica-
tion accuracy and area under theROC curve. An average training ac-
curacy of 88.91% and 90.93% are obtained from 11 subjects for the
OVA-IT2FLF-ANFIS and OVO-IT2FLF-ANFIS algorithm, respectively.
The proposed classifiers have also been statistically validated using
Friedman Test.
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The performance of the real time control is defined by the
percent success rate of the robot arm reaching the target and
information transfer rate. The average success rate obtained for
the 11 subjects are 64.5% (i.e., approximately 13 successful hits
for a total 20 runs) and 70% (i.e., 14 successful hits for a total 20
runs) for the OVA-IT2FLF-ANFIS and OVO-IT2FLF-ANFIS algorithm,
respectively. The average ITR over 20 runs for 11 subjects is
23.46 bits/min and 32.98 bits/min for the OVA-IT2FLF-ANFIS and
OVO-IT2FLF-ANFIS algorithm, respectively. These results suggests
that our proposed IT2FLF-ANFIS approach towards multi-class
detection is efficient in dealing with non-stationary and uncertain
signal data classification like EEG. Even though OVO-IT2FLF-ANFIS
performs better than OVA-IT2FLF-ANFIS, implementation of this
approach for real time scenario is not feasible because of the high
computational time the method takes to yield an output. Thus, the
OVA approach is the preferred method for real time cases.

The pros and cons of the methods make it evident that in spite
of using the OVA and OVO methods differently as two separate
classifiers, we may cluster their results using some fuzzy rule
base which will make a trade-off between all the multi class
handling methods and will give a better result with comparably
lower computational complexity. Here, we have used only least
mean square algorithm for parameter handling of OVO-IT2FLF-
ANFIS andOVA-IT2FLF-ANFIS butwemay replace it by some better
optimization algorithms and meta-heuristics. So we have a rich
future perspective to work with the proposed algorithm. Also, in
our future studies,wewould attempt to control the individual links
of the robot arm using motor imagery EEG and move towards the
development of a BCI-controlled prosthetic device for commercial
use.
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