From Noisy Fixed-Point Iterations to
A Unified Theory of Private Optimisation for Centralised and Federated Learning

ooo

Debabrota Basu | debabrota-basu.github.io
Equipe Scool, Inria, Univ. Lille, CNRS- CRIStAL, Centrale Lille, France

Indian Statistical Institute, Kolkata, July 2023
CIPI'S

https://debabrota-basu.github.io/

The Trajectory

1. Motivation: Collaborative Drug Design
2. Warm-up: Differentially Private Optimisation
3. Unification: Fixed-point Operators with and without Noise

4. Application: Differentially Private ADMM as Noisy Fixed-point Operator

5. The Curtain Call

Antisense Oligonucleotide (ASO) Drugs

Antisense DNA
oligonucleotide

) Transcription

Ribosome Amino acids

Source:https://zh.wikipedia.org/wiki/File:Antisense DNA oligonucleotide.png

Protein

Source: https://zh.wikipedia.org/wiki/File:Antisense_DNA_oligonucleotide.png

Collaborative Drug Design

Dataset D1 Dataset D>
Classifier f(.|w1) Classifier £(.|w2)

Dataset D3 Dataset D4
Classifier f(.|w3) EHE Classifier £(.|was)

2/20

Collaborative Drug Design

Dataset D1
Classifier f(.|w1)

Dataset D>
Classifier f(.|w2)

N/

Global Classifier

FCIwgiobar)

Dataset D3

Classifier f(.|w3) HHE

Dataset D4
Classifier f(.|wa)

2/20

Collaborative Drug Design with Privacy [Tavara et al., 2021]

Issues in Collaboration

e Different organisations have different IP on models.
e The local datasets may contain sensitive/private information of the individuals involved.

e The data or partial models under communication can be used to leak the data and to
reconstruct the models.

Solution: Distributed Learning with Differential Privacy

Add noise to the local parameters communicated between nodes such that inclusion/exclusion of
an individual is indistinguishable.

3/20

Component 1: Differential Privacy

random coins random coins

Randomized Randomized

algorithm algorithm

A

distribution of A(D) distribution of A(D')

Information in input/database becomes private
if it is indistinguishable from the output of a query/algorithm.

4/20

Component 1: Rényi Differential Privacy
e Neighbouring datasets 2 = {x1, x>, ..., X,} and ={x1, ,x3,..., X}
e DPimplies . (2) and ./ () should have similar distributions

e Similarity is measured in terms of different divergences leading to different DP definitions

>
£
o
©
Q
o
=4
a

output range of A

Satisfying Rényi DP requires
Do (F (2| (")) <e

5/20

Compnent 2: Empirical Risk Minimisation (ERM)

Objective: Minimise expected risk of predicting erroneously R(u|D) £ Ex yy~p [1(u; X, Y)]

6/20

Compnent 2: Empirical Risk Minimisation (ERM)

Objective: Minimise expected risk of predicting erroneously R(u|D) £ Ex yy~p [1(u; X, Y)]

Issue: The data-generating distribution D is not known.

Solution: Use sample average of the risk obtained over the training dataset 2 = {(X,, Yi)}lf’=1 as a proxy.
n n

1
RIZ) 2 =) Wwixiv)=—) (ud)

i=1 i=1

6/20

Compnent 2: Empirical Risk Minimisation (ERM)

Objective: Minimise expected risk of predicting erroneously R(u|D) £ Ex yy~p [1(u; X, Y)]
Issue: The data-generating distribution D is not known.
Solution: Use sample average of the risk obtained over the training dataset 2 = {(X,, Yi)}lf’=1 as a proxy.
1 n n
Rul2) = — Y UWuixv)=—Y U(u;d)
i=1 =1

Methodology:

1. Modelling: Compute parameters (or hypothesis) yielding minimum empirical risk over training dataset.

u* £ argminR(u|2)
uevu

2. Optimisation: Use an optimisation algorithm, such as SGD in centralised setting, FedSGD and ADMM in
federated setting, ADMM in distributed setting to solve the minimisation problem

6/20

A Walk through Differentially Private Optimisation

Differentially Private SGD and ADMM

Warm-up: Stochastic Gradient Descent

Algorithm 1 Stochastic (Projected) Gradient Descent (SGD)

1: Initialise ug € C C RP (independent of 2)
2. fort=0,..., T—1do

3 Picki: € {1,...,n} uniformly at random
4 Uyl < U — y(t)(Vf(ut; d,-t))

Utility: Given a convex and Lipschitz loss function, if we set y; = ”LC|1/|-2 , we get

. [ICll2nL1og T
]E[IUT—IU]ZO(ﬁ .

