
LEARNING TO MAKE DECISIONS WITH
INCOMPLETE INFORMATION:

REINFORCEMENT LEARNING, INFORMATION
GEOMETRY, AND REAL-LIFE APPLICATIONS

DEBABROTA BASU
(B. Eng. (Hons.), Jadavpur University)

A THESIS SUBMITTED FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2018

Supervisors:
Associate Professor Stéphane Bressan, Main Supervisor

Professor Pierre Senellart, École Normale Supérieure, Co-Supervisor

Examiners:
Professor Tan Kian Lee

Dr. Jonathan Mark Scarlett
Dr. Cappé Olivier, French National Centre for Scientific Research (CNRS)

DECLARATION

I hereby declare that this thesis is my original work and it has

been written by me in its entirety. I have duly acknowledged all

the sources of information which have been used in the thesis.

This thesis has also not been submitted for any degree in any

university previously.

DEBABROTA BASU

24 November 2018

Acknowledgements

None of a human’s endeavour is a journey in isolation. Rather, like himself/herself, all

the milestones traversed by a human is a collective construction. Thus, we become a

human instead of being born into it. Similarly, I have sailed across my journey to the

doctorate degree by constant support and influence of several people and institutions.

I verbalise my gratefulness to some of them, and for the rest, let there be my silent

gratitude and respect.

I would like to pay regards to my parents, Ma and Baba, to believe in myself, ideas,

and ideals. Thanks for ushering the boon of knowledge and education on me under

the most adverse conditions of life. I wish that I could share this with my late Dida

and Mama for loving unconditionally and standing as the silent pillars. I would like

to thank Munia for standing by me throughout the gravest failures and the brightest

memories, and waiting patiently till it ended.

I convey due respect and gratitude to my supervisors Prof. Sté phane Bressan

and Prof. Pierre Senellart. I would like to thank Prof .Sté phane for your guidance

and advice throughout the wavy PhD journey. I would like to thank Prof. Pierre

for teaching the academic skills and being the inspiration. It has been an enriching

experience to be your supervisee that has transformed a lot of aspects personally and

academically. I would also thank all the present and ex-members of our research group

Ashish, Naheed, Agus, Remmy, Liu Qing, Fajrian, and Yann to be the brothers in arms.

I wish all of you to succeed in your academic journeys with flying colours. I also like to

thank all my collaborators of Prof. haibo Chen’s group is SJTU, Prof. Talel’s group

vi

in Telecom Paristech, and Prof. Giulia’s group in Arizona State University for their

help and support to fulfil the missions that we shared together.

No journey is complete without friends. Thus, last but not the least, I would like

to thanks my brothers Rahulda, Tarunda, Kaustavda, Subhabratada, Subhasankarda,

Abhishekda, Arka, and Subhodip. Thanks for always standing with each other when

everything seemed to fall apart and when everyone lost hope on themselves. In a

distant land, you have built my shelter from the storm.

I would also like to convey my respect to my poet friends of Migrant Writers’

Singapore, my second home that taught me the meaning of freedom and resistance-

Jadavpur University, and other academic instiutions that kindly hosted me- ENS, NUS,

NTU, ISI, SJTU, and ETH-Zurich.

To the endless journey to reach knowledge, freedom, and the beauty of geometry.

– Melencolia I by Albrecht Dürer.

Contents

Abstract xv

List of Contributions xvii

List of Tables xxi

List of Figures xxiii

List of Notations xxix

1 Introduction 1

1.1 Learning to Make Good Decisions under Uncertainty: Reinforcement

Learning . 2

1.1.1 Basic Elements of Reinforcement Learning 5

1.1.2 Settings of Reinforcement Learning 8

1.2 Motivations and Contributions . 13

1.2.1 Theoretical Aspects . 13

1.2.2 Application Aspects . 17

1.3 Structure of the Thesis . 20

2 A Primer on Reinforcement Learning 23

2.1 Multi-Armed Bandits . 24

2.1.1 Finite-Armed Stochastic Bandit 26

2.1.2 Bandit Algorithms . 43

x Contents

2.1.3 Pure Exploration Bandits . 47

2.1.4 Our Contribution: BelMan . 48

2.2 Markov Decision Processes . 50

2.2.1 Finite-State Finite-Action MDPs 51

2.2.2 Functional Abstraction of MDP 59

2.2.3 Dynamic Programming . 62

2.2.4 On-Policy and Off-Policy Learning 66

2.2.5 Temporal-Difference Algorithm 67

2.2.6 Functional Approximation Algorithms 71

2.2.7 Actor, Critic, and Actor-critic Algorithms 74

2.2.8 Exploration in MDPs . 76

2.2.9 Balancing Exploration and Exploitation in MDPs 79

I A Functional Approximation Approach to Learning with
Unknown Reward and Unknown Transition Function 85

3 Learning with Unknown Reward: Automated Database Tuning 87

3.1 Introduction . 88

3.2 Literature Review and Contextualisation 90

3.2.1 Automated Database Configuration 90

3.2.2 Reinforcement Learning in Data Management 94

3.3 Automated Database Tuning as a Learning Problem 95

3.4 Automated Database Tuning with Cost-Model Learning 100

3.4.1 Algorithmic Framework . 100

3.4.2 Reducing the Search Space . 102

3.4.3 Reducing the Dimensionality in Policy Iteration 104

3.4.4 Learning the Cost Model . 110

3.5 Automated Database Tuning with Regularised Cost-Model Learning . . 112

3.5.1 Regularised Cost-Model Estimator 113

Contents xi

3.5.2 Performance Bound . 115

3.6 Case Study: Adaptive Index Tuning . 120

3.6.1 Reducing the Search Space . 120

3.6.2 Defining the Feature Mapping ϕ 121

3.6.3 Defining the Feature Mapping η 124

3.6.4 Performance Bounds for Regularised COREIL 125

3.7 Performance Evaluation . 127

3.7.1 Dataset and Workload . 128

3.7.2 WFIT: Brief Description . 129

3.7.3 COREIL: Experiments and Results 130

3.7.4 rCOREIL: Experiments and Results 133

3.7.5 Analysis of Cost Estimator . 139

3.8 Conclusion . 140

4 Learning with Unknown Transitions: Live Migration of Virtual Ma-

chines 145

4.1 Introduction . 146

4.2 Literature Review and Contextualisation 151

4.2.1 Dynamic VM Consolidation . 151

4.2.2 Reinforcement Learning Algorithms for VM Migration 152

4.3 A Cloud Data Centre: System and Cost Models 154

4.3.1 System Model . 154

4.3.2 Energy Consumption Cost . 156

4.3.3 SLA Violation Cost . 157

4.4 Live Virtual Machine Migration as a Learning Problem 160

4.5 Megh: Learn to Migrate As-you-go . 162

4.6 Performance Evaluation . 170

4.6.1 Experimental Setup . 170

4.6.2 Dataset and Workload . 171

4.6.3 Comparative Performance Analysis 172

xii Contents

4.6.4 Scalability Analysis . 177

4.6.5 Parameter Sensitivity . 178

4.7 Conclusion . 180

II An Information Geometric Approach to Learning with
Incomplete Information 183

5 BelMan: An Information Geometric Approach to Multi-armed Ban-

dits 185

5.1 Introduction . 186

5.2 Revisiting the Multi-armed Bandit Literature 189

5.3 Bandits: Problem Formulation . 193

5.4 Methodology . 196

5.4.1 A Primer on Information Geometry 196

5.4.2 Belief-reward Manifold . 201

5.4.3 Pseudobelief: Summarising the Explored Knowledge 203

5.4.4 Focal Distribution: Inducing Exploitative Bias 207

5.4.5 BelMan: An Alternating Projection Scheme 209

5.4.6 BelMan for Exponential Family Distributions 217

5.5 Empirical Performance Analysis . 220

5.5.1 Exploration–exploitation Bandit 220

5.5.2 Two-phase Bandit . 226

5.6 Conclusion . 227

6 QBelMan: An Information Geometric Approach to Queueing Ban-

dits 229

6.1 Introduction . 230

6.2 A Primer on Queueing and Bandits . 231

6.2.1 Queueing Theory . 232

6.2.2 Multi-armed Bandits in Queueing 233

Contents xiii

6.3 Queueing Bandit: Problem Formulation 233

6.3.1 M/B/K Queueing Bandit . 236

6.3.2 M/M/K Queueing Bandit . 237

6.4 Methodology . 238

6.4.1 Q-ThS and Q-UCB: The state-of-the-art Algorithms 238

6.4.2 QBelMan: BelMan for Queueing Bandits 239

6.5 Experimental Analysis . 240

6.6 Conclusion . 246

7 The Closure 247

7.1 Conclusions . 247

7.2 Perspectives . 249

7.2.1 An Information Geometric Approach to MDP 250

7.3 Future Work . 255

Bibliography 257

Abstract

Reinforcement learning is a machine learning framework where an agent learns to

make decisions by interaction with an uncertain environment. Effective information

accumulation, processing, and learning lead to efficient decision making in reinforce-

ment learning. This framework requires a reward function to assess the goodness of a

decision and knowledge of the underlying dynamics of the environment to manoeuvre

the long-term effect of learning and decision making. In real-world applications, the

reward function and/or the underlying dynamics of the decision making process are of-

ten not known a priori. The agent tries to learn these information through exploration

while she also tries to reach a sequence of decisions returning maximal reward through

exploitation of the present knowledge. Thus, balancing exploration-exploitation while

efficiently managing the large space of plausible decisions takes the central stage in

designing a reinforcement learning algorithm.

In this thesis, we investigate scenarios of reinforcement learning where the reward

function or the underlying process dynamics are not accurately known to the agent.

We approach the problem in three settings with increasing complexity. Each setting

involves a separate theoretical analysis and a real-life application for experimental

validation.

In the first setting, we develop two algorithms, COREIL [Basu et al., 2015a,b] and

rCOREIL [Basu et al., 2016], that learn the reward function simultaneously as they

take decisions in a known-transition, unknown-reward Markov decision process and

apply them to the problem of self-driving database management systems.

xvi Abstract

In the second setting, we develop an algorithm, Megh [Basu et al., 2017b,c], that

works for the known-cost and unknown-transition Markov decision processes. It learns

the transition matrix while taking decisions on-the-go. We apply this for live VM

migration in medium-scale data centres and prove that it saves 14% of operation cost

while completing each step in approximately 1 second.

In the third setting, we develop an information-geometric approach to the case

where we do not know reward and transition functions. We generalise the represen-

tations of reward and transition functions, and consider them to be unknown dis-

tributions. We develop a framework, BelMan [Basu et al., 2018c], and theoretically

analyse it for the multi-armed bandits. This framework provides a unified algorithm

and analysis for pure exploration, exploration–exploitation and risk-aware scenarios

for bandits. We also show an application of BelMan for online scheduling of jobs in

a multiple-queue, multiple-server system with known arrival rates and unknown ser-

vice rates. We prove that BelMan theoretically achieves asymptotic convergence while

experimentally outperforms the state-of-the-art algorithms for Bernoulli service rates.

Finally, we sketch an extension of the information geometric approach to Markov

decision processes with unknown transition functions and reward distributions [Basu

et al., 2018d]. This extension builds a link among the proposed approach, linearly

solvable Markov decision processes, and curiosity driven reinforcement learning. This

analysis motivates further investigation of the exploration-exploitation trade-off in

variants of reinforcement learning and their applications.

List of Contributions

The list of publications that I have worked on and am working during the period of

PhD is documented here. The research works are broadly categorised as the ones

incorporated to this thesis and the ones not incorporated in it. Under each of these

categories, we present the published papers, the paper under review in conferences

and journals, and the papers we are planning to submit by the time of thesis defence.

• Research works incorporated in the thesis:

– Published:

1. Cost-model oblivious database tuning with reinforcement learn-

ing. Debabrota Basu, Qian Lin, Weidong Chen, Hoang Tam Vo, Zi-

hong Yuan, Pierre Senellart, and Stéphane Bressan. In International

Conference on Database and Expert Systems Applications, pages 253–

268. Springer, 2015.

2. Apprentissage par renforcement pour optimiser les bases de

donnéees indépendamment du modèle de coût. Debabrota Basu,

Qian Lin, Zihong Yuan, Pierre Senellart, and Stéphane Bressan. In

Proceedings of BDA. 2015.

3. Regularized cost-model oblivious database tuning with rein-

forcement learning. Debabrota Basu, Qian Lin, Weidong Chen,

Hoang Tam Vo, Zihong Yuan, Pierre Senellart, and Stéphane Bres-

san. In Transactions on Large-Scale Data and Knowledge-Centered

Systems, volume 28, pages 96–132, 2016.

xviii List of Contributions

4. Learn-as-you-go with Megh: Efficient live migration of vir-

tual machines. Debabrota Basu, Xiayang Wang, Yang Hong, Haibo

Chen, and Stéphane Bressan. In IEEE 37th International Conference

on Distributed Computing Systems (ICDCS), pages 2608–2609. IEEE,

2017.

