
From Noisy Fixed-Point Iterations to
A Unified Theory of Private Optimisation for Centralised and Federated Learning

Debabrota Basu | debabrota-basu.github.io

Équipe Scool, Inria, Univ. Lille, CNRS- CRIStAL, Centrale Lille, France

Indian Statistical Institute, Kolkata, July 2023

https://debabrota-basu.github.io/

The Trajectory

1. Motivation: Collaborative Drug Design

2. Warm-up: Differentially Private Optimisation

3. Unification: Fixed-point Operators with and without Noise

4. Application: Differentially Private ADMM as Noisy Fixed-point Operator

5. The Curtain Call

Antisense Oligonucleotide (ASO) Drugs

Source:https://zh.wikipedia.org/wiki/File:Antisense_DNA_oligonucleotide.png

1/20

Source: https://zh.wikipedia.org/wiki/File:Antisense_DNA_oligonucleotide.png

Collaborative Drug Design

Dataset D2

Classifier ƒ(.|2)

Dataset D1

Classifier ƒ(.|1)

Dataset D3

Classifier ƒ(.|3)

Dataset D4

Classifier ƒ(.|4)

2/20

Collaborative Drug Design

Dataset D2

Classifier ƒ(.|2)

Dataset D1

Classifier ƒ(.|1)

Dataset D3

Classifier ƒ(.|3)

Dataset D4

Classifier ƒ(.|4)

Global Classifier

ƒ(.|gob)

2/20

Collaborative Drug Design with Privacy [Tavara et al., 2021]

Issues in Collaboration

• Different organisations have different IP on models.

• The local datasets may contain sensitive/private information of the individuals involved.

• The data or partial models under communication can be used to leak the data and to

reconstruct the models.

Solution: Distributed Learning with Differential Privacy

Add noise to the local parameters communicated between nodes such that inclusion/exclusion of

an individual is indistinguishable.

3/20

Component 1: Differential Privacy

Randomized
algorithm

A

x1

x2

xn

random coins

A(D)

distribution of A(D)

...

Randomized
algorithm

A

x1

xn

random coins

A(D')

distribution of A(D')

...

x2'

Information in input/database becomes private

if it is indistinguishable from the output of a query/algorithm.

4/20

Component 1: Rényi Differential Privacy

• Neighbouring datasets D = {1, 2, . . . , n} and D ′ = {1, ′2, 3, . . . , n}

• DP impliesA (D) andA (D ′) should have similar distributions

• Similarity is measured in terms of different divergences leading to different DP definitions

output range of A

p
ro

b
a
b
ili

ty ratio
bounded

Satisfying Rényi DP requires

Dα (A (D)||A (D ′)) ≤ ϵ
5/20

Compnent 2: Empirical Risk Minimisation (ERM)

Objective: Minimise expected risk of predicting erroneously R(|D) , E(X,Y)∼D [(;X, Y)]

Issue: The data-generating distribution D is not known.

Solution: Use sample average of the risk obtained over the training dataset D = {(X, Y)}n

=1
as a proxy.

R̂(|D) ,
1

n

n∑
=1

(;X, Y) =
1

n

n∑
=1

(; d)

Methodology:

1.Modelling: Compute parameters (or hypothesis) yieldingminimum empirical risk over training dataset.

∗ , rgmin
∈U

R̂(|D)

2. Optimisation: Use an optimisation algorithm, such as SGD in centralised setting, FedSGD and ADMM in

federated setting, ADMM in distributed setting to solve the minimisation problem

6/20

Compnent 2: Empirical Risk Minimisation (ERM)

Objective: Minimise expected risk of predicting erroneously R(|D) , E(X,Y)∼D [(;X, Y)]

Issue: The data-generating distribution D is not known.

Solution: Use sample average of the risk obtained over the training dataset D = {(X, Y)}n

=1
as a proxy.

R̂(|D) ,
1

n

n∑
=1

(;X, Y) =
1

n

n∑
=1

(; d)

Methodology:

1.Modelling: Compute parameters (or hypothesis) yieldingminimum empirical risk over training dataset.

∗ , rgmin
∈U

R̂(|D)

2. Optimisation: Use an optimisation algorithm, such as SGD in centralised setting, FedSGD and ADMM in

federated setting, ADMM in distributed setting to solve the minimisation problem

6/20

Compnent 2: Empirical Risk Minimisation (ERM)

Objective: Minimise expected risk of predicting erroneously R(|D) , E(X,Y)∼D [(;X, Y)]

Issue: The data-generating distribution D is not known.

Solution: Use sample average of the risk obtained over the training dataset D = {(X, Y)}n

=1
as a proxy.

R̂(|D) ,
1

n

n∑
=1

(;X, Y) =
1

n

n∑
=1

(; d)

Methodology:

1.Modelling: Compute parameters (or hypothesis) yieldingminimum empirical risk over training dataset.