7/20

DP-SGD: Noise Injection during Optimisation
[Bassily et al., 2014, Abadi et al., 2016]

Algorithm 2 Differentially Private SGD (DP-SGD)
1: Initialise ug € C C RP (independent of 2)
2. fort=0,..., T—1do
3 Picki: € {1,..., n} uniformly at random
4 U1 — ur— YO (VF(ue di) + nes1) where ne1 ~ A (0, 02A%1,)
5: Return ur

8/20

DP-SGD: Noise Injection during Optimisation
[Bassily et al., 2014, Abadi et al., 2016]

Algorithm 3 Differentially Private SGD (DP-SGD)

. Initialise ugp € C C RP (independent of 2)

1

2. fort=0,..., T—1do

3 Picki: € {1,..., n} uniformly at random

4 U1 — ur— YO (VF(ue di) + nes1) where ne1 ~ A (0, 02A%1,)
5: Return ur

e Utility analysis: same as non-private SGD (with additional noise due to privacy)

e Privacy analysis: DP-SGD satisfies (o, %) Rényi DP following the subsampled Gaussian
mechanism and composition property of RDP over T iterations.

8/20

Warm-up: ADMM

e Alternating Direction Method of Multipliers (ADMM) aims to solve:
mir;(irrz\ize 0 2)+ 9(2)

subjectto Ax+Bz=c

Algorithm 4 ADMM algorithm
Input: initial point ug, step size A € (0, 1], Lagrange parameter y > 0
fork=0toK— 1do
— i 1 2
Ziy1 = Argmin, {g(z) + 5 1Bz + ull }
Xk+1 = argmin, 1 f(x; 2) + 2% [|IAx + 2Bzt 1 + up — cllz}
U1 = Ug + 2 (AXpy1 + BZir1 — C)
Return zX

9/20

Differential Privacy-preserving ADMM

How can we make ADMM private and analyse its utility?

Algorithm 5 DP-ADMM algorithms

Input: initial point ug, step size A € (0, 1], Lagrange parameter y > 0
fork=0toK—1do
Zx+1 = argmin, {g(z) “F %”BZ aF uk||2} (add a Gaussian noise and optimise)

Xk+1 = argmin, {f(x; 2)+ 2% [|IAx + 2Bzt1 + up — cllz} (add a Gaussian noise and
optimise)
Ugs1 = Ug + 2A (Axes1 + Bzie1 —¢) (add a Gaussian noise)

Return zX

10/20

(Noisy) Fixed-point Operators

Fixed-point Operators with and without Noise

Optimisation Algorithms as Fixed-point Operators

e T an operator such that u**1 £ T(u¥)
e Non-expansive operator: ||T(x) — T(y)|| £ lIx—yll, Vx, y

e a-averaged operator: T = aR + (1 — a)I, where R is non-expansive

11/20

Optimisation Algorithms as Fixed-point Operators

e T an operator such that u**1 £ T(u¥)
e Non-expansive operator: ||T(x) — T(y)|| £ lIx—yll, Vx, y

e a-averaged operator: T = aR + (1 — a)I, where R is non-expansive

The Update Rule

Vi<i<m, uf*’l = uf + oy (Ty(u¥) — uf)

where p; x is a Boolean (random) variable that parametrises if block i is updated at time k.
11/20

Noisy Fixed-point Operators

Algorithm 6 Noisy fixed-point iteration
Input: non-expansive operator R = (R1,...,Rg) over 1 < B < p blocks,step sizes (A¢)ken €
(0, 1], active blocks (ox)ken € {0, 1}8, errors (ex)xen, noise variance 0% > 0
fork=0,1,... do
forb=1,..., B do
Ukt 1,6 = Ub + PkpAc(Ro(Uk) + €xp + Nkt 1,0 — Ukp) With nis1,6 ~ A (0, 0°1,)

This algorithm applies a A -averaged operator with Gaussian noise, with possibly randomised,
inexact and block-wise updates.