5. BelMan: Bayesian bandits on the belief–reward manifold. De-

babrota Basu, Pierre Senellart, and Stéphane Bressan. arXiv preprint

arXiv:1805.01627, 2018.

6. Learn-as-you-go with Megh: Efficient live migration of virtual

machines. Debabrota Basu, Xiayang Wang, Yang Hong, Haibo Chen,

and Stéphane Bressan. Accepted in IEEE Transactions on Parallel and

Distributed Systems (TPDS), 2018.

– Under review:

1. BelMan: An information geometric approach to multi-armed

bandit problems. Debabrota Basu, Pierre Senellart, and Stéphane

Bressan. October, 2018. Submitted to International Conference on

Artificial Intelligence and Statistics (AISTATS).

– Working papers:

1. BelMan in queue: An information geometric approach to

queueing bandits with general distributions. Debabrota Basu,

Giulia Pedrielli, Pierre Senellart, and Stéphane Bressan. 2018. Sub-

mitting to ACM SIGMETRICS.

2. MoQ: A model oblivious learning algorithm to sequentially

optimize speed of a vessel under uncertain weather. Debabrota

Basu, Abdul Rahman, and Stéphane Bressan. 2018. Submitting to

IEEE Transactions on Intelligent Transportation Systems.

3. An information geometric analysis of exploration–exploitation

trade-off in reinforcement learning. Debabrota Basu, Pierre Senel-

xix

lart, and Stéphane Bressan. 2019. Submitting to International Confer-

ence on Machine Learning (ICML).

• Research works not incorporated in the thesis:

– Published:

1. Top-k queries over uncertain scores. Qing Liu, Debabrota Basu,

Talel Abdessalem, and Stéphane Bressan. In Proceedings of OTM 2016

Conferences:CoopIS, C&TC, and ODBASE 2016, pages 245262, 2016.

2. How to find the best rated items on a Likert scale and how

many ratings are enough. Qing Liu, Debabrota Basu, Shruti Goel,

Talel Abdessalem, and Stéphane Bressan. In International Conference

on Database and Expert Systems Applications, pages 351359. Springer,

2017.

3. Sequential vessel speed optimization under dynamic weather

conditions. Debabrota Basu, Giulia Pedrielli, Weidong Chen, Szu Hui

Ng, Loo Hay Lee, and Stéphane Bressan. In International Maritime-

Port Technology and Development Conference. 2017.

4. An investigation of instability in differential privacy mecha-

nisms for regularised linear regression. Ashish Dandekar, De-

babrota Basu, and Stéphane Bressan. In International Conference on

Database and Expert Systems Applications. Springer, 2018.

– Under review:

1. Differential privacy at risk. Ashish Dandekar, Debabrota Basu,

and Stéphane Bressan. October, 2018. Submitted to International

Conference on Extending Database Technology (EDBT).

2. Graph topological data analysis using landmarks. Naheed An-

jum Arafat, Debabrota Basu, and Stéphane Bressan. November, 2018.

Submitted to International Conference on Database Systems for Ad-

vanced Applications (DASFAA).

xx List of Contributions

3. Evaluation of differentially private non-parametric machine

learning as a service. Ashish Dandekar, Debabrota Basu, and Stéphane

Bressan. November, 2018. Submitted to International Conference on

Database Systems for Advanced Applications (DASFAA).

– Working paper:

1. TL-NQS: Augmenting neural quantum states with transfer

learning. Remmy Augusta Menzata Zen, Debabrota Basu, My Duy

Hoang Long, and Stéphane Bressan. 2018. Submitting to Neural Com-

putation.

List of Tables

2.1 Classification of Asymptotically Optimal [Lai, 1988] Bandit Algorithms. 44

2.2 The decision functions and finite-time regret bounds of the ‘optimism

in face of uncertainty’ bandit algorithms. 45

2.3 Comparing dynamic programming and temporal difference algorithms. 68

2.4 Policy gradients for different Actor-critic algorithms. 76

3.1 Classifying automated database design literature. 91

3.2 Notations used in Chapter 3. 96

4.1 Power Consumption of servers in Watts for different level of work-

load [Huppler et al., 2012; SPECpower Committee, 2014] 170

4.2 Performance Evaluation for PlanetLab 172

4.3 Performance Evaluation for Google Cluster 173

List of Figures

1.1 Diverse aspects of Reinforcement Learning as a field. [Silver, 2015] . . . 3

1.2 A block diagram of reinforcement learning [Sutton and Barto, 1998]. . . 4

1.3 Finding a path in the map as a multi-armed bandit problem. 10

1.4 Finding and planning a path in the map as a Markov decision process. 12

1.5 Positing the theoretical contribution of the thesis. 14

2.1 A one-armed bandit. 26

2.2 The sequential interaction of the agent and the environment in a multi-

armed bandit problem. 27

2.3 An example of multi-armed bandit . 30

2.4 The probabilistic graph representing the temporal flow of an MDP. . . 52

3.1 The events involved in a step of database transition. 98

3.2 Workflow of automated database tuning with online actor-critic algorithm.108

3.3 Evolution of the efficiency (total time per query) of the two systems from

the beginning of the workload (smoothed by averaging over a moving

window of size 20) . 127

3.4 Box chart of the efficiency (total time per query) of the two systems.

We show in both cases the 9th and 91th percentiles (whiskers), first and

third quartiles (box) and median (horizontal rule). 128

3.5 Evolution of the overhead (time of the optimisation itself) of the two

systems from the beginning of the workload (smoothed by averaging

over a moving window of size 20) . 129

xxiv List of Figures

3.6 Evolution of the time taken by configuration change (index creation and

destruction) of the two systems from the beginning of the workload; no

configuration change happens past query number 700. All values except

the vertical lines shown in the figure are zero. 130

3.7 Evolution of the effectiveness (query execution time in the DBMS alone)

of the two systems from the beginning of the workload (smoothed by

averaging over a moving window of size 20); logarithmic y-axis 132

3.8 Box chart of the efficiency (total time per query) of COREIL and its

improved version with different values of λ. We show in both cases the

9th and 91st percentile (whiskers), first and third quartiles (box) and

median (horizontal rule). 133

3.9 Evolution of the efficiency (total time per query) of COREIL and rCOR-

EIL with λ = 400 from the beginning of the workload (smoothed by

averaging over a moving window of size 20) 134

3.10 Evolution of the overhead (time of the optimisation itself) of COR-

EIL and rCOREIL with λ = 400 from the beginning of the workload

(smoothed by averaging over a moving window of size 20) 135

3.11 Evolution of the time taken by configuration change (index creation

and destruction) of COREIL and rCOREIL with λ = 400 from the

beginning of the workload; no configuration change happens past query

#2000. All values except the vertical lines shown in the figure are zero. 136

3.12 Evolution of the effectiveness (query execution time in the DBMS alone)

of COREIL and rCOREIL with λ = 400 from the beginning of the

workload (smoothed by averaging over a moving window of size 20);

logarithmic y-axis . 137

3.13 Evolution of the estimated costs of COREIL and rCOREIL with λ =

400 from the beginning of the workload (smoothed by averaging over a

moving window of size 20); logarithmic y-axis 138

List of Figures xxv

3.14 Scatter plot of the estimated cost by COREIL and the what-if optimiser

vs execution time. Left shows correlation between cost estimated by

COREIL and actual execution time (in ms). Right shows (on a log

y-axis) correlation between the cost estimated by the what-if optimiser

and the actual execution time (in ms) in the same run. 139

3.15 Scatter plot of the estimated cost by rCOREIL and the what-if opti-

miser vs execution time. Left shows correlation between cost estimated

by rCOREIL and actual execution time (in ms). Right shows (on a log

y-axis) correlation between the cost estimated by the what-if optimiser

and the actual execution time (in ms) in the same run. 140

3.16 Designing online cost-model oblivious MDP solving algorithm with func-

tional approximation technique. 142

4.1 Dynamics of PlanetLab workloads and starting times of tasks in Google

Cluster. The y-axis shows the %of CPU usage by the user and the x-

axis shows time discretised in the unit of 5 minutes. Lines from up to

down show maximum, 90 percentile, mean, and, 10 percentile of all the

workloads at any instance. 148

4.2 Performance of Megh and THR-MMT algorithms for PlanetLab dataset 174

4.3 Performance of Megh and THR-MMT algorithms for Google Cluster

dataset. 175

4.4 Performance of Megh and MadVM for a dataset of 100 PMs and 150

VMs extracted from PlanetLab trace. 176

4.5 Performance of Megh and MadVM for a dataset of 100 PMs and 150

VMs extracted from Google Cluster trace. 177

4.6 Scalability analysis of THR-MMT (left) and Megh (right). 178

4.7 Sensitivity of per-step cost (in USD) on Temp0 and ϵ. 179

5.1 Evolution of the focal distribution over X ∈ [0, 1] for τ(t) = 1, 0.5, 0.33

and 0.25. 208

xxvi List of Figures

5.2 Evolution of cumulative regret (top), and number of suboptimal draws

(bottom) for 500 iterations for 2-arm Bernoulli bandit with means {0.8, 0.9}.

The dark black line shows the average. The grey area shows 75 percentile.221

5.3 Evolution of cumulative regret (top), and number of suboptimal draws

(bottom) for 1000 iterations for 20-arm Bernoulli bandit. 222

5.4 Evolution of cumulative regret (top), and number of suboptimal draws

(bottom) for 1000 iterations for 5-arm bounded exponential bandit with

parameters {1, 2, 3, 4, 5}. 223

5.5 Evolution of cumulative regret (top), and number of suboptimal draws

(bottom) for 500 iterations for 2-arm Bernoulli bandit with means 0.45

and 0.55. The dark line shows the average over 25 runs. The grey area

shows 75 percentile. 223

5.6 Evolution of cumulative regret (top), and number of suboptimal draws

(bottom) for 500 iterations for 10-arm Bernoulli bandit with means

{0.1, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.01, 0.01, 0.01}. The dark black line

shows the average. The grey area shows 75 percentile. 225

5.7 Evolution of cumulative regret (top), and number of suboptimal draws

(bottom) for 1000 iterations for 5-arm unbounded exponential bandit

with parameters {0.2, 0.25, 0.33, 0.5, 1.0}. 225

5.8 Evolution of cumulative regret (top), and number of suboptimal draws

(bottom) for 1000 iterations for 5-arm unbounded exponential bandit

with parameters {1, 2, 3, 4, 5}. 226

5.9 Evolution of (mean) regret for exploration–exploitation 20-arm Bernoulli

bandits with horizon=50,000. 227

5.10 Evolution of (mean) cumulative regret for two-phase 20-arm Bernoulli

bandits. 227

6.1 A queuing system (A/S/K) with arrival rate λ and service rates µ1, . . . , µK .235

List of Figures xxvii

6.2 Queue regret for 1 queue and 5 server setting with Poisson arrival and

Bernoulli service distribution. The dark line in the middle shows the

mean queue regret whereas the shaded area shows 33 percentiles of

queue regret below and above it. 241

6.3 Queue regret for 3 queue and 5 server setting with Poisson arrival and

Bernoulli service distribution. 243

6.4 Queue regret for 1 queue and 5 server setting with Poisson arrival and

exponential service distribution. 245

7.1 The block diagram of BelMan algorithm for multi-armed bandits 251

List of Notations

Notation Description

R The set of real numbers

R+ The set of positive real numbers

R≥0 The set of non-negative real numbers

R≤0 The set of non-positive real numbers

Z The set of integers

N The set of natural numbers = {1, . . .}

N0 The set of natural numbers and zero, i.e. {0, 1, . . .}

[n] {1, 2, . . . , n− 1, n}

Ber(X;µ) Bernoulli distribution of random variable X with

probability of success µ

Beta(X;α, β) Beta distribution of random variable X with param-

eters α and β

|A| Cardinality, i.e. the number of elements, of a set A

⌈x⌉ The least integer greater than or equal to x

δx0 Dirac’s delta function evaluated at x0

Dom(f) The set of inputs on which f is defined

E Expectation of a random variable

⌊x⌋ The greatest integer less than or equal to x

Γ(x) Gamma function Γ(x) =
∫∞
0

zx−1 exp(z)dz

∇f(x) Gradient of a function f evaluated at x

∇2f(x) Hessian of a function f evaluated at x

xxx List of Notations

Notation Description

1(C) The function returns 1 is the clause C inside is true,

and 0 otherwise

N (X;µ, σ) Gaussian or normal distribution of random variable

X with mean µ and variance σ2

2A The powerset, i.e. the set of all subsets, of a set A

P(E) Probability of an event E

Ran(f) The set of outputs of f

span(e1, . . . , en) The vector space spanned by the basis e1, . . . , ed

Supp Support of a distribution or a random variable

U(X; a, b) Uniform distribution of random variable X with

minimum value a and maximum value b

V Variance of a random variable

Chapter 1

Introduction

By seeking and blundering we learn.