∗ , rgmin
∈U

R̂(|D)

2. Optimisation: Use an optimisation algorithm, such as SGD in centralised setting, FedSGD and ADMM in

federated setting, ADMM in distributed setting to solve the minimisation problem

6/20

A Walk through Differentially Private Optimisation
Differentially Private SGD and ADMM

Warm-up: Stochastic Gradient Descent

Algorithm 1 Stochastic (Projected) Gradient Descent (SGD)

1: Initialise 0 ∈ C ⊂ Rp (independent of D)

2: for t = 0, . . . , T − 1 do

3: Pick t ∈ {1, . . . , n} uniformly at random

4: t+1 ← t − γ(t)
(
∇ƒ(t; dt)

)

Utility: Given a convex and Lipschitz loss function, if we set γt =
‖C‖2
L
p
t
, we get

E[T − ∗] = O

(
‖C‖2nL log T

p
T

)
.

7/20

DP-SGD: Noise Injection during Optimisation

[Bassily et al., 2014, Abadi et al., 2016]

Algorithm 2 Differentially Private SGD (DP-SGD)

1: Initialise 0 ∈ C ⊂ Rp (independent of D)

2: for t = 0, . . . , T − 1 do

3: Pick t ∈ {1, . . . , n} uniformly at random

4: t+1 ← t − γ(t)
(
∇ƒ(t; dt) + ηt+1

)
where ηt+1 ∼ N (0, σ2Δ2Ip)

5: Return T

• Utility analysis: same as non-private SGD (with additional noise due to privacy)

• Privacy analysis: DP-SGD satisfies (α, αT

2n2σ2) Rényi DP following the subsampled Gaussian

mechanism and composition property of RDP over T iterations.

8/20

DP-SGD: Noise Injection during Optimisation

[Bassily et al., 2014, Abadi et al., 2016]

Algorithm 3 Differentially Private SGD (DP-SGD)

1: Initialise 0 ∈ C ⊂ Rp (independent of D)

2: for t = 0, . . . , T − 1 do

3: Pick t ∈ {1, . . . , n} uniformly at random

4: t+1 ← t − γ(t)
(
∇ƒ(t; dt) + ηt+1

)
where ηt+1 ∼ N (0, σ2Δ2Ip)

5: Return T

• Utility analysis: same as non-private SGD (with additional noise due to privacy)

• Privacy analysis: DP-SGD satisfies (α, αT

2n2σ2) Rényi DP following the subsampled Gaussian

mechanism and composition property of RDP over T iterations.

8/20

Warm-up: ADMM

• Alternating Direction Method of Multipliers (ADMM) aims to solve:

minimize
, z

ƒ(;D) + g(z)

sbject to A+ Bz = c

Algorithm 4 ADMM algorithm

Input: initial point 0, step size λ ∈ (0,1], Lagrange parameter γ > 0
for k = 0 to K − 1 do

zk+1 = rgminz

{
g(z) + 1

2γ‖Bz + k‖2
}

k+1 = rgmin

{
ƒ(;D) + 1

2γ ‖A+ 2Bzk+1 + k − c‖2
}

k+1 = k + 2λ (Ak+1 + Bzk+1 − c)
Return zK

9/20

Differential Privacy-preserving ADMM

How can we make ADMM private and analyse its utility?

Algorithm 5 DP-ADMM algorithms

Input: initial point 0, step size λ ∈ (0,1], Lagrange parameter γ > 0
for k = 0 to K − 1 do

zk+1 = rgminz

{
g(z) + 1

2γ‖Bz + k‖2
}

(add a Gaussian noise and optimise)

k+1 = rgmin

{
ƒ(;D) + 1

2γ ‖A+ 2Bzk+1 + k − c‖2
}

(add a Gaussian noise and

optimise)

k+1 = k + 2λ (Ak+1 + Bzk+1 − c) (add a Gaussian noise)

Return zK

10/20

(Noisy) Fixed-point Operators
Fixed-point Operators with and without Noise

Optimisation Algorithms as Fixed-point Operators

• T an operator such that k+1 , T(k)

• Non-expansive operator: ‖T() − T(y)‖ ≤ ‖− y‖,∀, y
• α-averaged operator: T = αR+ (1 − α), where R is non-expansive

The Update Rule

∀1 ≤  ≤ m, k+1

= k


+ ρ,k(T(k) − k


)

where ρ,k is a Boolean (random) variable that parametrises if block  is updated at time k.