12/20

DP Optimisation as a Noisy Fixed-point Operator

Algorithm 7 Noisy fixed-point iteration

Input: non-expansive operator R = (Ry, ..., Rg) over 1 < B < p blocks,step sizes (Ax)ken €
(0, 11, active blocks (px)ken € {0, 1}5, errors (ex)xen, noise variance o2 > 0
fork=0,1,... do
forb=1,...,Bdo
Uk+1,6 = Ukb + PrsAk(Ro(Uuk) + €xp + Nkt 1.6 — Ukp) With i1, ~ A (0, 0%1,)

e We recover DP-SGD with
2
R(u)=u— Evf(ui 2),
P
ek = E(Vf(uk, @)—Vf(uk, dl'k)), andB=1.

e This setup is linient to combine with amplification by iteration and by subsampling

13/20

General utility analysis [Cyffers et al., 2023]

Theorem (Utility guarantees for noisy fixed-point iterations)

Assume that R is T-contractive with fixed point u*. Let P[px , = 1] = g for some g € (0, 1].
Then there exists a learning rate A, = A € (0, 1] such that the iterates satisfy:

p) & 2 p)
g°(1—1) po+ ¢ po‘ +¢
E (lu —u*IP) < {1-———] D+8 e g W
Ja(l—1) ¢°(1—1)
where D = ||ug — u*||?, p is the dimension of u, and E[||lex||?] < ¢? for some ¢ > 0.
e The only assumption on R is that it is T-contractive

e We roughly recover DP-SGD rate for strongly convex objective

e Let’s apply it to ADMM

14/20

Differentially Private ADMM
as a Noisy Fixed-point Operator

An Algorithmic Framework for Centralised, Federated, and Decentralised Settings

ADMM as a Fixed-point for ERM

ADMM can be written as Lions Mercier operator
T = ARyp, Ryp, + (1—=2)

with Ry, = 2 prox,,—I.

The consensus problem fits the general form solved by ADMM algorithms:

x ER™, z € RP

subjectto x—I,pxp)z=0,

1 n
minimize *Zf(xi:di)+f(2)
=

where each data item d; has its own parameter x; € R

15/20

A Recipe for Centralised, Federated, and Decentralised DP-ADMM

Algorithm 8 Private ADMM
Input: initial point zg, step size A € (0, 1], privacy noise variance o > 0, parameter y > 0,
number of sampledusers 1 < m < n
fork=0toK— 1do
Zky1 = % Z;]:l Uy, i
Zk+1 = Prox,, (Zk+1)
fori=1tondo
Xk+1,i = ProX,; (2zc+1 — ug,1)
Up+1,i = Uk, + 2)\(Xk+1,i_zk+1 + %rlk+1,i) with N1, ~ A(O, Uzﬂp)
Return zg

16/20

Privacy-utility Trade-offs for Centralised, Federated, and
Decentralised DP-ADMMs

Centralised Federated Decentralised

. 8aKkL2y? 16aKL2y?2 8akL2y2Inn

Privacy loss 72 2.7 e
E(|luk — u*||2) 2B il J/PaLy paL?y? JPaLy paL2y?

J/en(1—1) en?(1—1)° Jern(1—1) er2n?(1—1)3 Jen(1-7) ° en(1—7)3

17/20

Numerical lllustration: LASSO

—F~ Private ADMM
—— Private SGD

c
2
©
<
S
2
o
2
=1
o
2
a
o

Epsilon

e Synthetic sparse data with baseline DP-Prox SGD
e DP-ADMM shows a good robustness to high level of noise
Code: https://github.com/totilas/padadmm

18/20

https://github.com/totilas/padadmm

The Curtain Call

Conclusion

e We provide a unifying view of private optimization algorithms by framing them as noisy
fixed-point iterations, and prove general utility guarantees.

e Our framework can be used to derive and analyze new private algorithms by instantiating our
general scheme with particular fixed-point operators.

e We illustrate this by designing private ADMM algorithms for centralised and federated
learning; in contrast, prior work used ad-hoc algorithmic modifications and customised
analysis with many privacy parameters.