— Johann Wolfgang von Goethe1

Human intelligence is the ability of accumulating information, processing this in-

formation in form of general constructions, and learning these constructions to adapt

with the environment. Specifically, in the course of human life, the components of in-

telligence – information accumulation, processing, and learning – lead to efficient and

effective decision making. Sequences of such decisions imbibe an experience and, in

turn, influence the process of learning. These two phenomena go hand-in-hand through

the course of human life. This process of learning and decision-making on-the-go is

hard to efficiently and effectively optimise due to two major bottlenecks. One bottle-

neck is the enormous variety of phenomena in this world and the even larger number

of underlying factors influencing them. The other bottleneck is the uncertainty sur-

rounding the amount of information needed to effectively learn and efficiently leverage

to take decisions. The field of artificial intelligence, in general, projects simulation of

this organic notion of intelligence in artificial machines as its grand goal. The field

of machine learning specifically deals with the realisation of this learning process in

machines with computational power. Thus, these fields of research also face the prob-

1Extracted from “in conversation with Johann Peter Eckermann”, 1825.

2 Introduction

lems caused by the plethora of influencing factors regarding a phenomenon, and also

the uncertainty regarding the amount of information required to learn and to decide.

Since the research endeavour described in this thesis belongs to the domain of

machine learning, specifically, and artificial intelligence, broadly, we address these

two issues mathematically, algorithmically, and experimentally through various prob-

lem models, solution methodologies, and real-life applications. The problem models

investigated in the scope of this thesis are multi-armed bandits (Chapters 5 and 6)

and Markov decision processes (Chapters 3 and 4). The solution methodologies fol-

lowed to investigate them are mainly online functional approximation and optimisation

(Chapters 3 and 4) and information geometry (Chapters 5 and 6)). The real-life ap-

plication addressed with the developed methodologies are automated database tuning

(Chapter 3), energy- and performance-efficient live virtual machine migration in clouds

(Chapters 4), and online scheduling of jobs arriving in queues to servers (Chapter 6).

Before delving into the details of individual works, we use the scope of this chapter

to provide a technical background and to posit the contribution of this thesis in this

context.

1.1 Learning to Make Good Decisions under Uncer-

tainty: Reinforcement Learning

Artificial intelligence as a field has multiple branches and tributaries due to different

conflicting definitions of intelligence, and eclectic bottlenecks to model and to imple-

ment its real-world applications. Further diversity in the literature is added due to

the research works coming from different fields like computer science, statistics, psy-

chology, engineering, and philosophy. In this thesis, we narrow our scope down to the

computer science literature but with frequent interaction with statistical and math-

ematical methodologies. Specifically, we look towards the research problems from a

paradigm of machine learning called reinforcement learning.

1.1 Learning to Make Good Decisions under Uncertainty: Reinforcement Learning 3

Figure 1.1: Diverse aspects of Reinforcement Learning as a field. [Silver, 2015]

In reinforcement learning (RL), an agent tries to learn to make a good sequence of

decisions through interactions with an uncertain environment. This subject has orig-

inated during the infant years of cybernetics. Since then, it has been independently

developed in different branches of science like psychology, statistics, and computer

science. Although the works in each of these fields have resemblance in their basic

approaches, they widely differ in their interpretations and applications of ‘reinforce-

ment’. Figure 1.1 [Silver, 2015] depicts this complex origin and diverse interpretations

of reinforcement learning as a field. As we mentioned previously, we mostly stick with

the computer science approach to reinforcement learning in the scope of this thesis.

The goal of reinforcement learning is to learn to make good sequence of decisions

under uncertainty. Thus, a generic reinforcement learning algorithm should involve

four key factors: an optimiser maximising goodness of decisions, a component to learn

about the uncertain environment, a measure to quantify impact of the present decisions

on future sequence of decisions, and inherent ability to generalise these learnings in

form of a function of gained experience. Reinforcement learning measures the goodness

of a decision by a real-valued function, called reward. The agent in the reinforcement

learning tries to maximise the total sum of rewards obtained through the sequence

4 Introduction

Agent

Environment

action
atst

reward
rt

rt+1
st+1

state

Figure 1.2: A block diagram of reinforcement learning [Sutton and Barto, 1998].

of decisions. This poses an optimization problem. The agent learns about the uncer-

tainty of the environment by exploring different decisions and observing the rewards

obtained from them. This poses a learning problem that deals with information accu-

mulation and processing. Evaluating the effect of the present decisions on the future

poses a prediction and planning problem. Thus, the agent tries to maximise the long-

term effect by maximising the expected sequence of rewards obtained by the sequence

of decisions if the present learning is exploited. This expected sum of sequence of

rewards is called utility of a decision. This imposes a layer of planning on top of the

optimisation problem. The agent has to generalise the mapping between the learning

and the decision making components and to balance them. This mapping is done in

form of a probabilistic function between decisions and past experiences, and is referred

to as policy. Constructing and improving an effective and efficient policy involves the

question of balancing learning and decision making.

Solving these problems of optimisation, learning, planning, and generalising makes

generic reinforcement learning a challenging and interesting research problem to inves-

tigate. As mentioned earlier, these problems become hard if the number of possible

decisions and their effects comes in a plethora. The space of possible solutions for

these problems becomes too huge to find out the optimal solution. This problem is

called the curse of dimensionality [Bellman and Kalaba, 1965]. The other bottle-

neck is balancing the learning and the optimisation problems, which in turn controls

1.1 Learning to Make Good Decisions under Uncertainty: Reinforcement Learning 5

the planning and generalising problems. This is called the exploration–exploitation

trade-off [Macready and Wolpert, 1998]. Though there are further problems specific

to different formulations and models of reinforcement learning, we focus on addressing

these two issues through the theoretical and application-based developments described

in this thesis.

For instance, the process of reinforcement learning is similar to training children

in schools through examinations and evaluations. This provides them some skill sets

to understand and interpret nature and society. But while educating them no one,

not even the educators, knows how they are going to use these skills or whether they

will ever use them in their professional or mundane lives. Still, this is the age-old

way, we, human beings, learn and educate ourselves. Although this methodology has

been followed for a long time, we still do not know the best way to educate peo-

ple. Similarly, the generalisation of the learning scenario, specifically taking away the

problem-specific details about how to do it, brings formidable computational chal-

lenges with it. This aspect brings an interesting dimension and a body of research

works on reinforcement learning from the field of education and psychology. These

challenges make reinforcement learning an interesting paradigm to look into.

In the following sections, we illustrate the basic elements and the problem settings

of reinforcement learning before technically positing our contributions.

1.1.1 Basic Elements of Reinforcement Learning

The fundamental blocks of reinforcement learning are the agent and the environ-

ment [Kaelbling et al., 1996; Sutton and Barto, 1998]. The interaction between the

agent and the environment is modelled using the state and the action. In order to

model the goodness of a decision, long term impact of a decision, and the mapping

from past experience to present decision, the reinforcement learning literature uses a

reward function, a value function, and a policy respectively.

A state is a representation of the collective condition of the agent and the environ-

ment as perceived by the agent. A decision of the agent that facilitates her interaction

6 Introduction

with the environment is called an action. For example, if we imagine that an agent

is playing tic-tac-toe with an adversary, the condition of the grid at a certain instance

is her state and putting a cross (X) or zero (0) in the following step are the possible

actions.

A reward function quantifies the effect of taking an action at a certain state. A

reward is a map from a state-action pair to a real number where a state-action pair

represents the interaction between the agent and environment. Hence, the reward is

used for defining the desirability of an action at a state of the agent.

Hypothesis 1 (Reward hypothesis). The benefit of any interaction between an agent

and its environment can be represented using a real-valued reward function.

The reinforcement learning paradigm relies on this reward hypothesis. The intuitive

question is, whether it is effective to use numerical rewards from the same scale for all

the interactions between agent and environment. Theoretically, North [North, 1968]

proved that if we abide by four simple axioms imposing transitivity of decisions and

rationality of the agent, a real-valued reward function would uniquely exist. Although

in real-life human nature deviates from rationality, Hypothesis 1 holds appropriately

in most of the problems that we face in statistics and computer science.

This reward function considers only the instantaneous effect of a decision but con-

sidering the short-term benefit is not the best way to make decisions. It is better to

take an action that gives long-term benefits than a temporary one. For example, let

us consider the scenario of travelling to Marina Bay Sands from the School of Com-

puting, NUS at the peak hours in the afternoon. Assume that you want to complete

this journey in the least time. If you can get a bus as soon as you come out of your

office, is it be better to take this bus or to go for the train (MRT)? The answer of an

experienced Singaporean is the MRT, though it is not giving you the highest reward

at that point of time. This incompleteness of reward function introduces us to the

utility (or value) function.

In reference with the previous discussion, we introduce a utility (or value) func-

tion that is used to quantify goodness of a decision in the long run. The utility

1.1 Learning to Make Good Decisions under Uncertainty: Reinforcement Learning 7

function indicates the long-term desirability of a state after considering the possible

reward gains that can be obtained from the future states, which would probably be fol-

lowed after taking a certain action in a certain environment. Thus efficiently solving a

reinforcement learning problem requires the agent to look into a trade-off between the

short-term and the long-term profits. In general, we represent the utility function by

the expected sum of rewards that an agent expects to accumulate over a given horizon

in the future. Thus, solving a reinforcement problem involves finding the sequence

of actions with the highest utility. If all possible actions and their effects are known,

this is equivalent to finding the action with the highest utility at the initial state and

continuing its execution.

Hypothesis 2 (Utility hypothesis). All goals to be reached by an agent can be described

by the maximisation of expected cumulative reward, i.e. the utility function.

Theoretically, if there are m states and n actions, it is possible to solve the m× n

equations describing the dynamics of the agent with nm unknowns to get such an

optimal utility function. In practice, it is not feasible for a large number of states and

actions. Such a large state-action space is impractical to solve with limited computa-

tional resources in a reasonable time. This is the effect of the curse of dimensionality.

In real-life, it is also impossible to know all the future scenarios that the agent is going

to experience after taking a certain action. This is the effect of uncertainty that the

agent tries to resolve by exploring and learning.

A policy is a mapping from the environment perceived by the agent through the

observed states, actions, and rewards to the action to take at a state. It is basically

the function representing behaviour of an agent at a given scenario. Depending on

the interactions and the environment, a policy can be either dynamic or static. It is

the core decision variable of a reinforcement learning algorithm. Thus, the problem

of reinforcement learning is reducible to the search for a policy that simulates the

behaviour optimally. The intrinsic uncertainty of environment led researchers to dif-

ferent approximations of the utility function that differ in dealing with the following

questions.

8 Introduction

1. How much information do we have to accumulate for calculating the utility

function?

2. Can we formulate a simulator that mimics the environment to give us a basic

idea of the environment and its evolution?

The first question leads to the formulation of different exploration and solution method-

ologies, such as Q-learning [Watkins and Dayan, 1992], TD-learning [Sutton, 1988],

R-max [Singh et al., 2000], ϵ-greedy [Sutton and Barto, 1998] etc., and different repre-

sentations, such as state space, state-action space etc. This also leads us to our work in

Chapter 5.4.4. The second question leads to formulation of broadly two categories of

algorithms: model-dependent, and model-free [Sutton and Barto, 1998]. In the model-

dependent algorithms, there exists a mathematical representation, or simulator, which

is used by the agent to mimic the behaviour of environment. The model helps the

agent to predict the future of the environment and approximate the utility function.

The accuracy of the model-based algorithms depends on how efficient and compati-

ble the model is. A poor model may cause a grand failure, whereas the model-free

algorithms come with the beguiling promise of doing the best without a simulator of

environment. The model-free algorithms sample from the environment to learn about

the state-action pairs and the obtained rewards. Thus, the design of model-free algo-

rithms proves to be computationally challenging due to the duelling effects of learning

the uncertainty of the environment and maximising the utility function. This projects

the question of uncertainty modelling, and in turn the exploration–exploitation trade-

off as a central issue. In this thesis, we try to address this questions of uncertainty

modelling and exploration–exploitation trade-off while taming the problem of the curse

of dimensionality wherever needed.

1.1.2 Settings of Reinforcement Learning

Before delving into the technical contributions of the thesis, we want to elaborate

the settings of reinforcement learning in which we are going to frame our problems

and solutions. Depending on the formulation of the environment and its effect on

1.1 Learning to Make Good Decisions under Uncertainty: Reinforcement Learning 9

formulating the state, the action, and their evolution with time, we find three broad

settings of reinforcement learning in the literature. The settings are: multi-armed ban-

dits [Bubeck et al., 2012], Markov decision processes [Szepesvári, 2010], and partially

observable Markov decision processes [Cassandra et al., 1994]. Multi-armed bandits

generally look into scenarios involving a single state representing the environment and

multiple actions. Markov decision processes look into multiple states representing

the environment and multiple actions. In this setting, the agent changes state over

time but this evolution is completely observable and measurable. Partially observable

Markov decision processes look into multiples states and multiple actions scenario, as

for Markov decision processes, but the states are not completely observable and accu-

rately measurable. This imposes another layer of uncertainty in learning and decision

making. In this thesis, we focus on the first two settings, i.e., multi-armed bandits

and Markov decision processes. We describe the details of these settings next.