11/20

Optimisation Algorithms as Fixed-point Operators

• T an operator such that k+1 , T(k)

• Non-expansive operator: ‖T() − T(y)‖ ≤ ‖− y‖,∀, y
• α-averaged operator: T = αR+ (1 − α), where R is non-expansive

The Update Rule

∀1 ≤  ≤ m, k+1

= k


+ ρ,k(T(k) − k


)

where ρ,k is a Boolean (random) variable that parametrises if block  is updated at time k.
11/20

Noisy Fixed-point Operators

Algorithm 6 Noisy fixed-point iteration

Input: non-expansive operator R = (R1, . . . , RB) over 1 ≤ B ≤ p blocks,step sizes (λk)k∈N ∈
(0,1], active blocks (ρk)k∈N ∈ {0,1}B, errors (ek)k∈N, noise variance σ2 ≥ 0
for k = 0,1, . . . do

for b = 1, . . . , B do

k+1,b = k,b + ρk,bλk(Rb(k) + ek,b + ηk+1,b − k,b) with ηk+1,b ∼ N (0, σ2Ip)

This algorithm applies a λk-averaged operator with Gaussian noise, with possibly randomised,

inexact and block-wise updates.

12/20

DP Optimisation as a Noisy Fixed-point Operator

Algorithm 7 Noisy fixed-point iteration

Input: non-expansive operator R = (R1, . . . , RB) over 1 ≤ B ≤ p blocks,step sizes (λk)k∈N ∈
(0,1], active blocks (ρk)k∈N ∈ {0,1}B, errors (ek)k∈N, noise variance σ2 ≥ 0
for k = 0,1, . . . do

for b = 1, . . . , B do

k+1,b = k,b + ρk,bλk(Rb(k) + ek,b + ηk+1,b − k,b) with ηk+1,b ∼ N (0, σ2Ip)

• We recover DP-SGD with

R() = −
2

β
∇ƒ(;D),

ek =
2

β
(∇ƒ(k;D) − ∇ƒ(k; dk)), and B = 1.

• This setup is linient to combine with amplification by iteration and by subsampling
13/20

General utility analysis [Cyffers et al., 2023]

Theorem (Utility guarantees for noisy fixed-point iterations)

Assume that R is τ-contractive with fixed point ∗. Let P[ρk,b = 1] = q for some q ∈ (0,1].
Then there exists a learning rate λk = λ ∈ (0,1] such that the iterates satisfy:

E
(
‖k+1 − ∗‖2

)
6

(
1 −

q2(1 − τ)

8

)k

D+ 8

(p
pσ + ζ

p
q (1 − τ)

+
pσ2 + ζ2

q3(1 − τ)3

)
(1)

where D = ‖0 − ∗‖2, p is the dimension of , and E[‖ek‖2] ≤ ζ2 for some ζ ≥ 0.

• The only assumption on R is that it is τ-contractive

• We roughly recover DP-SGD rate for strongly convex objective

• Let’s apply it to ADMM

14/20

Differentially Private ADMM

as a Noisy Fixed-point Operator
An Algorithmic Framework for Centralised, Federated, and Decentralised Settings

ADMM as a Fixed-point for ERM

ADMM can be written as Lions Mercier operator

T = λRγp1Rγp2 + (1 − λ)

with Rγp = 2proxγp− .

The consensus problem fits the general form solved by ADMM algorithms:

minimize
 ∈ Rnp, z ∈ Rp

1

n

n∑
=1

ƒ(; d) + r(z)

sbject to − n(p×p)z = 0,

where each data item d has its own parameter  ∈ Rp

15/20

A Recipe for Centralised, Federated, and Decentralised DP-ADMM

Algorithm 8 Private ADMM

Input: initial point z0, step size λ ∈ (0,1], privacy noise variance σ2 ≥ 0, parameter γ > 0,
number of sampled users 1 ≤ m ≤ n

for k = 0 to K − 1 do

ẑk+1 =
1
n

∑n

=1
k,

zk+1 = proxγr (ẑk+1)
for  = 1 to n do

k+1, = proxγƒ(2zk+1 − k,)
k+1, = k, + 2λ

(
k+1, − zk+1 +

1
2ηk+1,

)
with ηk+1, ∼ N (0, σ2Ip)

Return zK

16/20

Privacy-utility Trade-offs for Centralised, Federated, and

Decentralised DP-ADMMs

Centralised Federated Decentralised

Privacy loss
8αKL2γ2

σ2n2
16αKL2γ2

σ2n2
8αKL2γ2 ln n

σ2n

E(‖K − ∗‖2)
p
pαLγp

ϵn(1−τ) +
pαL2γ2

ϵn2(1−τ)3
p
pαLγp

ϵrn(1−τ) +
pαL2γ2

ϵr2n2(1−τ)3
p
pαLγp

ϵn(1−τ) +
pαL2γ2

ϵn(1−τ)3

17/20

Numerical Illustration: LASSO

10 2 10 1 100 101

Epsilon

10 3

10 2

10 1

100

101

102

103

104

O
b

je
ct

iv
e
 f

u
n
ct

io
n

Private ADMM

Private SGD

• Synthetic sparse data with baseline DP-Prox SGD

• DP-ADMM shows a good robustness to high level of noise

Code: https://github.com/totilas/padadmm
18/20

https://github.com/totilas/padadmm

The Curtain Call

Conclusion

• We provide a unifying view of private optimization algorithms by framing them as noisy

fixed-point iterations, and prove general utility guarantees.

