

B.K. Panigrahi et al. (Eds.): SEMCCO 2013, Part I, LNCS 8297, pp. 59–67, 2013.
© Springer International Publishing Switzerland 2013

Load Information Based Priority Dependant Heuristic
for Manpower Scheduling Problem in Remanufacturing

Shantanab Debchoudhury1, Debabrota Basu1,
Kai-Zhou Gao2, and Ponnuthurai Nagaratnam Suganthan2

1 Department of Electronics and Telecommunication Engineering,
Jadavpur University, Kolkata-700032

2 School of Electrical and Electronic Engineering, Nanyang Technological University,
Singapore- 639798

{sdch10,basudebabrota29}@gmail.com,
{kzgao,epnsugan}@ntu.edu.sg

Abstract. Disassemble scheduling in remanufacturing is an important issue in
the current industrial scenario. Allocation of operators for this purpose forms a
special class of manpower scheduling problem with an added layer of
restrictions. In this paper we propose a set of heuristics that make use of the
concept of load information utilization. Several modifications have been
incorporated on the basic framework and thorough comparison has been made
between the same to devise an efficient way to tackle remanufacturing
scheduling problems. The developed method has been put to test on a series of
test functions of varying range of difficulty. The results prove the efficiency of
these heuristics to solve this scheduling problem.

1 Introduction

One of the basic processes involved in industrial applications, remanufacturing [1]
mainly deals with disassembling a complex machine into smaller and simpler
subparts. The method helps in identifying root problems which when addressed can
help in formation of a new reassembled machine.

From an environmental point of view remanufacturing is considered as the ultimate
form of recycling and now-a-days it is an interesting topic for researchers [2]. Even
remanufacturing is practically used in several countries across the globe for
remanufacturing of several products like aerospace, air-conditioning units, bakery
equipments, computer and telecommunication equipment, defence equipments,
robots, vending machines, motor vehicles and many more. This environmental edge
of remanufacturing process [3] has inspired us to deal with this problem.

For any remanufacturing problem, operators are needed to carry out the
disassembling. Hence for an efficient allocation of resources an organized scheduling
algorithm is of the utmost importance. Manpower scheduling [4-6] is a particular
class of such problems when the task at hand is to basically assign a set of human
workers with imposed constraints. A broader method would be the classical Job shop
scheduling problem [7] when more generalized machines are employed capable of
performing at higher efficiencies compared to human labor.

60 S. Debchoudhury et al.

Standard scheduling techniques have been overshadowed by the use of heuristics
and meta-heuristics which aim to devise cost effective and efficient means to solve
the issue. The latter consist primarily of algorithms like ABC [8], DE [9], GA [10] to
employ a population based stochastic process seeking out the best possible
combination for an optimal scheduling. Heuristics [11] on the other hand are general
dedicated methods that are based on experience and learning.

In this paper our primary aim is to utilize the concept of man power scheduling for
disassembly in remanufacturing using heuristics. No such works that we are aware of
are in the literature. Hence we have made use of a load information retention
technique besides priority assignment. The process of disassembly is depicted through
tree architecture. Thus, the problem at hand is to assign operators at each node from
an available set of operators with specific processing times for working on that node.
The algorithm keeps a track on the load of each operator and accordingly completes
the assignment process in decreasing levels of priority.

The paper is organized as follows. Section 2 deals with discussion of the problem
structure and objective. In section 3, details of the priority dependant heuristic is put
forward. As basic skeleton, a primitive simple greedy heuristic with no load retention
in adapted. The advantages of adding the load retention scheme is then discussed and
five variations of the same are put up. In section 4, all the frameworks discussed have
been put to test in some generated test cases. The experimental background is
mentioned in the same section as well as the obtained results with discussions and
figures. The conclusion is finally drawn in Section 5.

2 Problem Model and Objective

The process of disassembly as mentioned in Section 1 is shown using tree
architecture. The root node is the main machine which is to be disassembled into
subparts. At each level of disassembly a certain set of operators are employed from an
available pool and each operator has a value of processing time to operate on that
particular level.

Fig 1 shows a standard tree and the corresponding tree information table. As is
evident in the figure node 1 or the root node is demarcated as NA since it has no
parent. Thus Parent number 1 beside node number 2 shows that node number 1 is
parent to node 2.