Multi-Armed Bandits

In multi-armed bandits, the environment consists of a set of reward distributions. In

the classical formulation of bandit problems, the reward distributions are stationary

over time. Thus, it is considered as a single state formulation of reinforcement learn-

ing [Sutton and Barto, 1998]. Choosing a reward distribution and sampling from it

constitutes an action. Sampling a reward distribution yields a reward to the agent.

The utility function is the sum of accumulated rewards in a given time horizon. The

problem would be simpler if the agent were to know the reward distributions. She could

then always sample the distribution with the highest expected reward to maximise the

expected utility. The problem becomes challenging when the reward distributions and

the expected rewards are unknown to the agent. The agent has to simultaneously

learn the reward distributions and to sample the distributions with higher expected

rewards in order to achieve the optimal utility. This leads to the problems of uncer-

tainty modelling and exploration–exploitation trade-off. Thus, researchers use the set-

ting of multi-armed bandit to investigate the problems of uncertainty modelling and

10 Introduction

Figure 1.3: Finding a path in the map as a multi-armed bandit problem.

exploration–exploitation trade-off, disregarding the other problems caused by huge

number of states and actions.

We illustrate the problem setting using the example of Figure 1.3. Suppose the

agent is staying at Marina Bay Sands for a year and wants to go back home daily

from the School of Computing with minimum travel time. Google Maps proposes her

three different ways, which we see as three actions. The travel time of each day is the

reward and the total travel time throughout the year is the utility. The three available

ways are listed by Google Maps on the left side of the figure with the corresponding

expected travel times. If we assume them to be correct, the agent can always take

the path with minimum expected travel time (in green) to maximise the utility. Since

this is an estimate at a certain time of a certain day, it may vary depending on

the traffic conditions and other events throughout the day and throughout the year.

Thus, in order to solve the problem with generality, let us assume that she does not

have a knowledge of the expected travel time. A probable way in which she can

decrease her travel time is by exploring these available options enough to learn their

expected travel times and then to use the path with minimum travel time. The

first phenomenon of learning by trying different actions is called exploration and the

second phenomenon of using the learned knowledge to optimise the utility function is

1.1 Learning to Make Good Decisions under Uncertainty: Reinforcement Learning11

called exploitation. Though initial exploration is needed to take an optimal decision,

it is also essential to exploit eventually. Results proved that only exploration, or

only exploitation, or fixed windows of exploration followed by exploitation do not

lead to an optimal growth of cumulative regret. A randomised and adaptive mixture

of exploration and exploitation is essential to achieve that. Thus, the multi-armed

bandit provides a scope to investigate the exploration–exploitation trade-off. We use

multi-armed bandits to investigate this issue in Chapters 5 and 6.

In the terminology of the bandit literature, each reward distribution is referred as

an arm. The collection of them, i.e., the environment is called the bandit. The utility

function is called the cumulative reward. Though we follow these terminologies in the

corresponding chapter, we explained it here within the general reinforcement learning

terminologies for the sake of continuity.

Markov Decision Processes

Markov decision processes increase the complexity of the multi-armed bandits by con-

sidering multiple states of the environment that evolves with time. Each of the states

represents and encodes the information about the environment. The actions are the

possible ways the agent have to transit between these states. This introduces an ad-

ditional notion of transition function that determines the probability of transiting to

a state from the other through a certain action. This formulation of reinforcement

learning induces a planning problem of state transitions for the Markov decision pro-

cesses. The reward is obtained from either a distribution or a deterministic function

over the state-action pairs. The utility is computed as the sum of accumulated rewards

obtained till a given horizon. There are alternative formulations of the utility where

they consider unavailability of such a horizon and thus, compute a modified sum of

the rewards. The goal is to determine a sequence of decisions that lead to optimisa-

tion of utility. Alternatively, it can be rephrased as finding a policy that balances the

exploration, planning, and exploitation in order to optimise the utility.

12 Introduction

Figure 1.4: Finding and planning a path in the map as a Markov decision process.

We illustrate the problem setting by extending the example of Figure 1.3 and using

the information of Figure 1.4. Suppose the agent in the example of Figure 1.3 is trav-

elling from School of Computing to Marina Bay Sands. As she reaches the point ‘Aft

Alexandra Rd’, her state of spatial position changes from School of Computing to ‘Aft

Alexandra Rd’. Now, if the road gets blocked for some emergency reason, she cannot

take the regular bus route. She has to take the MRT which has unknown options and

unknown travel delays for her. Thus, she has to check the map in Figure 1.4 and de-

cide her available actions to be the three paths shown in the map or a mixture of them

depending on the future scenarios. Each of them would transit her to a new MRT

station, which is a new state. Then she can further decide which sequence of MRTs to

take to reach Marina Bay Sands. These transitions are unknown to her and also the

rewards obtained through each of the transitions. Thus, this would not only involve

the previous problems of exploration and exploitation but also that of the planning

depending on the state transitions. In addition, if the number of possible states are

too huge, it is hard for the agent to explore all of them in one journey and to decide

which sequence of transitions would lead her to the optimal travelling time. Thus, the

planning problem would enhance the hardness by adding the curse of dimensionality

problem.

1.2 Motivations and Contributions 13

In classical Markov decision processes, though we assume the knowledge of a reward

function and a transition function, we observe from the above example that it is not

known to the agent. This makes the learning and decision making more complex

by adding another layer of uncertainty. These are the Markov decision processes

with incomplete information. Thus, the corresponding solutions require additional

estimation techniques for the reward and transition functions through exploration

and accumulation of information. Any error in estimating these functions would lead

to further error in the solution of the Markov decision process. We develop techniques

to learn and to estimate these functions which are stable, accurate and compatible

with the decision process to solve the problem efficiently and effectively. We address

these problems using the functional approximation and online optimisation techniques

in Chapters 3 and 4.

1.2 Motivations and Contributions

In this section, we discuss the theoretical and application-centric motivations and

contributions of the proposed works.

1.2.1 Theoretical Aspects

Figure 1.5 illustrates the core theoretical ideas and contributions of this thesis. As we

stated earlier, the inherent complexity of learning and decision making in an uncer-

tain environment gives us a mathematical structure to explore along with challenging

problems to solve.

Multi-armed bandits deal with two issues: accumulation of information to re-

duce uncertainty of decision making (exploration) and leveraging present knowledge

to gain higher rewards (exploitation). Since the agent starts with incomplete infor-

mation about the stochastic reward structure and gradually discovers more through

actions, exploration is necessary. Investigating the pure exploration problem [Bubeck

et al., 2009] allows us to focus on these aspects, equally significant for exploration–

14 Introduction

Sequential learning
and

decision making

Unknown
Decision Process

Linear
Decision Process

Least-Square
Policy Iteration

Megh

Non-linear
Decision Process

Belief–reward Manifold
Alternate Projection

BelMan

Unknown
Reward Function

Our Work

Linear
Reward Function

Least Square
Estimator

COREIL

Non-linear
Reward Function

Regularized
Estimators

rCOREIL

Figure 1.5: Positing the theoretical contribution of the thesis.

exploitation bandits [Bubeck et al., 2012]. On the other hand, in the exploration–

exploitation problem, exploration alone is not sufficient: the gambler has to exploit

available information to draw the optimal arm. The trade-off between exploration and

exploitation emerges as a central question.

In Chapter 5, we analyse a Bayesian, information-geometric algorithm for multi-

armed bandits, BelMan [Basu et al., 2018c], in light of the analysis of the state-of-

the-art algorithms like UCB [Auer et al., 2002] and Thompson sampling [Thompson,

1933]. We analyse the geometrical constructions developed in BelMan, which are

the pseudobelief-reward distribution and the focal distribution. We prove existence,

uniqueness, and convergence in estimation of the pseudobelief–reward distribution.

These results establish the pseudobelief-reward as a valid summary of the information

over the arms for bandit problems. We show that it facilitates exploration. Following

this, we show that use of pseudobelief-focal distribution leads to a balance between

exploration and exploitation. We prove that BelMan is asymptotically consistent

1.2 Motivations and Contributions 15

for any bounded reward distribution like the state-of-the-art algorithms. We also

empirically and comparatively argue that BelMan reaches logarithmic regret bound

like the optimal bandit algorithms. We provide arguments and a conjecture to reach

the formal proof. In Chapter 6, we apply this method to the online scheduling in

multiple queue and multiple server systems with unknown service rates [Basu et al.,

2018a]. Experiments show that the proposed algorithm outperforms the state-of-the-

art for queueing systems both Bernoulli and exponential service rates. We want to

leverage the generality of BelMan and extend it to other general service distributions.

When we deal with Markov decision processes, it poses both the problems of

exploration–exploitation trade-off and planning [Puterman, 2009]. In real-life sce-

narios, often the state space becomes too huge to plan. For example, if we again

consider an agent is playing tic-tac-toe in a 3-by-3 grid, it has to calculate over 29

states for getting the optimal results. Thus for any n-by-n grid the agent has to go

through 2n
2 possible states to take the optimal decision. This exponential blow-up of

the state space, even in case of simple learning scenarios like tic-tac-toe, shows us how

computationally hard it can be to deal with a learning problem. Even with the mod-

ern resources majority of these learning problems remain computationally intractable.

This phenomenon is popularly termed as the curse of dimensionality in learning

literature.

These phenomena require us to dive into the mathematical structure of the state

and action space. Often we try to prune the space and to find out a smaller subspace

of interest by using the problem based knowledges. Like if you are playing tic-tac-toe

and you want to take the decision of putting a cross (X), you are not going to put it

in an already filled up space. So there is no meaning of looking into the possibilities

related to those places. Though it may not stop the exponential blow-up, it will reduce

the state space to be explored by the agent before taking the decision. These kind

of strategies have inspired researchers to develop several heuristics and algorithms to

solve reinforcement learning problems efficiently.

16 Introduction

The most popular approach to solve Markov decision processes is to use dynamic

programming [Bellman, 1957a]. This approach is based on simple but powerful ‘divide-

and-conquer’ policy to solve problems. Firstly the problem is divided into smaller and

easier pieces. Then each of those pieces are solved that in turn solves the bigger prob-

lem when juxtaposed together in a proper manner. So it is basically a bottom-up

approach but reaching to the bottom level from the original problem is also tricky.

From Hypothesis 2, we know that finding an optimal policy is analogous to finding

the optimal utility function. Using the dynamic programming approach, the optimal

utility or value function can be determined by a simple iterative algorithm called value

iteration [Bellman, 1957a; Bertsekas, 1987]. In another version of dynamic program-

ming based algorithm, called policy iteration [Puterman, 2009], the agent directly tries

to find out optimal policy rather than the value function. We will discuss more about

these two algorithms and their theoretical and practical importances in the following

chapters.

But this approach requires a pre-defined model to learn and use it to simulate the

learning procedure. There is another class of algorithms that tries to learn the envi-

ronment without simulating a model. They are called ‘model-free’ algorithms whereas

the previous class is called ‘model-based’ algorithms. In the model-free approach, the

feedback or learning loop is considered as an adaptive critic that tries to analyse the

pros and cons of the actions of the agent in order to achieve a goal. This critic provides

reward for the actions taken if the result was good and punish if the result was bad.

But the question is, what is the good time to judge the result or in other words to

observe and evaluate it? Temporal difference algorithms, like TD(λ) [Sutton, 1988],

Q-learning [Watkins and Dayan, 1992], use insight from value iteration to adjust the

estimated value of a state based on the immediate reward and the estimate value of

the next state. In another approach, we can consider this feedback loop as an actor-

critic game [Kimura and Kobayashi, 1998], where they constantly evaluate each other

to gain a complete knowledge of the environment.

1.2 Motivations and Contributions 17

In Chapter 3, we solve a Markov decision process with unknown reward func-

tion by using a regularised function estimator with compatible stability guarantees in

parallel with an online reinforcement learning algorithm [Basu et al., 2015a,b, 2016].

In Chapter 4, we solve a Markov decision process with unknown transition function

by projecting the observed transition on a well-designed feature space with conver-

gence guarantees in parallel with an online reinforcement learning algorithm [Basu

et al., 2017c,b]. We are now assembling these methodologies for the unknown reward

function and unknown transition function. We presented some basic results showing

efficiency of the algorithms developed to solve this problem.

1.2.2 Application Aspects

While reinforcement learning raises theoretical questions as mentioned in the previous

section, it also has a vast field of applications in real-life problems. Specially with

increase of automation and advent of intelligent systems in every domain of modern life,

application of reinforcement learning is becoming a part and parcel of every domain

of studies. Beside developing theoretical works and algorithms, another aim of this

piece of research is to apply them to problems from eclectic domains like automatic

index tuning, automatizing virtual machine migration, or online scheduling in queues.

Each of these problems and their relations with reinforcement learning are described

briefly in the following paragraphs.

