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Learning Price-Consumption Dynamics

Sales

Yt

ηt

Price

Xt

εt

Observations

Noise
Let us consider

Slest = β∗ × Pricet + ηt

Goal

Learn β∗ from a stream of data

{Sles1,Sles2, . . .} & {Price1,Price2, . . .}.

Solution: Online Linear Regression [Wasserman, 2004]

Find the βminimising the square loss till time t

βt , rgmin
β

t∑
s=1
(Prices − β× Sless)2 .
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Online Linear Regression: Premises and Conclusion

Online Linear Regression yields an estimate

βt =
(∑t

s=1
Sless

)−2
×
(∑t

s=1
Sless × Prices

)
.

We note that βt is an unbiased and consistent estimator of β.

Online Linear Regression yields unbiased estimate if

1. The observational noise ηt is independent of Pricet .
2. There is no external or unobserved variable except Price that impacts Sales.

Are these premises always true?
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Learning Price-Consumption Dynamics
A Case for Endogeneity

Sales

Yt

ηt

Price

Xt

εt Festival

Now, the underlying dynamics is

Slest = β∗ × Pricet + ρS × Festivlt + ηt

Goal

Learn β∗ from a stream of data {Sles1,Sles2, . . .} & {Price1,Price2, . . .}.

But, online linear regression does not yield an unbiased estimate that converges to β.

[Wald, 1940, Greene, 2003]
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Why Do We Care for Endoegeneity?

Endogeneity is a widely studied phenomenon in epidemiology, economics, bioinformatics, social

sciences, and causal inference that emerges due to

• Omitted explanatory variables
– Estimate the number of returning students to college using the National Survey of Youth

data [Rubin, 1974, Carneiro et al., 2011, Mogstad et al., 2021]

• Strategic behaviours during data generation
– Just-In-Time Adaptive Interventions (JITAI) using mobile health

applications [Tewari and Murphy, 2017, Kallus, 2018] (Susan Murphy’s plenary talk, AAAI 2023)

• Measurement errors
– Effect of family income on children’s cognitive outcome [Dahl and Lochner, 2012, Zhu et al., 2022]

• Dependence of the output and the covariates on unobserved confounding variables
– Causal inference with Rubin’s potential outcome framework

[Rubin, 1974, Angrist and Imbens, 1995, Hernan and Robins, 2020] (Nobel in Econ. 2022)
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Tackling Endoegenity in Regression
Introduce Instrumental Variables ⊥⊥ Unobserved Variables and Noise

First, introduced by Doctor John Snow during London cholera epidemic of 1853-54 to prove whether cholera is waterborne.



Learning Price-Consumption Dynamics under Endoegenity
Introducing Instumental Variables (IVs)

Sales

Yt

ηt

Price

Xt

εt

Mater.

Cost Zt

Festival

Now, the underlying dynamics has two stages

First stage

Pricet = θ∗ × MCostt + ρF × Festivlt + εt

Second stage

Slest = β∗ × Pricet + ρS × Festivlt + ηt

Goal

Learn β∗ and θ∗ from a stream of data {Sles1,Sles2, . . .}, {Price1,Price2, . . .}, and
{MCost1,MCost2, . . .}.
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IVs: Premises and Conclusions

IVs should satisfy [Greene, 2003]

• IVs are exogeneous w.r.t. both the first and second-stage noise.
• IVs are relevant to estimate the first-stage variable (e.g. Material Cost has enough influence
on the Price). Mathematically, covariances of IVs and first-stage variables are always non-zero.