Fig. 1. Sample Tree and corresponding Tree Information Table

Node No Parent
1 NA
2 1
3 1
4 2

5 2
6 3

Load Information Based Priority Dependant Heuristic for Manpower Scheduling Problem 61

We now proceed to show a sample benchmark tree information table in Table 1
that has been utilized as a test case. The problem shown is a 4-operator
remanufacturing scheduling problem and has been marked as Instance 1 (Simple) in
the subsequent discussions. The presence of ‘-’ indicates that the corresponding
operator is not available for operation in the particular shift.

Table 1. Sample Test Case- Instance 1(Simple)

Node Parent Operator 1 Operator 2 Operator 3 Operator 4
1 N.A. - - - -
2 1 - - 15 10
3 1 5 - 10 -
4 2 6 9 - 8
5 2 - - 7 10
6 2 - 5 6 -
7 3 - 8 - 7
8 3 11 - 8 10

Our objective here is to derive a schedule so that makespan [12] or the maximum
time for the completion of the entire process is minimized. A schedule which is gives
the least makespan of all the possible schedules is said to be an optimal schedule.
Hence we attempt to allocate in such a way that the schedule obtained is as close to
being an optimal schedule as possible.

3 Priority Dependant Heuristic

The remanufacturing model bears significant resemblance to a tree. In discussions
henceforth we shall be frequently to a disassembled part to be a child of its former
state whom we refer to as the parent. The level of disassembling or in other words the
stage up to which the original machine has been disassembled is referred to as the
depth. With these annotations in mind, we shall proceed to the assumptions and
discussions of the priority dependant heuristic for operator assignment.

The assumptions used for the heuristics designed are as follows:

1. Level with lower amount of disassembled parts is considered for allocation
prior to a level with higher amount of disassembled parts. In other words
priority of assignment decreases as the depth of the tree increases. We refer to
this as a LDHP (Lower Depth Higher Priority) assignment.

2. Children or in other words, disassembled parts of Jobs which are assigned the
least time in a certain level are considered first for assignment in the next
level. The job whose children are being considered remains unaffected by its
own parentage. To put in simple words, process flow of all the heuristics is
unidirectional along increasing depth.

3.1 Simple Greedy LDHP Heuristic without Load Information

The simple Greedy Lower Depth Higher Priority (LDHP) algorithm is a primitive
attempt to solve remanufacturing scheduling problem. This does not involve any prior

62 S. Debchoudhury et al.

load information of the operators and hence this is not an adaptive algorithm. The
greedy based selection of operators is utilized when assignment within a same level of
priority is under question. In such a scenario, only that job is taken up which permits
allocation of operator with the least possible operating time. Hence it is termed as a
greedy selection. The entire process flow of the heuristic is outlined in the Fig 2.

Fig. 2. Process flow for the Simple Heuristic: (Greedy LDHP algorithm)

3.2 Modified Load Information Based LDHP Heuristic with Five Variations

Load Information Retention involves using an adaptive process to determine the
existing load on a particular operator. The existing load is added to the offered load in
each level of assignment to get a complete picture of the existing scenario, which we
refer to here as the Complete Information Schedule (CIS). Real world problems often
deal with similar situations when scheduling constraints often demand exclusion of an
operator which is already on a certain amount of load. The total time of processing
can be taken as a suitable measure of the load and hence this concept is used.

The algorithmic variations from the simple heuristic discussed in Section 3.1 are
highlighted in Step 3 of Fig 3. The method of assigning operators in a same priority
situation is done using one of five methods discussed subsequently in Fig 4, Fig 5,
Fig 6, Fig 7 and Fig 8. The methods or variations deal with choosing between same

Step 1: Go to the first level of disassembling.
Step 2: Prioritize this level and process all the children of this level first
Step 3: All the children are of the same priority since they are all derived from

same parent node. Within this priority level, go for greedy selection.
• For each child find minimum processing time possible among all
operators capable of operating on that child.
• Order the obtained set or minima.
• Assign the child with least minimum the highest priority for
assignment and that with the highest the last priority. If there are
multiple similar minima, priority is assigned randomly between them.
• Choose operators in order of decreasing priority.
• In a priority level always choose the operator with minimum
processing time.

Step 4: Update the finishing time of operation of each child in the level.
Step 5: On completion, rank the finishing time of operation in increasing order.
Step 6: Go to next level. The children of the job with the least rank (lowest

finishing time) as obtained in Step 5 is given highest priority in this level and the
priority decreases with increasing rank. Between two similar lower finishing times
choice is made randomly.