Automatic Database Tuning

Database tuning describes processes used to optimize and homogenize the performance

of a database (DB). It refers to design of the database files, selection of the database

management system (DBMS) application, and configuration of resources (OS, CPU,

etc.) used by the DB. Database tuning aims to optimise the use of system resources to

perform work as efficiently and rapidly as possible. Generally database administrators

(DBA) manage to use of system resources. But the growing complexity of database

applications, management systems, and infrastructures is a challenge for their admin-

18 Introduction

istration. Researchers and vendors have been studying the design and implementation

of self-managing database systems [Luhring et al., 2007; Schnaitter et al., 2007]. We

propose a learning approach to adaptive performance tuning of database applications.

The objective is to validate the opportunity to devise a tuning strategy that does not

need prior knowledge of a cost model. Instead, the cost model is learned through

reinforcement learning. We instantiate our approach to the use case of index tuning.

We model the execution of queries and updates as a Markov decision process whose

states are database configurations, actions are configuration changes, and rewards are

functions of the cost of configuration change and query and update evaluation. During

the reinforcement learning process, we face two important challenges: the size of the

state space and the unavailability of a cost model. In order to address the former, we

devise strategies to prune the state space, both in the general case and for the use case

of index tuning [Basu et al., 2015a,b]. In order to address the latter, we iteratively

learn the cost model, in a principled manner, using regularization to avoid overfit-

ting [Basu et al., 2016]. We empirically and comparatively evaluate our approach on a

standard OLTP dataset [Raab, 1993]. We show that our approaches are more efficient

and effective with respect to the state-of-the-art adaptive index tuning [Chaudhuri

and Narasayya, 1998], which is dependent on a cost model.

We elaborate on this in Chapter 3.

Virtual Machine Migration

Cloud computing is emerging as the new paradigm of computing because of its excit-

ing features like resource pooling, on demand computing, flexibility, scalability, pay-as-

per-use, high availability and low capital infrastructure management [Alsarhan et al.,

2018]. In cloud data centre generally a network of physical machines (PM) are kept

with virtual machines (VM) installed on them. Cloud providers leverage live migra-

tion of virtual machines [Clark et al., 2005] to reduce energy consumption and allocate

resources efficiently in data centers [Xu et al., 2012]. Each migration decision depends

on three questions: when to move a virtual machine, which virtual machine to move

1.2 Motivations and Contributions 19

and where to move it? Dynamic, uncertain and heterogeneous workloads running on

virtual machines make such decisions difficult. Knowledge-based and heuristics-based

algorithms are commonly used to tackle this problem. Knowledge-based algorithms,

such as MaxWeight scheduling algorithms [Maguluri et al., 2012], are dependent on

the specifics and the dynamics of the targeted Cloud architectures and applications.

Heuristics-based algorithms, such as MMT algorithms [Beloglazov et al., 2012], suf-

fer from high variance and poor convergence because of their greedy approach. We

propose a reinforcement learning approach. This approach does not require prior

knowledge. It learns the dynamics of the workload as-it-goes. In [Basu et al., 2017c,b],

we formulate the problem of energy- and performance-efficient resource management

during live migration as a Markov decision process. While several learning algorithms

are proposed to solve this problem, these algorithms remain confined to the academic

realm as they face the curse of dimensionality. They are either not scalable in real-time,

as it is the case of MadVM, or need an elaborate offline training, as it is the case of Q-

learning [Watkins and Dayan, 1992]. We propose an actor-critic algorithm [Grondman

et al., 2012b], Megh, to overcome these deficiencies. Megh uses a novel dimensionality

reduction scheme to project the combinatorially explosive state-action space to a poly-

nomial dimensional space with a sparse basis. Megh has the capacity to learn uncertain

dynamics and the ability to work in real-time. Megh is both scalable and robust. We

implement Megh using the CloudSim toolkit [Calheiros et al., 2011] and empirically

evaluate its performance with the PlanetLab [Park and Pai, 2006] and the Google

Cluster workloads [Reiss et al., 2011]. Experiments validate that Megh is more cost-

effective, incurs smaller execution overhead and is more scalable than MadVM [Han

et al., 2016] and MMT [Beloglazov et al., 2012]. We explicate our choice of parameters

through a sensitivity analysis. We discuss this work in Chapter 4.

Scheduling in Queues

We formulate the allocation problem in a multiple-server multiple-queue system with

known arrival rate and unknown service rates as a multi-armed bandit problem [Basu

20 Introduction

et al., 2018a]. The queue-server pair and the allocation algorithms are analogous to the

arms and the gambler of multi-armed bandits. In classical queueing theory literature,

both the arrival rates and the service rates are assumed to be accurately known and it

leads to an analytical solution for queue performance. For the aforementioned systems,

due to the lack of such knowledge of accurate parameters, the proposed multi-armed

bandit formulation provides a model-free framework to explore the queue parameters

and to exploit them on-the-go. In order to resolve the exploration–exploitation trade-

off in the bandit formulation, we adapt our information geometric algorithm, BelMan,

for multi-armed bandits. This approach does not only solve the proposed formulation

but also caters for an information geometric analysis of allocation in a queueing system.

We comparatively evaluate our approach with the state-of-the-art bandit algo-

rithms, such as Thompson sampling [Thompson, 1933], Q-ThS, and Q-UCB [Krish-

nasamy et al., 2016]. Experiments validate the similitude of the behaviour of our ap-

proach with that of the existing analysis that shows an initial increase in queue-regret

followed by a sub-logarithmic decrement. We theoretically prove the asymptotic consis-

tency of our approach while experimentally verifying its optimal finite-time behaviour

as the optimal algorithms.

We illustrate this work in detail in Chapter 6.

1.3 Structure of the Thesis

We discuss the background of the reinforcement learning settings and algorithms like

multi-armed bandits, and Markov decision processes in Chapter 2. In this chapter, we

also contextualise the contributions of this thesis in the light of the existing literature.

Following this, we illustrate the contributions into two parts depending on the un-

derlying methodology which are functional approximation and information geometry

respectively.

In Part I, we focus on dealing with both the uncertainty modelling and the planning

components of the Markov decision processes with unknown reward and transition

1.3 Structure of the Thesis 21

functions. We discuss the problem of solving Markov decision processes without a

known reward function, and instantiate it for the automated database tuning problem

in Chapter 3. We elaborate the problem of solving Markov decision processes without

a known transition function, and instantiate it for energy and performance efficient

migration of virtual machines in Chapter 4. These chapters theoretically rely on

techniques of functional approximation and online optimisation.

In Part II, we proceed beyond the realm of functional approximation and consider

the reward function and transition function to be a probability distribution. In order

to develop the intended methodologies, we narrow our focus first to the multi-armed

bandits that imbibes the exploration–exploitation problem. We use information theory

and geometry as our tools of investigation as they intuitively probe the process of

information accumulation, representation and exploitation. In Chapter 5, we discuss

our solution to the multi-armed bandits and evaluate the proposed algorithm, BelMan,

theoretically and experimentally. In Chapter 6, we illustrate application of BelMan in

online scheduling of jobs arriving at multiple queues to multiple servers.

Chapter 7 draws a closure to this discourse with a discussion of the presented work,

the perspectives learned from them, and a description of the future works following

this research endeavour.

Chapter 2

A Primer on Reinforcement Learning

. . . you join the conversation – first by listening to what is being said, and then for-

mulating a comment designed to advance the dialogue.

— Linda Bloomberg and Marie Volpe, Developing and Presenting the Literature

Review’, 2008.

Reinforcement learning [Sutton and Barto, 1998] is a sub-field of machine learning

where an agent (or learner) sequentially learns to decide between actions with uncer-

tain payoffs. Actions constitute interaction of the agent with the environment that is

initially unknown to the agent. The goal of the agent is to maximise the total gain over

a time horizon. The inherent uncertainties of the actions and the lack of information

about the environment create a need for sequential accumulation of knowledge about

the payoffs of different actions, and the interactions with environments, respectively.

Thus, a reinforcement learning problem has two façades: learning, and decision mak-

ing. Gaining more knowledge about the environment and different actions leads to

better and informed decisions while forcing the agent to choose actions with subopti-

mal payoff. Hence, the challenge of the agent is to adaptively balance learning and

maximisation of payoffs. We elaborate these two perspectives and their trade-off as

the central conundrum of the field of reinforcement learning as well as this thesis.

Different formalisms of reinforcement learning, such as multi-armed bandits (MAB)

[Bubeck et al., 2012] and Markov decision processes (MDP) [Puterman, 2009], have

24 A Primer on Reinforcement Learning

been developed and researched. They fundamentally differ in the problem descriptions

and fundamental assumptions. In the following sections, we elaborate on the multi-

armed bandits (MAB) and Markov decision processes (MDP) in incremental order of

complexity.

In the first section, we formulate the multi-armed bandit problem. We specifically

focus on the stochastic variant [Auer et al., 2002] of it due to our interest in this

thesis. Following this, we discuss the notion of regret of a bandit algorithm, and

fundamental lower and upper bounds on it [Lai, 1988]. The lower bound of regret

depicts the fundamental limitation of the sequential learning and decision making.

The upper bound of regret leads us to the notion of optimality of a bandit algorithm.

This also leads us to a singular string to discuss the state-of-the-art algorithms, and

contextualise the adaptive trade-off as the central conundrum.

In the second section, we extend this formalism of multi-armed bandits to dis-

cuss Markov decision processes. We describe the major families of algorithms to

solve Markov decision processes, such as dynamic programming (DP) and temporal-

difference (TD) methods [Powell, 2007]. These methods are based on the memoisation

trick, i.e., storing the data sequentially in tables and accessing them efficiently. We

explicate the connection between these methods and functional approximation tech-

niques that leads to improved algorithms. These functional approximation based al-

gorithms are used to efficiently solve large Markov decision problems [Gordon, 1999].

Following this, we conclude the chapter with different variants of these formulations

which will be relevant in further discourses of this thesis.

2.1 Multi-Armed Bandits

Multi-armed bandit problems constitute the archetypal formalism of sequential learn-

ing and decision-making. These problems reveal the fundamental issues of reinforce-

ment learning. The multi-armed bandit problems, or in short bandit problems, were

introduced by William Thompson in an article on adapting medical trials on-the-

2.1 Multi-Armed Bandits 25

go [Thompson, 1933]. In the following 85 years, this problem engendered an eclectic

set of research works in the fields of mathematics, statistics and computer science, and

still creating more contributions after its use in AlphaGo [Silver et al., 2016].

The name ‘bandit’ came from the experiments conducted by statisticians Freder-

ick Mosteller and Robert Bush on mice and humans to build a stochastic model of

learning [Bush and Mosteller, 1953; Mosteller et al., 1956]. In case of humans, they

provided a gambler with a slot machine that has two arms. Playing each arm provides

a random payoff sampled from two different distributions of payoffs. These distribu-

tions are initially unknown to the gambler. Thus, the gambler faces this dilemma

to play both the arms enough number of times to learn about their pay-off distribu-

tions while keeping the total gain in payoff as high as possible. These experiments

were conducted to build a primary stochastic model of how humans learn to make

decisions [Bush and Mosteller, 1953; Mosteller et al., 1956]. These slot machines are

called bandits (Figure 2.1) in popular terminology as gamblers loose money by play-

ing them. Hence, the problem of sequential learning and decision making to choose

the arms with distributional pay-offs is termed as the multi-armed bandit problem, or

bandit problem in short.

Though the bandit problem looks benign and simple, it took 79 years for researchers

to propose a theoretical explanation [Agrawal and Goyal, 2012] of the optimal perfor-

mance of the algorithm proposed by Thompson, called Thompson sampling [Thomp-

son, 1933]. The study of bandit problems originated research works in the field of

concentration inequalities [Boucheron et al., 2013], Markov chains [Gittins, 1979],

stochastic processes [Seldin et al., 2012], information theory [Russo and Van Roy,

2016], statistics [Lai and Robbins, 1985], convex optimisation [Agarwal et al., 2011],

computational complexity [Mannor and Tsitsiklis, 2004], and machine learning [Silver,

2015]. We are going to discuss some of these developments and the state-of-the-art

algorithms in the following section.

Bandit problems are not only of theoretical and intellectual interest. We find out

application of bandit problems and corresponding algorithms for design of ethical clini-

26 A Primer on Reinforcement Learning

Figure 2.1: A one-armed bandit.

cal trials [Press, 2009], internet advertising [Langford et al., 2008] and recommendation

engines [Li et al., 2010] developed by companies such as Google and Yahoo, designing

decision making systems like AlphaGo [Silver et al., 2016], building online tutoring

platform [Nguyen and Bourgine, 2014], and so on.

In the following section, we discuss the mathematical formulation of the bandit

problem, the notion of regret and optimality in bandits, and the state-of-the-art algo-

rithms developed to solve it.

2.1.1 Finite-Armed Stochastic Bandit

A multi-armed bandit problem consists of two main components: an agent A and an

environment E . The environment E constitutes of a set of probability density functions

over real numbers {f1, f2, . . . , fK}. Each distribution corresponds to an arm of the

bandit. Following bandit literature, we call the payoffs of the arms to be the reward

X ∈ R. Since the distributions are over the payoffs, a distribution fi is termed as the

reward distribution of the arm i.

2.1 Multi-Armed Bandits 27

Figure 2.2: The sequential interaction of the agent and the environment in a multi-
armed bandit problem.