IVs lead to [Hernan and Robins, 2020]

1. an unbiased estimate θt of θ
∗ as in classic online linear regression

2. a predictive value of first-stage variable P̂ricet = θt × M̂Costt
3. a decoupling of the second-stage noise ηt and second-stage variable Slest given the
prediction P̂ricet

4. an unbiased estimate βt of β
∗ through another online linear regression
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Online Instrumental Variable Regression
Online Two-stage Least Squares (O2SLS) [Vecchia and Basu, 2023]

Yt

Outcome

Variables

ηt

Second-stage

Noise

Xt

Endogenous

Covariates

εt

First-stage

Noise

Zt

Instrumental

Variables

First stage

Pricet = θ∗ × MCostt + εt

Regression 1: Learn θ∗ from a stream of IVs Zt and

covriates Xt

Second stage

Slest = β∗ × Pricet + ηt

Regression 2: Learn β∗ from a stream of outcomes

Yt and predicted covariates from the first-stage X̂t .
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Online Instrumental Variable Regression
Online Two-stage Least Squares (O2SLS) [Vecchia and Basu, 2023]

Algorithm O2SLS

1: Input: Initialisation parameters β0, θ0

2: for t = 1,2, . . . , T do

3: Observe zt generated i.i.d. by Nature, and xt sampled for given zt

4: Compute first-stage parameter estimates θt−1 = (
∑t−1

s=1
zsz
>
s
)−1

∑t−1
s=1

zs
>
s

5: Use θt−1 and zt to predict ̂t

6: Compute second-stage parameter estimates βt−1 = (
∑t−1

s=1
̂ŝ
>
s
)−1

∑t−1
s=1

̂>
s
ys

7: Predict ŷt = β>
t−1t

8: Observe yt generated by Nature

9: end for
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Confidence of Estimating β∗

Lemma (Confidence ellipsoid for the second-stage parameters)

For ση-sub-Gaussian first stage noise ηt and for all t > 0, the true parameter β belongs to the

confidence set around the estimator

Et ,
{
β ∈ Rd : ‖βt − β‖Ĥt

≤
√
bt(δ)

}
, (1)

with probability at least 1 − δ ∈ (0,1). Here, bt(δ) ,
dZσ

2
η

4 log
(
1+tL2

z
/λdZ

δ

)
.

Thus, the confidence ellipsoid around the estimator contracts at a rateO
(√

log t
t

)
.
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Identification Regret of O2SLS

Identification Regret: The cost of identifying the true parameter β∗ is given by

R̃T(β∗) ,
∑T

t=1
(>

t
βt−1 − >t β

∗)2.

Theorem (Identification regret of O2SLS)

The identification regret of O2SLS satisfies with probability at least 1 − δ

R̃T ≤
T∑

t=1

‖βt − β‖2Ĥt︸ ︷︷ ︸
Estimation

× ‖t‖2Ĥ−1
t︸ ︷︷ ︸

Second-stage
feature norm

≤ bT−1(δ)︸ ︷︷ ︸
O(dz log T)

×
T∑

t=1

‖t‖2Ĥ−1
t︸ ︷︷ ︸

O(d log T)

= O
(
ddz log

2(T)
)
.
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Oracle (Predictive) Regret of O2SLS

Oracle Regret: The regret in terms of the quality of prediction is defined as

RT(β) ,
∑T

t=1
(yt − >t βt−1)

2 −
∑T

t=1
(yt − >t β)

2.

Theorem (Oracle regret of O2SLS)

Oracle Regret of O2SLS at step T > 1 is upper bounded by (ignoring log log terms)

R̃T︸︷︷︸
Identif.
Regret

O(ddz log2 T)

+
√
bT−1(δ)︸ ︷︷ ︸

Estimation

O(
√
dz log T)

(
C1
√
ƒ(T)︸ ︷︷ ︸

First-stage
feature norm

O(
√
log T)

+ C2
√
2dƒ(T) +

√
dC3︸ ︷︷ ︸

Correlated noise
Concentration term

O(
√
d log T)

+ γC4
p
T︸ ︷︷ ︸
)

Correlated noise
Bias term
O(γ
p
T)

= O(γ
p
T).