Step 7: The higher priority set of children are considered first
Step 8: Repeat Steps 3-5 until all the priority levels within this depth are

covered
Step 9: Proceed similarly for all the depths

Load Information Based Priority Dependant Heuristic for Manpower Scheduling Problem 63

priorities and the modes of selecting constitute the basis of the variations. These
modes are random, greedy, size, greedy and size, and finally a random pick between
the above mentioned four modes.

Fig. 3. Process flow for the Load Information based LDHP heuristic

Fig. 4. Method 1: (R-SP) [Random based Priority assignment in Same Priority level]

Fig. 5. Method 2: (G-SP) [Greedy based Priority assignment in Same Priority level]

Step 1: Go to the first level of disassembling. Set Initial load of all the
operators to 0.

Step 2: Prioritize this level and process all the children of this level first
Step 3: All the children are of the same priority since they are all derived from

same parent node.
• Add the existing load to the corresponding processing times of
operators within this set of children and obtain a Complete Information
schedule (CIS)

• Consult Methods 1, 2, 3, 4, 5 (Fig 4 – Fig 8) to assign priority based on
this CIS.

• Choose operators in order of decreasing priority.
Step 4: Update the finishing time of operation of each child in the level.
Step 5: Update the existing load by adding the finishing time of each operator

to their corresponding entries in the list of load.
Step 5: On completion, rank the finishing time of operation in increasing order.
Step 6: Go to next level. The children of the job with the least rank (lowest

finishing time) as obtained in Step 5 is given highest priority in this level and the
priority decreases with increasing rank. Between two similar lower finishing times
choice is made randomly.

Step 7: The higher priority set of children are considered first
Step 8: Repeat Steps 3-5 until all the priority levels within this depth are

covered
Step 9: Proceed similarly for all the depth.

Step 1: From the CIS, find a random order of the children in the priority level
Step 2: Assign the first member of this order the highest priority and the

last member the least priority.

Step 1: From the CIS, rank the summed processing times (processing time
+ existing load) in increasing order of minima of the children. For multiple
children with same minimum choose randomly.

Step 2: Assign the first member of this rank the highest priority and the
last member the least priority.

64 S. Debchoudhury et al.

Fig. 6. Method 3: (S-SP) [Size based Priority assignment in Same Priority level]

Fig. 7. Method 4: (GS-SP) [Greedy and Size based Priority assignment in Same Priority level]

Fig. 8. Method 5: (RCS-SP) [Random chosen scheme based Priority assignment in Same
Priority level]

4 Experimental Settings, Results and Discussions

The developed heuristics have been put to test through a series of 10 instances with
wide range of difficulty. Four are relatively easy scheduling problems where number
of operators is limited to a maximum of 6 and depth of disassembling is at most 4.
Four cases require assignment of medium level of difficulty where depth of tree is at
most 7 and number of operators involved is at most 10. The remaining two cases
pose a difficult assignment challenge with involvement of 15 operators and a depth
level of 10. The simple instance 1 has been shown in Table 1 in Section 2. In each of
the cases, the makespan is noted besides the computational run time. Our objective is
to minimize the makespan.

Table 2 and Table 3 show the results of the simple Greedy LDHP heuristic along
with the Load information based LDHP algorithm with all the five methods of
assignment within a same priority level. In addition two additional hybrid algorithms
are devised.

In “Hybrid Pop based complete heuristic” a population pool of 5 is chosen and
each is tested with Load information based assignment with one of the five methods,
one after the other. The five different methods work together and the best results are
reported. However in “Hybrid Pop based R-G-GS algorithm” only 3 membered
populations with R-SP, G-SP and GS-SP modes of selection are used in each of the
populations. Again the best results are obtained.

Step 1: From the CIS, rank the size list of operators available of operation
in increasing order. For multiple children with same size choose randomly.

Step 2: Assign the first member of this rank the highest priority and the
last member the least priority.

Step 1: From the CIS, list the summed processing times (processing time +
existing load) of the children and add the size of the corresponding list of
operators available. Rank this combined minimum and size parameter in
increasing order. For multiple children with same sum choose randomly.

Step 2: Assign the first member of this rank the highest priority and the last
member the least priority.