Algorithm 1 Finite-Armed Stochastic Bandit
1: Time horizon T , number of arms K
2: for t ∈ [1, . . . , T] do
3: The agent chooses an action At ← πt(Ht−1)
4: Environment samples a reward Xt ∈ [0, Xmax] from the distribution fAt . The

agent update the history with At and Xt.
5: end for

As shown in Figure 2.2, the agent A interacts sequentially with the environment.

At each time t, the agent chooses an arm At ∈ {1, . . . , K} from the environment. The

environment samples a reward Xt from the distribution fAt and reveals it to the agent.

Sequential interaction of the agent with the environment creates a sequence of arms

pulled and the corresponding rewards obtained. They together form the history of the

agent till time t− 1, which is Ht−1 ≜ (A1, X1, . . . , At−1, Xt−1). Our goal is to compute

a randomised map from agent’s history to her actions that will maximise her total

gain in reward for a given time horizon T ∈ N. A randomised map from the agent’s

history to her action is called a policy π : Ht−1 → P(At). The total gain in reward of

the agent A till time horizon T is called the cumulative reward S(A, T) ≜
∑T

t=1 Xt.

We illustrate this process in Algorithm 1.

Algorithm 1 implicates two fundamental assumptions of this problem formulation.

Firstly, the conditional distribution of obtaining the reward Rt given the history

28 A Primer on Reinforcement Learning

Ht−1 and action At is the reward distribution fAt . Mathematically, fAt = P(Xt |

At) = P(Xt | At, Ht−1). This implies the Markov property on the interaction with

the environment. Secondly, the probability distribution of choosing an action is a

function of the agent’s history. Mathematically, for a given policy πt at time t,

P(At = a | Ht−1) = πt(Ht−1). Such a sequence of policies [πt]
T
t=1 characterises the

agent and determines her cumulative reward. This assumption implies that the agent

cannot use future rewards to improve current decisions. Following the probability

theory and philosophy literature, we argue that this keeps the causality of the agent

and decision-making process intact. In this thesis, we assume the bandit consists of a

finite number of arms, i.e., K ∈ N, and the rewards are bounded and non-negative, i.e.,

X ∈ [0, Xmax]. This classical formalism of the bandit problem is called the finite-armed

stochastic bandit problem.

This is also an archetypal setting of reinforcement learning as illustrated in Fig-

ure 1.2. An action in reinforcement learning corresponds to an arm in the bandit

problem. There is only one state that corresponds to the set of reward distributions

that does not change with time. Thus, it is often called the single-state reinforce-

ment learning problem. We would further discuss this and extend to Markov decision

processes in Section 2.2.

Information accumulation, representation, and exploitation

The agent’s goal is to maximise the cumulative reward S(A, T). The cumulative

reward S(A, T) is a random variable that depends on both the sequence of policies

and the reward distributions. Thus, a measure of utility has to be defined on the

cumulative reward that the agent can optimise and utilise to decide the effect of

decision making. This utility function depends on the agent’s intention and goal of

the decision-making process. Typically, we use expected reward as the measure of

utility of choosing a reward distribution. Thus, we loosen the goal to maximise the

expected cumulative reward, i.e., E
[∑T

t=1Xt

]
, rather than the cumulative reward.

Following the literature, we misuse the terminology a bit to refer to the expected

2.1 Multi-Armed Bandits 29

cumulative reward as the cumulative reward S(A, T). Though expectation acts as an

intuitive choice of utility metric, it does not completely incorporate the randomness

of the cumulative reward. Specifically, expectation fails to serve as a proper metric

when the reward distribution is bimodal or has heavy tails. Beside this, expectation

does not satisfy the interest of a user who tries to minimise the risk or wants to

make more stable decisions. This reasoning has led to research works concerning risk-

aware bandits [Galichet et al., 2013; Sani et al., 2012; Maillard, 2013; Huo and Fu,

2017] and stability analysis of utilities in bandit algorithms [Oneto et al., 2016; Das

and Kamenica, 2005]. Researchers have also proposed different utility metrics on the

cumulative reward such as the value at risk (VaR)1 [Galichet et al., 2013], conditional

value at risk (CVaR)2 [Huo and Fu, 2017], mean-variance measure3 [Sani et al., 2012],

and minimax risk4 [Bather, 1983].

Even after that fixing a goal does not reduce the bandit problem to an optimisation

problem as the true reward distributions are unknown to the agent. We elaborate on

that in Example 1.

Example 1. Figure 2.3 shows an example of the bandit problem. The agent has

three coins in front of her with 50%, 75% and 80% chances of getting heads but these

probabilities are unknown to her a priori. We can visualise this environment formally

as a set of three Bernoulli distributions with probability of success p1 = 0.50, p2 = 0.75,

and p3 = 0.80. Since the probabilities p1, p2, and p3 are unknown to the agent, she

starts playing the coins and counts the outcomes. As shown in Figure 2.3, she has

1Value at risk measures the potential gain in value of cumulative reward over a defined time
horizon for a given confidence interval. Mathematically, we can define it as VaRα(X) = inf{x ∈
R≥0 | P(X ≥ x) > α} for a given confidence parameter α.

2Conditional value at risk is the expected reward obtained from a reward distribution below a
certain confidence interval. Mathematically, we define CVaR for a confidence level γ ∈ [0, 1] as
CVaRγ(X) = 1

γ

∫ γ

0
VaRα(X)dα = E[X | P(X) < γ]. Thus, maximising the CVaR is analogous to

maximising the minimum reward for a given confidence interval.
3Mean-variance measure is a weighted combination of empirical mean and empirical variance [Sani

et al., 2012]. Minimisation of mean-variance measure leads to minimisation of variance and maximi-
sation of mean of the cumulative reward.

4Minimax risk is a weighted difference between maximum reward and the expected cumulative
reward. This risk quantifies the deficit in the obtained cumulative reward because of ignoring the
rewards above the expected reward.

30 A Primer on Reinforcement Learning

Figure 2.3: An example of multi-armed bandit

played the first coin 45 times, the second coin 40 times, and the third coin 30 times

respectively. Thus, her estimate of the probability of success for three coins are 20
45

=

0.45, 25
40

= 0.625, and 20
30

= 0.67 respectively. Playing the coins a larger number of

times can lead her to a better estimate of the success probabilities of the coins, and

thus to better choices of coins. Based on this, she would choose the third coin relatively

more often, which would lead her to accumulation of higher number of heads. Hence,

accumulating higher number of heads in a given time does not only need optimisation

but an adaptive combination of learning the probabilities of success of the coins.

From Example 1, we observe that an efficient optimisation of the cumulative re-

ward requires an effective information accumulation about the reward distributions.

It is also essential to provide a succinct representation to the accumulated informa-

tion about the reward distributions. This gives us different approaches to model the

environment.

2.1 Multi-Armed Bandits 31

The most common approach is to model the reward distributions. Following the

statistics literature, it can be done in two ways such as parametric and non-parametric.

In the parametric approach, the reward distributions are modelled as a statistical

distribution that can be expressed using a vector of random variables and a set of

parameters. The most common examples of such parametric statistical distributions

are Bernoulli, Gaussian, uniform, and exponential [Brown, 1986]. For example, if

the agent known the outcomes are binary, like head and tail in Example 1, it is

rational to assume the reward distribution to be Bernoulli. Thus, the goal of the

agent’s learning becomes estimating the parameters of reward distribution accurately

because a unique set of parameters uniquely define a reward distribution. Often in

the bandit literature and also in this thesis, we follow the parametric approach to

bandits due to the structure of output available to the agent and the mathematical

tractability the parametric assumption provides. Though the parametric assumption

may not be applicable to all environments, rather less information is available about

the structure of the outcome. In such a scenario, it is intuitive to go for a compatible

non-parametric family to investigate the properties of reward generation. Some of the

well-discussed non-parametric bandits are subgaussian bandits and bandits with heavy

tails. The advantage of the non-parametric approach over parametric one is that it

has no constraint on the degrees of freedom. The disadvantage is the non-parametric

approach takes away significant structure in the reward distribution and thus makes

the learning harder for the agent.

Beside this, there are structured and unstructured approaches to reward generation.

In the unstructured approach, knowledge about the distribution of one arm does not

restrict the range of possibilities for other arms. Thus, the only way to learn about

the distribution for an arm is to play it. This is the typical structure followed in the

finite-arm stochastic bandit literature. In the structured approach, knowledge about

the distribution of one arm restricts or facilitates the knowledge about the other arms.

This is the typical structure followed in covariate bandits and contextual bandits. In

this thesis, we follow the unstructured bandit approach as our target is to address the

32 A Primer on Reinforcement Learning

exploration–exploitation problem engendered by the trade-off between learning and

decision making. Further constraints and structures can be incrementally built upon

this.

Regret

As we follow the parametric unstructured formalism of finite-arm stochastic bandit

with expectation as the final utility metric to be served, the question that arrives is

how to measure goodness of a sequence of decisions. In this formalism, the goal of the

agent is to maximise the expected cumulative reward. We misuse the notation a bit

to call it cumulative reward.

Definition 1 (Cumulative Reward). The cumulative reward of an agent A for a

given time horizon T is the expectation of sum of the rewards accumulated at each

time step t.

S(A, T) ≜ E

[
T∑
t=1

XAt

]
. (2.1)

The goal of the agent is to choose a sequence of arms [At]
T
t=1 in order to maximise

S(A, T). We can use the Equation (2.1) to find out the two layers of uncertainty

involved in the multi-armed bandit problem. If we look into the contribution of each

of the arms, the reward accumulated until time step T by playing arm a depends on

its expected reward µa and the number of times the arm is played. Mathematically,

we can express it as

E

[
T∑
t=1

(Xat × 1(at = a))

]
=

T∑
t=1

E [Xa]× E [1(at = a)]

= µa ×
T∑
t=1

E[1 (at = a)]

= µa × E[na(T))].

Here, na(T) is the number of time the arm a is played till horizon T . It is also a

non-negative random variable and decided by the set of policies followed by the agent.

2.1 Multi-Armed Bandits 33

This allows us to express the cumulative reward till time T as the sum of the rewards

accumulated from all the arms till that time. Hence,

S(A, T) = E

[
T∑
t=1

XAt

]
=

K∑
a=1

E

[
T∑
t=1

(Xat × 1(at = a))

]
=

K∑
a=1

[µa × E[na(T))]] .

Thus, maximising the cumulative reward tackles two level of uncertainties. The first

one is induced by the randomness of the reward distribution of the arm and is quan-

tified by the expected cumulative reward µa. This is not controllable by the agent

because it is inherent to the environment. A perfect knowledge of µa’s for all the arms

can lead the agent to choose the arm with maximum expected reward for every time

step t. Since the expected rewards are not known to the agent, the number of times

the arms are played are not deterministic rather they depend on the policies used by

the agent. Thus, we treat na(T) as the random variable controlled by the agent and its

sequence of policies. This reduces the problem of maximising the cumulative reward

to optimal choices of na(T) which lead to optimal learning of the reward distribution

and maximisation of the cumulative reward.

If we assume that there exists at least one arm with maximum expected reward

µ∗ ≜ maxk∈{1,...,K} µa, the optimal policy of an agent will be to pull this arm always.

We call this agent with full information OPT. For ease of notation, let us refer to the

arm a = 1 as the arm with the maximum expected reward µ∗, i.e., µ∗ = µ1. Thus, the

cumulative reward of the agent with full information would be

S(OPT, T) = E

[
T∑
t=1

X1

]
= µ∗ × T.

We call it the optimal cumulative reward. Any agent with incomplete information

about the reward distributions cannot achieve the optimal cumulative reward since

she has to play the other arms a few times to find out the optimal arm. This provides

us a guideline to design the desired set of policies for the agent such that the expected

34 A Primer on Reinforcement Learning

reward obtained at each step would be asymptotically close to the optimal expected

reward µ∗. [Robbins, 1952] formalised this notion as Definition 2.

Definition 2 (Asymptotic consistency). A bandit algorithm is asymptotically con-

sistent if it allows the agent to choose a sequence of arms that would asymptotically

lead to expected cumulative reward gain per-step to the maximal expected reward.

Mathematically,

lim
T→∞

S(A, T)
T

= µ∗. (2.2)

This implies that if an agent follow an asymptotically consistent bandit algorithm

for a large enough number of times, she will find out the optimal arm and will con-

tinue playing it. Equation (2.2) leads us to another interesting metric to evaluate the

performance of a bandit algorithm. The statement of Equation (2.2) is equivalent to

stating that the per-step difference between the optimal cumulative reward and the

cumulative reward of a consistent bandit algorithm would asymptotically be 0. We

derive this notion in Lemma 1. Before this, we would like to define this new metric

of performance that quantifies the difference between the optimal cumulative reward

and the cumulative reward of a bandit algorithm. We call this performance metric

regret of the agent A.

Definition 3 (Regret). The regret of an agent is defined as the difference between

the optimal cumulative reward and the cumulative reward obtained by her till a given

time horizon T .