with probability at least 1 − δ ∈ (0,1). Here, degree of endogeneity γ , ‖γ‖2 = ‖E[ηsεs]‖2.
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Experimental Analysis
Part I: Final Regret over Different Degrees of Endogeneity
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Figure: Identification regret after T = 103 steps of Online Ridge (left) and O2SLS (right), for different

combination of ρF and ρS in [0,200]. O2SLS attains lower regret than Ridge for a wide range of parameters.
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Experimental Analysis
Part II: Evolution of Regret over Different Degrees of Endogeneity

0

200

400

600

800 F = S = 5
Ridge
O2SLS

0 200 400 600 800 1000
0

1000
2000
3000
4000
5000

F = S = 10
Ridge
O2SLS

Id
en

tif
ica

tio
n 

Re
gr

et
: R

t

Figure: Identification regret of Online Ridge and O2SLS over T = 103 steps, and for ρF = ρS = 5,10. With
increase in ρS, i.e. endoegenity, O2SLS performs better.
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Tackling Endoegenity in Bandits
O2SLS Regression ⇐⇒ Optimism in the Face of Uncertainty



Dynamic Pricing under Endoegenity
Bandits with Instrumental Variables [Kallus, 2018, Vecchia and Basu, 2023]

Sales

Yt

ηt

Price

Xt

εt

Mater.

Cost Zt

Festival

First stage

Pricet = θ∗ × MCostt + ρF × Festivlt + εt

Second stage

Slest = β∗ × Pricet + ρS × Festivlt + ηt

Goal

Given K possible feasible prices between [0,MaxRetailPrice] and corresponding material costs,
selecting which price and which material cost would lead to the highest amount of sales.
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Bandits under Endogeneity

Algorithm The Interactive Process of Bandits under Endogeneity

1: Input: Initialisation parameters β0, θ̂0

2: for t = 1,2, . . . , T do

3: Sample covariates t, ∈ Xt for all  ∈ At

4: Choose an action At from the feasible action setAt

5: Observe corresponding IV zt,At and outcome yt

6: Update the parameter estimates βt and θt .

7: end for
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OFUL-IV: IVs+Optimism for Bandits under Endogeneity

Algorithm OFUL-IV

1: for t = 1,2, . . . , T do

2: Sample covariates t, ∈ Xt for all  ∈ At

3: Compute βt−1 using O2SLS estimator

βt−1 ,

(
t−1∑
s=1

̂>
s
̂s

)−1 t−1∑
s=1

̂>
s
ys (2)

4: Choose an action At from the feasible action setAt using optimistic index

At = rgmx
∈At

{
〈t,, βt−1〉+

√
b′
t−1(δ) ‖t,‖Ĥ−1t−1

}
(3)

5: Observe corresponding IV zt,At and outcome yt

6: Update the parameter estimates βt and θt , and confidence interval b
′
t
(δ)

7: end for
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Theoretical Analysis

Theorem (Regret upper bound of OFUL-IV)

Under the same assumptions as that of O2SLS, with probability 1 − δ and for horizon T > 1,
OFUl-IV incurs regret

RT ≤ 2
p
T

√
bT−1(δ)︸ ︷︷ ︸

Estimation O(
√
dz log T)

(
T∑

t=1

‖t,At‖2Ĥ−1
t

)1/2

︸ ︷︷ ︸
Second-stage feature norm O(

√
d log T)

= O(
√
ddzT log T)

For d = dz, we retrieve a regret bound of same order as that of classic linear bandits without

exoegeneity. This shows efficiency of OFUL-IV to eliminate bias due to endogeneity while decision

making.
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Experimental Analysis
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The Road Ahead: Challenges and Opportunities

• Tackling Non-linearity: Extending our analysis to non-linear regression problems, like kernel

regressions and neural network based regressions

• Solving Control Problems: We are working on formulating and solving control problems with

underlying causal structures using O2SLS framework as oracle

• Identifying ‘Strong’ IVs: Our analysis depends heavily on existence of a set of strong and

relevant IVs. The question is how to identify them or adapt these algorithms when they are

weak.

For further details, please visit: https://debabrota-basu.github.io/
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Questions?

Thanks to Riccardo Della Vecchia,

who has been central to develop these research works.
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