Choose any of the R-SP, G-SP, S-SP, GS-SP (Methods 1-4) in random manner

Load Information Based Priority Dependant Heuristic for Manpower Scheduling Problem 65

A total of 10 runs have been taken for each instance and each algorithm. The best
results have been adopted in each case. All the codes have been run on Intel Core™ i3
machine with 2.26 GHz processor and 3GB memory on MATLAB 2012 platform.

Table 2. Results obtained under Instances 1-4

HEURISTIC
Instance 1
(Simple)

Instance 2
(Simple)

Instance 3
(Simple)

Instance 4
(Simple)

Simple Greedy
LDHP Heuristic

Makespan 20 45 45 41
Run timee(sec) 5.96e-02 6.31e-02 7.50e-02 8.01e-02

Load Info based
Assignment (R-SP)

Makespan 20 35 36 41
Run time(sec) 6.20e-02 5.25e-02 5.09e-02 9.37e-02

Load Info based
Assignment (G-SP)

Makespan 20 39 29 41
Run time(sec) 6.01e-02 6.00e-02 6.03e-02 6.87e-02

Load Info based
Assignment (S-SP)

Makespan 20 39 29 41
Run time(sec) 4.99e-02 5.88e-02 5.50e-02 6.34e-02

Load Info based
Assignment (GS-SP)

Makespan 20 39 29 41
Run time(sec) 5.24e-02 6.32e-02 5.41e-02 6.88e-02

Load Info based
Assignment (RCS-SP)

Makespan 20 39 33 41
Run time(sec) 1.18e-01 9.09e-02 5.99e-02 6.97e-02

Hybrid Pop based
Complete heuristic

Makespan 20 35 29 41
Run time(sec) 8.87e-01 7.98e-01 7.86e-01 6.63e-01

Hybrid Pop based
R-G-GS heuristic

Makespan 20 35 29 41
Run time(sec) 4.12e-01 3.99e-01 3.32e-01 2.19e-01

Table 3. Results obtained under Instances 5-10

HEURISTIC
Instance 5
(Medium)

Instance 6
(Medium)

Instance 7
(Medium)

Instance 8
(Medium)

Instance 9
(Hard)

Instance 10
(Hard)

Simple Greedy
LDHP Heuristic

Makespan 135 110 116 114 198 189
Run time(sec) 9.33e-02 1.23e-01 1.11e-01 1.11e-01 1.77e-01 1.89e-01

Load Info based
Assignment (R-SP)

Makespan 101 83 85 83 128 157
Run time(sec) 1.17e-01 1.23e-01 8.27e-02 9.66e-02 1.58e-01 1.97e—01

Load Info based
Assignment (G-SP)

Makespan 100 86 86 87 125 157
Run time(sec) 9.93e-02 1.07e-01 9.72e-02 9.28e-02 1.67e-01 1.75e-01

Load Info based
Assignment (S-SP)

Makespan 104 77 91 89 126 158
Run time(sec) 3.09e-01 1.26e-01 9.88e-02 9.11e-02 1.69e-01 1.75e-01

Load Info based
Assignment (GS-SP)

Makespan 101 77 82 82 129 161
Run time(sec) 1.10e-01 1.09e-01 1.03e-01 6.89e-02 2.10e-01 1.50e-01

Load Info based

Assignment (RCS-SP)
Makespan 105 81 87 86 126 160

Run time(sec) 1.12e-01 1.10e-01 1.26e-01 1.09e-01 1.71e-01 1.93e-01
Hybrid Pop based
Complete heuristic

Makespan 100 77 82 82 125 157
Run time(sec) 1.12e+00 9.88e-01 7.97e-01 8.55e-01 1.03e+00 1.63e+00

Hybrid Pop based
R-G-GS heuristic

Makespan 100 77 82 82 125 157
Run time(sec) 5.41e-01 4.13e-01 3.32e-01 3.11e-01 6.98e-01 7.01e-01

The above results show that the simple greedy heuristic is basically a primitive

model which fails to address the necessities of a minimal makespan. A marked
improvements in the results is obtained when we include the load information
retention mechanism. Altough all the five variations of this Load information based
heuristic are remarkably superior to their primitive skeleteon – the greedy simple
heuristic, it is however seen that on comparison between themselves slight differences
arise. In some instances (Instance 2) R-SP mode works the best while on others G-SP
(Instance 9) or in some cases (Instance 7) GS-SP outperforms the other heuristcis.