R(A, T) ≜ S(OPT, T)− S(A, T) = µ∗ × T −
K∑
a=1

[µa × E[na(T)]] . (2.3)

An alternative definition of regret of an agent A at time T is the expected value

of deficit of cumulative reward because of not playing the optimal arm always. This

2.1 Multi-Armed Bandits 35

is obtained from Equation (2.3) through the following derivation.

R(A, T) = µ∗ × T −
K∑
a=1

[µa × E[na(T)]]

= E

[
T∑
t=1

X1

]
− E

[
T∑
t=1

Xat

]

= E

[
T∑
t=1

Xa∗ −
T∑
t=1

Xat

]
.

This alternative definition of regret places it as the metric that evaluates the amount of

cumulative reward lost due to unavailability of complete information about the reward

distributions. Thus, the lower and upper bounds on the regret of a bandit algorithm

provide us respectively the minimum sacrifice in cumulative rewards to learn enough

before taking optimal decisions and the maximum loss the algorithm may incur due

to its design.

Before going into further details, we would illustrate some of the properties of

regret. The first property tells us that regret is the weighted sum of expected action-

counts, where the weights are the difference between optimal expected reward and

the expected reward of the arm. The second property says for a bandit algorithm

the regret is always positive due to unavailability of information. The third property

states that the only policy that would have regret zero is the one with full information

and this is the optimal policy choosing the optimal arm with probability one. The

fourth property implies that for a bandit algorithm to be optimal the regret has to

grow sublinearly with time.

Lemma 1 (Properties of regret). If E = {f1, . . . , fK} is the environment of a finite-

arm stochastic bandit with the optimal expected reward µ∗ such that the reward distri-

butions have bounded and real expectations, then

a.

R(A, T) =
K∑
a=1

∆a × E[na(T)], (2.4)

36 A Primer on Reinforcement Learning

where ∆a ≜ µ∗−µa is the suboptimality gap of arm a with respect to the optimal

arm.

b. R(A, T) ≥ 0 for all agents A.

c. An agent A satisfies R(A, T) = 0 if and only if it chooses the arm with the

optimal expected reward with probability one i.e P(µAt = µ∗) = 1.

d. For an agent satisfying the asymptotic consistency of Definition 2, the growth of

regret would be sublinear in time i.e R(A, T) = O
(
T p
)

for p ∈ [0, 1).

The first statement tells us that to keep the regret small, the agent should try

to play an arm with a larger suboptimality gap proportionally fewer times. The

fourth statement of Lemma 1 is often generalised in the learning theory literature as

Equation (2.5):

R(A, T) ≤ C(E)g(T) ∀ T ∈ N and E , (2.5)

where C(E) : E → R≥0 is a constant dependent on the environment and g(T) : N →

R≥0 is a function of horizon that grows sublinearly with time T . These properties,

specifically the first and fourth statements, provide us a guideline to design the bandit

algorithms as we will see in the upcoming sections.

There is an alternative Bayesian formulation of regret. If we assume existence of

a prior B on the environment E , Bayesian regret is defined as the average regret with

respect to the prior. In finite-arm stochastic bandits, the environment is defined as

the product of the set of possible reward distributions of the arms F1× . . .×FK , where

Fi = {fi}. This definition assumes that drawing from the reward distribution of an

arm does not affect the rewards obtained from another arm. This is implied by the

formulation of unstructured multi-armed bandits.

Definition 4 (Bayesian regret). If the environment E = F1 × . . . × FK is equipped

with a σ-algebra F and there exists a prior probability measure B defined over the

possible environments ν ∈ E , the Bayesian regret is the expected regret with respect

2.1 Multi-Armed Bandits 37

to the prior.

BR(A, T, B) ≜
∫
E
R(A, T | ν)dB(ν). (2.6)

BR(A, T, B) is defined assuming that R(A, T | ν) is a measurable function with respect

to F .

Interestingly, maximising Bayesian regret reduces to an optimisation problem if the

prior B is exactly known. This strategy is used in some special variants of stochastic

bandits, such as Markovian bandits [Bellman, 1956], and some specific algorithms,

such as Gittins index [Gittins, 1979]. However, in reality these prior distributions are

often not known and have to be learned or constructed on-the-go.

Lower bound: Fundamental limit of bandit algorithms

Following the construction of regret and cumulative reward, researchers began inves-

tigating the achievable limits of an asymptotically consistent bandit algorithm. Since

the typical bandit algorithm does not have knowledge of the true reward distribu-

tions, a certain amount of arm plays has to be spent for learning them. The seminal

paper [Lai and Robbins, 1985] first formulated such a lower bound for the finite-arm

stochastic bandits where the reward distributions belong to the Bernoulli family. They

proved that if we have an unstructured, finite-arm, stochastic bandit with Bernoulli

reward distributions, the minimum regret achieved in time T by an asymptotically

consistent bandit algorithm A would be lower bounded by a logarithmic factor of

T . They also proved the corresponding constant factor that dictates the ratio of the

growth of regret and log(T) would be dependent on the sum of suboptimality gaps of

the other arms in the environment. Later on, [Garivier et al., 2016a] improved it for

the family of reward distributions with finite expected rewards and a unique support.

We illustrate this result mathematically in Theorem 1.

Theorem 1. If the environment E = F1 × . . . × FK and the bandit algorithm A ∈

Πcons(E) belongs to the set of asymptotically consistent policies for the environment E,

38 A Primer on Reinforcement Learning

then for all ν ∈ E

lim inf
T→∞

R(A, T)
log T

≥ C(ν) =
∑

a:∆a(ν)>0

∆a(ν)

inf
f∈Fa(ν)

{DKL (fa∥f) | µ(f) > µ∗}
. (2.7)

Here, DKL (fa∥f) is the KL-divergence [Kullback, 1997] between two reward distribu-

tions fa and f defined over the same support set.

In the RHS of Equation (2.7), there are two factors in the numerator and denomi-

nator that dictate the lower bound C(ν). The numerator consists of the suboptimality

gap. If it is bigger, the minimum achievable reward is higher. It means that the agent

has to sacrifice more cumulative reward if it plays the arm with bigger suboptimality

gap more number of times. The denominator consists of inf
f∈Fa(ν)

{DKL (fa∥f) | µ(f) >

µ∗}. It is the KL-divergence of the reward distribution f in the set of possible estimates

of true reward distribution Fa which is most similar to the true reward distribution fa

but has expected reward µ(f) more than the optimal reward µ∗.

Example 2. If the reward distributions are Bernoulli distributions, the set of possible

estimates Fa ≜ {Ber(µa) | µa ∈ [0, 1]}. If there exists an optimal arm with proba-

bility of success µ∗, then inf
f∈Fa(ν)

{DKL (fa∥f) | µ(f) > µ∗} = inf
µa>µ∗

µ log
(

µa
µ∗

)
+ (1 −

µa) log
(

1−µa
1−µ∗

)
. This quantity achieves smaller values as µa tends towards µ∗, and thus

causes a higher value for the lower bound constant C(ν).

This dictates that if there are reward distributions among the possible estimates

of the true reward distribution of an arm which are quite similar to the reward distri-

bution of the optimal arm, it is hard to distinguish such arms from the optimal arm.

Thus, the agent has to play a higher number of times and to consume more regret in

order to detect the optimal arm and to reach the optimal regret. Since the constant

in the lower bound C(ν) is dependent on the environment, i.e., the exact set of dis-

tributions that the agent is accessing, this bound is called as an instance-dependent

bound. This provides an additional guideline for designing bandit algorithms that the

best achievable regret grows logarithmically with time T .

2.1 Multi-Armed Bandits 39

There are further investigations on obtaining instance-independent bounds where

the constant C(ν) is not dependent on the environment. Instead the constant depends

on the number of arms K only. Thus, we have to compute the lower bound of worst-

case regret possible in an environment. This generated the notion of minimax regret

which is the infimum achievable by a bandit algorithm for the worst case regret of an

environment.

Definition 5 (Minimax regret). For a set of bandit algorithms Π = {A | Ais a feasible policy}

and an environment E = {ν | νis a set of K reward distributions}, the minimax regret

is

R∗(E , T) ≜ inf
A∈Π

R(A, T | E) = inf
A∈Π

sup
ν∈E

R(A, T | ν). (2.8)

[Audibert and Bubeck, 2009] has proved that for subgaussian bandit with variance

less than or equal to one and mean reward in [0, 1] then R∗(E , T) ≥ c
√
KT for K > 1

and T ≥ K. The subgaussian setup implies that the mean has to bounded and the

tail of the reward distribution should be upper bounded by a limit. This setup is non-

parametric and includes commonly used families of distributions such as Bernoulli,

Gaussian, exponential, etc. This provides another proof that the growth of worst case

regret would be at least
√
T .

Upper bound: Optimality of bandit algorithms

From the previous sections, we learn that a bandit algorithm should choose the arms

inversely proportionally to the suboptimality gap, an asymptotically consistent bandit

algorithm should incur sublinear regret, and the minimum regret growth achievable

is at the logarithmic order of time because it has to learn the reward distributions

of arms by playing them. This sheds light on two important aspects of any agent

which are learning by exploring the arms and maximising the cumulative reward by

playing the arm with maximum expected reward as per the present knowledge. The

first phenomenon where the agent learns about the reward distributions of the arms by

playing them a certain number of times is called exploration. The second phenomenon

40 A Primer on Reinforcement Learning

Algorithm 2 Pure exploration
1: Time horizon T , number of arms K, an environment E with reward distributions

f1, . . . , fK .
2: for t ∈ [1, . . . , T] do
3: The agent uniformly randomly chooses an action At ← a ∈ {1, . . . , K} such

that P(At = a) = 1
K

4: The environment samples a reward Rt from the distribution fAt . The agent
updates the history with At and Rt.

5: end for

is exploitation where the agent uses its present knowledge to choose the empirically

best arm, i.e., the arm that is presently known to have maximum expected reward

and keep on playing it. This allows us to test these basic strategies of exploration and

exploitation. Further regret analysis helps us to devise the bound on regret for each

one of them which projects a guideline to design bandit algorithms.

Algorithm 2 depicts the pseudocode of pure exploration algorithm. In the pure

exploration algorithm, the agent uniformly chooses the arms with equal probability.

Thus, the agent on average plays the arms equal number of times. This leads to

learning of the reward distributions of arms but incurs a linear growth in regret with

time. Since P(At = a) = 1
K

, E[na(T)] =
T
K

. From Equation (2.4), we get the regret

R(A, T) =
∑K

a=1∆a× T
K

=
(
µ∗ − 1

K

∑K
a=1 µa

)
T . Thus, the regret grows linearly with

time horizon T .

Algorithm 3 depicts the pseudocode of pure exploitation algorithm. In the pure

exploitation algorithm, the agent plays the arm once to get some basic knowledge

about them and then keep on playing the arm with best empirical average of reward.

Thus, the agent plays each arm except the chosen one only once. This hinders learning

of the true reward distributions of arms and gets stuck in one arm only. It also causes

linear regret in worst case when the arm that the agent sticks to is not an optimal

arm. Under such condition, na(T) = T for the chosen arm, say i, and na(T) = 0 for

all other arms. From Equation (2.4), we get the regret R(A, T) = ∆iT . Thus, the

worst case regret grows linearly with time horizon T .

2.1 Multi-Armed Bandits 41

Algorithm 4 depicts the pseudocode of Explore-then-Exploit algorithm. It is also

called Explore-then-Commit (ETC) in bandit literature [Garivier et al., 2016a]. Here,

Algorithms 2 and 3 are merged sequentially. The agent decides a fixed window of time

wT for which it plays the arms uniformly randomly. Playing them equally likely gives

her a chance to learn about the corresponding reward distributions. After that, the

agent leverages this present knowledge about the arms to find out the empirically best

arm and commits to play it. For a given window w, the regret for Explore-then-Exploit

also grows linearly with time T .

Theorem 2. The regret of Algorithm 4 grows linearly with T ∈ N and w ∈ {1, . . . , ⌈T/K⌉−

1}.

R(A, T) ≤ w(
K∑
a=1

∆a) + (T − wK)(
K∑
a=1

∆a exp(
−w∆2

a

4
))

[Garivier et al., 2016a] showed that the Explore-then-Commit can reach a logarith-

mic regret bound if the suboptimality gaps and the time horizon are known a priori,

and the agent fixes the the window as a function of them. This knowledge of subop-

timality gaps is impractical to obtain a priori. This shows that we need an adaptive

Algorithm 3 Pure exploitation
1: Time horizon T , number of arms K, an environment E with reward distributions

f1, . . . , fK .
2: for t ∈ [1, . . . , K] do
3: The agent chooses the arm t

At ← t

4: The environment samples a reward Rt from the distribution fAt . The agent
updates the history with At and Rt.

5: end for
6: for t ∈ [K + 1, . . . , T] do
7: The agent chooses the arm with best empirical average of reward µ̂a.

At ← argmax
a∈{1,...,K}

µ̂a

8: The environment samples a reward Rt from the distribution fAt . The agent
updates the history with At and Rt.