• Our framework can be used to derive and analyze new private algorithms by instantiating our

general scheme with particular fixed-point operators.

• We illustrate this by designing private ADMM algorithms for centralised and federated

learning; in contrast, prior work used ad-hoc algorithmic modifications and customised

analysis with many privacy parameters.

19/20

Future Work

• Algorithm Design: Study this framework further to design novel algorithms with simpler and

cleaner analysis.

• Analysis: Proving (weaker) utility guarantees for λ-averaged operators that are non-expansive

but not contractive.

• Application: Deploying these algorithms for collaborative drug design.

Thanks to Edwige Cyffers and Aurélien Bellet,

who have been central to develop this research.

20/20

References

[Abadi et al., 2016] Abadi, M., Chu, A., Goodfellow, I. J., McMahan, H. B., Mironov, I., Talwar, K., and Zhang, L. (2016).

Deep learning with differential privacy.

In CCS.

[Bassily et al., 2014] Bassily, R., Smith, A. D., and Thakurta, A. (2014).

Private Empirical Risk Minimization: Efficient Algorithms and Tight Error Bounds.

In FOCS.

[Cyffers et al., 2023] Cyffers, E., Bellet, A., and Basu, D. (2023).

From noisy fixed-point iterations to private admm for centralized and federated learning.

arXiv preprint arXiv:2302.12559.

[Tavara et al., 2021] Tavara, S., Schliep, A., and Basu, D. (2021).

Federated learning of oligonucleotide drug molecule thermodynamics with differentially private admm-based svm.

In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pages 459–467. Springer.

20/20

ADMM as a Fixed-point Operator

ADMM can be written as Lions Mercier operator

T = λRγp1Rγp2 + (1 − λ)

with Rγp = 2proxγp− .

Two ways to instantiate it:

1. p1() = (−A . ƒ)(−− c) and p2() = (−B . g)() with

(M . ƒ)(y) = inf{ƒ() | M = y}

2. p1() = γ−1∂ƒ∗(−A∗) and p2() = γ−1∂g∗

1/4

Private Centralised (per-coordinate) ADMM

Algorithm 9 Private Centralised ADMM

1: Initial vector 0, step size λ ∈ (0,1], privacy noise variance σ2 ≥ 0, γ > 0
2: for k = 0 to K − 1 do

3: ẑk+1 =
1
n

∑n

=1
k,

4: zk+1 = proxγr (ẑk+1)
5: for  = 1 to n do

6: k+1, = proxγƒ(2zk+1 − k,)
7: k+1, = k, + 2λ

(
k+1, − zk+1 +

1
2ηk+1,

)
with ηk+1, ∼ N (0, σ2Ip)

8: return zK

2/4

Private Federated ADMM

Algorithm 10 Private federated ADMM

1: Initial point z0, step size λ ∈ (0,1], privacy noise vari-

ance σ2 ≥ 0, parameter γ > 0, number of sampled

users 1 ≤ m ≤ n

2: Server loop:

3: for k = 0 to K − 1 do

4: Subsample a set S ofm users

5: for  ∈ S do

6: Δk+1, = LocalADMMstep(zk , )
7: ẑk+1 = zk +

1
n

∑
∈S Δk+1,

8: zk+1 = proxγr(ẑk+1)
9: return zK

Algorithm 11 LocalADMMstep

1: Sample ηk+1, ∼ N (0, σ2Ip)
2: k+1, = proxγƒ(2zk − k,)
3: k+1, = k, +
2λ
(
k+1, − zk +

1
2ηk+1,

)
4: return k+1, − k,

3/4

Private Decentralised ADMM

Algorithm 12 Private (fully) Decentralised ADMM

1: Initial points 0 and z0, step size λ ∈ (0,1], privacy noise variance σ2 ≥ 0, γ > 0
2: for k = 0 to K − 1 do

3: Let  be the currently selected user

4: Sample ηk+1, ∼ N (0, σ2Ip)
5: k+1, = proxγƒ(2zk − k,)

6: k+1, = k, + 2λ
(
k+1, − zk +

1
2ηk+1,

)
7: ẑk+1 = zk +

1
n
(k+1, − k,)

8: zk+1 = proxγr (ẑk+1)
9: Send zk+1 to a random user

4/4

	Motivation: Collaborative Drug Design
	Warm-up: Differentially Private Optimisation
	Unification: Fixed-point Operators with and without Noise
	Application: Differentially Private ADMM as Noisy Fixed-point Operator
	The Curtain Call
	
	Appendix