66 S. Debchoudhury et al.

Hence hybrid algorithms were devised. The hybrid pop based complete heuristic
manages to achieve minimum makespan on all the cases albeit at the cost of a much
increased computational time as compared to the others. The hybrid pop based R-G-
GS heuristic is finally seen to be an optimal algorithm since it gives the nimum
makespan with a much lesser computational time as compared to the other hybrid
algorithm. The Gnatt Chart [13, 14] is depicted below in Fig 9 for the best solution
obtained in case of Simple Instance 1. The horizontal axis shows time units elapsed
while vertical axis shows node number on which operation takes place.

Fig. 9. Gnatt chart corresponding to solution of Table 1

5 Conclusions

Before concluding our discussion we quickly recapitulate the major aspects of the
heuristic proposed in our paper

First and foremost, the load information scheme is shown to be a fast performing
and highly dependent method of obtaining scheduling solutions. The heuristic is
derived from a grass root level and it has been shown that incorporation of load
information retention scheme improves its performance to a great extent. The
modifications or variations involved in the heuristic are all comparable in terms of
performance although certain variations work well in some instances. Hybrid
variations thus devised were seen to be highly efficient although compromises were
made with the algorithmic run time. Summing it all up, such a proposed heuristic
assures a solution that boasts of qualities of reliability robustness and effectiveness.

Hence the load information based priority dependant heuristic is found to be a
dependable method to solve manpower scheduling based remanufacturing problems.

Operator 4

Operator 1

Operator 1

Operator 3

Operator 2

Operator 2

Operator 3

0 5 10 15 20 25

2

3

4

5

6

7

8

Load Information Based Priority Dependant Heuristic for Manpower Scheduling Problem 67

References

[1] Remanufacturing, link,
http://en.wikipedia.org/wiki/Remanufacturing

[2] The Remanufacturing institute, link,
http://reman.org/AboutReman_main.htm

[3] Remanufacturing, http://www.remanufacturing.org.uk/
[4] Lau, H.C.: On the complexity of manufacturing shift scheduling. Computers Ops.

Res. 23(1), 93–102 (1996)
[5] Ho, S.C., Leung, J.M.Y.: Solving a manpower scheduling problem for airline catering

using metaheuristics. European Journal of Operational Research 202, 903–921 (2010)
[6] Pan, K.-Q., Suganthan, P.N.: Solving manpower scheduling problem in manufacturing

using mixed-integer programming with a two-stage heuristic algorithm. Int. J. Adv.
Manuf. Technol. 46, 1229–1237 (2010)

[7] Joseph, A., Egon, B., Daniel, Z.: The Shifting Bottleneck Procedure for Job-shop
Scheduling. Management Science 34(3) (March 1988) (printed in USA)

[8] Wang, L., Zhou, G., Xu, Y., Wang, S., Liu, M.: An effective artificial bee colony
algorithm for the flexible jobshop scheduling problem. The International Journal of
Advanced Manufacturing Technology 60(1-4), 303–315 (2012)

[9] Das, S., Suganthan, P.N.: Differential Evolution – A Survey of the state-of-the-art.
IEEE Transactions on Evolutionary Computation 15(1), 4–31 (2011)

[10] Pezella, F., Morganti, G., Ciaschetti, G.: A genetic algorithm for the flexible Job-shop
Scheduling Problem. Computers & Operations Research 35(10), 3202–3212 (2008)

[11] Heuristics, http://en.wikipedia.org/wiki/Heuristic
[12] Chekuri, C., Bender, M.: An efficient Approximation Algorithm for Minimizing

Makespan on Uniformly Related Machines. Journal of Algorithms 41(2), 212–224
(2001)

[13] Geraldi, J., Lechter, T.: Gantt charts revisited: A critical analysis of its roots and
implications to the management of projects today. International Journal of Managing
Projects in Business 5(4), 578–594 (2012)

[14] Gnatt chart link, http://en.wikipedia.org/wiki/Gantt_chart

	Load Information Based Priority Dependant Heuristicfor Manpower Scheduling Problem in Remanufacturing
	1 Introduction
	2 Problem Model and Objective
	3 Priority Dependant Heuristic
	3.1 Simple Greedy LDHP Heuristic without Load Information
	3.2 Modified Load Information Based LDHP Heuristic with Five Variations

	4 Experimental Settings, Results and Discussions
	5 Conclusions
	References