19/20

Future Work

e Algorithm Design: Study this framework further to design novel algorithms with simpler and
cleaner analysis.

e Analysis: Proving (weaker) utility guarantees for A-averaged operators that are non-expansive
but not contractive.

e Application: Deploying these algorithms for collaborative drug design.

Thanks to Edwige Cyffers and Aurélien Bellet,
who have been central to develop this research.

20/20

References

[Abadi et al., 2016] ~ Abadi, M., Chu, A., Goodfellow, I. J., McMahan, H. B., Mironov, ., Talwar, K., and Zhang, L. (2016).
Deep learning with differential privacy.
In CCS.
[Bassily et al., 2014] Bassily, R., Smith, A. D., and Thakurta, A. (2014).
Private Empirical Risk Minimization: Efficient Algorithms and Tight Error Bounds.
In FOCS.
[Cyffers et al., 2023] = Cyffers, E., Bellet, A., and Basu, D. (2023).
From noisy fixed-point iterations to private admm for centralized and federated learning.
arXiv preprint arXiv:2302.12559.
., Schliep, A., and Basu, D. (2021).

Federated learning of oligonucleotide drug molecule thermodynamics with differentially private admm-based svm.

[Tavara et al., 2021] Tavara,

In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pages 459-467. Springer.

20/20

ADMM as a Fixed-point Operator

ADMM can be written as Lions Mercier operator
T = ARyp,Ryp, + (L= A
with Ry, = 2 prox,,—I.

Two ways to instantiate it:

1. p1(u) = (—A>f)(—u—c) and p2(u) = (=B > g)(u) with
(M>F)(y) =inf{f(x) | Mx =y}

2. p1(u) =y tof*(—A*) and p2(u) = v tag*

14

Private Centralised (per-coordinate) ADMM

Algorithm 9 Private Centralised ADMM

1. Initial vector u®, step size A € (0, 1], privacy noise variance 02 > 0,y > 0
2: fork=0toK—1do

A 1
3 Zk+1 = Z;l Ui
4l Zk+l = proxyr (2k+1)
5. fori=1ltondo
6: Xg+1,i = ProX,; (2ze+1 — u,1)

1 .

7 Ug+1,i = Uk, + 2)\(X/<+1,i— Zk+1 + 5’7k+1,i) with N1, ~ A (0, 0%1,)
8: return z¢

2/4

Private Federated ADMM

Algorithm 10 Private federated ADMM

1:

e H e W o @

Initial point zg, step size A € (0, 1], privacy noise vari-
ance 02 > 0, parameter ¥ > 0, number of sampled
users1 <m<n
Server loop:
fork=0tokK— 1do

Subsample a set S of m users

fori€ Sdo

Aug+1,; = LocalADMMstep(z, i)

Zi1 =2z + % 2_ies Dk

Zk+1 = Prox,, (Ze+1)
return zg

Algorithm 11 LocalADMMstep

1:
2:
3:

Sample Ne+1,i ~ A (0, 0°1,)
Xi+1,i = ProX,; (22 — ug,0)

Uk+1,i = Ui +

1
2\ (Xk+1,i_ Z + §I7k+1,i)
return Ug+1,i — Ug,i

3/4

Private Decentralised ADMM

Algorithm 12 Private (fully) Decentralised ADMM

1: Initial points ug and zg, step size A € (0, 1], privacy noise variance 02 > 0,y > 0
2: fork=0toK—1do

3: Letibe the currently selected user

4 Sample Ng+1, ~ A (0, 0°1,)

5 Xp+1i = ProX,;(2zc — ug,)

6 Uktli = Uit 2A (Xer1,i— 2+ %f)k+1,1)

A 1
7 Zke1 = Zk + o (Ukr i — Ukd)
8 Zk+1 = Prox,, (Z+1)
9: Send zx41 to a random user

	Motivation: Collaborative Drug Design
	Warm-up: Differentially Private Optimisation
	Unification: Fixed-point Operators with and without Noise
	Application: Differentially Private ADMM as Noisy Fixed-point Operator
	The Curtain Call
	
	Appendix