9: end for

42 A Primer on Reinforcement Learning

Algorithm 4 Explore then Exploit (or Explore then Commit)
1: Time horizon T , number of arms K, an environment E with reward distributions

f1, . . . , fK , an exploration window w ∈ {1, . . . , ⌈T/K⌉ − 1}.
2: for t ∈ [1, . . . , wK] do
3: The agent uniformly randomly chooses an action At ← a ∈ {1, . . . , K} such

that P(At = a) = 1
K

4: The environment samples a reward Rt from the distribution fAt . The agent
updates the history with At and Rt.

5: end for
6: for t ∈ [wK + 1, . . . , T] do
7: The agent chooses the arm with best expected reward as per present knowledge

At ← argmax
a∈{1,...,K}

µ̂a

8: The environment samples a reward Rt from the distribution fAt . The agent
updates the history with At and Rt.

9: end for

interaction between exploration and exploitation to obtain sublinear regret bound. A

fixed window of exploration and exploitation without any dependence on the time

horizon cannot do so.

Lai and Robbins [Lai and Robbins, 1985], and Burnetas and Katehakis [Burnetas

and Katehakis, 1997] pushed this sublinear growth of regret further to prove that the

optimal growth of regret should be logarithmic with time. Lai and Robbins [Lai and

Robbins, 1985] proved the logarithmic regret growth for Bernoulli bandits. Burnetas

and Katehakis [Burnetas and Katehakis, 1997] extended it to parametric reward distri-

butions with same support set and bounded reward. We formally state this logarithmic

regret bound for parametric reward distributions in Theorem 3.

Theorem 3. If a bandit algorithm satisfies the following sufficient conditions

a. There is no suboptimal arm whose expected reward is infinitesimally close to the

optimal expected reward and whose reward distribution is similar to the reward

distribution of the optimal arm. For a suboptimal arm a, lim
ϵ→0

inf
f∈Fa(ν)

{DKL (fa∥f) |

µ(f) > µ∗ − ϵ} =∞.

2.1 Multi-Armed Bandits 43

b. The parameter θa of the reward distribution fa is estimated as θta

∧

with error ϵ

with high probability and the accuracy increases inversely with the number of

times the arm is played. Mathematically, P
(
|| θ̂ta − θa ||≤ ϵ

)
= 1 − o(1/t) as

t→∞ for ϵ > 0.

c. The expected reward of an arm a is not underestimated with a high probability

and the accuracy increases inversely with the number of times the arm is played.

Mathematically, P
(
sup
θ
{µ(f(θ)) | DKL

(
fa(θ)∥fa(θ̂ta)

)
< log t

t
} ≥ 1− µ(fa(θa))− ϵ

)
=

1− o(1/t) as t→∞ for ϵ > 0.

then for all parametric reward distributions with non-zero support in an environment

ν

lim sup
T→∞

R(A, T)
log T

≤ C(ν) ≜
∑

a:∆a(ν)>0

∆a(ν)

inf
f∈Fa(ν)

{DKL (fa∥f) | µ(f) > µ∗}
. (2.9)

Previously mentioned logarithmic lower bound along with the logarithmic upper

bound for asymptotically optimal algorithms dictate the logarithmic growth of re-

gret for an optimal bandit algorithm. Algorithms satisfying this logarithmic regret

growth are called asymptotically optimal bandit algorithms. The sufficient conditions

of achieving such bound provides a guideline to develop optimal bandit algorithms

such as UCB [Auer et al., 2002]. This discussion also shows that the algorithms with

deterministic window of exploration and exploitation are not asymptotically optimal

policies. Rather an adaptive combination of exploration and exploitation is needed to

achieve the logarithmic regret. Thus, exploration–exploitation trade-off plays a central

role in design of an optimal bandit algorithm.

2.1.2 Bandit Algorithms

Following the fundamental theoretical results about the unstructured, finite-arm, stochas-

tic bandits, we illustrate some of the state-of-the-art algorithms developed to solve this

44 A Primer on Reinforcement Learning

Bandit Algorithms Frequentist Bayesian

Deterministic
UCB [Auer et al., 2002],

KL-UCB [Garivier and Cappé, 2011]
MOSS [Audibert and Bubeck, 2009]

Bayes-UCB [Kaufmann et al., 2012a],
BelMan [Basu et al., 2018c]

Randomised Adaptive ϵ greedy [Auer et al., 2002] Thompson sampling [Thompson, 1933]

Table 2.1: Classification of Asymptotically Optimal [Lai, 1988] Bandit Algorithms.

problem effectively. Table 2.1 depicts a classification of the state-of-the-art bandit al-

gorithms.

Frequentist Algorithms

There are two principal genres of algorithms developed from the frequentist perspec-

tive. The first family includes the randomised ϵ-greedy algorithms. [Watkins, 1989]

proposed it as a solution to the equivalent one-state Markov decision process problem.

Later on, it is further extended for multiple-state Markov decision processes [Sutton

and Barto, 1998]. This family of algorithms perform pure exploration, i.e., play the

arms with equal probability, with a given probability ϵ, and to perform exploitation,

i.e., to play the arm with maximum empirical expected reward, with a given probability

1− ϵ. ϵ-greedy algorithms that maintain an ongoing distinction between exploitation

and exploration phases are called semi-uniform. Hence, following the proof structure of

Algorithm 4, it can be shown that ϵ-greedy algorithm incurs linear regret growth with

time. There are other variants of ϵ-greedy algorithms, such as adaptive ϵ-greedy [Auer

et al., 2002], can achieve optimal regret bound. [Auer et al., 2002] proposed to set

ϵ(t) = min{1, cK
d2 T
}, where d ∈ (0,mina ∆a]. This leads to logarithmic growth of regret.

Since it requires a prior knowledge of the differences of expected rewards of the arms,

it is not always practical to use such algorithm in reality. Beside this, it does not reach

asymptotic optimality as dictated by Equation (2.9) because the constant in RHS is

greater than that of C(ν).

2.1 Multi-Armed Bandits 45

Bandit Algorithm Decision Function (l(a, t)) Finite-time regret bound

UCB1 [Auer et al., 2002] µa
∧

(t) +
√

2 log t
na(t)

8

[∑
a:µa<µ∗

log t
∆a

]
+ (1 + π2

3
)(
∑K
a=1 ∆a)

UCB2 [Auer et al., 2002] µa
∧

(t) +

√
c(1+log t−nepoch

a log c)

2cn
epoch
a

K∑
a=1

c2 log(2e∆2
at)+C(c)

2∆a

UCB-tuned [Auer et al., 2002] µa
∧

(t) +
√

log t
na(t)

min{0.25, σ̂a(t)} –

MOSS [Audibert and Bubeck, 2009] µa
∧

(t) + log T
Kna(t)

25
√
TK

OC-UCB [Lattimore, 2015] µa
∧

(t) +

√
c

na(t)
log
(
ψT
t

) K∑
a=1

C(ψ,c)
∆a

log
(

t
na(t)

)
KL-UCB [Garivier and Cappé, 2011] DKL (µa

∧
(t)∥M) ≤ log t+c log log t

na(t)
,M = {µ}

(
K∑
a=1

∆a
DKL(fa∥f∗)

)
log t+ C

(
K∑
a=1

∆a

)
log log t

KL-UCB++ [Ménard and Garivier, 2017] DKL (µa
∧

(t)∥M) ≤ log
(
T
Kt

)
+ 2 log log

(
T
Kt

+ 1
)

76
√
σmaxKT + (µmax − µmin)K

Bayes-UCB [Kaufmann et al., 2012a] Q(1− 1
t
,Posteriort−1

a (X))

(
K∑
a=1

∆a
DKL(fa∥f∗)

)
(log t+ C log log t)

Table 2.2: The decision functions and finite-time regret bounds of the ‘optimism in
face of uncertainty’ bandit algorithms.
5

Frequentist, deterministic algorithms such as UCB [Auer et al., 2002] and KL-

UCB [Garivier and Cappé, 2011] are state-of-the-art for the exploration–exploitation

bandit problem. They operate with optimism in the face of uncertainty principle,

i.e., they choose to play an arm with maximum empirical mean plus a converging

exploration bonus. In Table 2.2, we demonstrate the decision functions for different

variants of the optimism in the face of uncertainty algorithms and the corresponding

finite-time regret bounds. All of them reach logarithmic regret growth. UCB1, UCB2,

MOSS, and OC-UCB are still not asymptotically optimal as the constant obtained for

them are greater than that of C(ν) in Equation (2.9). KL-UCB, KL-UCB++, and

Bayes-UCB algorithms reach asymptotic optimality for bounded rewards. OC-UCB

and KL-UCB++ algorithms reach both the optimal
√
T growth for minimax regret

and the optimal log T growth for expected regret.

Frequentist algorithms are often not supportive to assimilation of a priori knowl-

edge about the arms or specially, the underlying process. Use of such a priori knowl-

edge in form of a prior distribution improves performance in applications where an

underlying model for the reward distributions can be constructed [Kawale et al., 2015].

46 A Primer on Reinforcement Learning

Bayesian Algorithms

A variant of the Bayesian formulation was introduced by [Bellman, 1956] with a dis-

counted reward setting. Unlike ST , the discounted sum of rewards Dγ ≜
∑∞

t=0 [γ
tXt+1]

is calculated over an infinite horizon. Here, γ ∈ [0, 1) ensures convergence of the se-

quential sum of rewards for infinite horizon. Intuitively, the discounted sum implies

the effect of an action decay with each time step by the discount factor γ. This setting

assumes K independent priors on each of the arms and also models the process of

choosing the next arm as a Markov process. Thus, the bandit problem is reformulated

as maximising ∫
. . .

∫
Eθ[Dγ]db

1(θ1) . . . db
K(θK)

where, ba is the independent prior distribution on the parameter θa for a = 1, . . . , K.

[Gittins, 1979] showed the agent can have an optimally indexed policy by sampling

from the arm with largest Gittins index

Ga(sa) ≜ sup
τ>0

E
[

τ∑
t=0

γtxa(Sa
t) | Sa

0 = sa
]

E
[
τ−1∑
t=0

γt | Sa
0 = sa

]
where sa is the state of arm a and τ is referred to as the stopping time i.e, the first

time when the index is no greater than its initial value. Though Gittins index [Gittins,

1979] is proven to be optimal for discounted Bayesian bandits with Bernoulli rewards,

explicit computation of the indices is not always tractable and does not provide clear

insights into what they look like and how they change as sampling proceeds [Nino-

Mora, 2011].

Thus, researchers developed approximation algorithms [Lai, 1988] and sequen-

tial sampling schemes [Thompson, 1933]. [Kaufmann et al., 2012a] also proposed

a Bayesian analogue of the UCB algorithm. Bayesian algorithms assume the exis-

tence of a set of distributions over the parameter of reward distributions of the arms.

These distributions representing the uncertainty of the parameters are called belief

2.1 Multi-Armed Bandits 47

distributions. Unlike the original, it uses belief distributions to keep track of arm un-

certainty and update them using Bayes’ theorem, computes UCBs for each arm using

the belief distributions, and chooses the arm accordingly. Thus, [Kaufmann et al.,

2012a] tried to amalgamate the benefit of Bayesian modelling with performance and

efficiency of UCB algorithms. They constructed Bayes-UCB algorithm on the basis

of this proposition. Thus, we can trace back Bayes-UCB as an optimism in the face

of uncertainty algorithm where the loss function is a quantile of a posterior reward

distribution updated in a Bayesian manner.

The oldest but the simplest Bayesian algorithm for bandits is Thompson sam-

pling [Thompson, 1933]. Thompson sampling is widely used for its simplicity and

optimality [Agrawal and Goyal, 2012]. At any iteration, Thompson sampling samples

K parameter values from the belief distributions. Following that, it chooses to play

the arm that has maximum expected reward for the sampled parameter values. De-

spite of its simplicity, Thompson sampling is proved to reach the logarithmic regret

bound [Agarwal et al., 2011] and is asymptotically optimal [Kaufmann et al., 2012b].

2.1.3 Pure Exploration Bandits

In the pure exploration setup proposed by [Bubeck et al., 2009], the agent tries to

minimise the simple regret rather than cumulative regret. Simple regret is the differ-

ence between the expected difference between the best reward that could be achieved

and the reward which has been achieved at any instance. Mathematically, the simple

regret after n iterations is

rt(θ) ≜ µ∗(θ)− Eθ[XAt]. (2.10)

Unlike minimisation of cumulative regret that requires simultaneous exploration and

exploitation, minimising simple regret depends only on exploration and the number of

available rounds to do so. This setup represents the situation where the agent seeks to

know more about the environment rather than exploiting it. It is also representative

of applications where the cost of pulling an arm is expressed in terms of resources

48 A Primer on Reinforcement Learning

rather than rewards. [Bubeck et al., 2009] also proved for Bernoulli bandits, that if

an explore–exploit algorithm achieves an upper bounded regret, it cannot reduce the

expected simple regret by more than a fixed lower bound. This establishes the funda-

mental difference between behaviour of efficient algorithms for explore-exploit bandits

and pure exploration bandits. They also proposed a modification of UCB for the pure

exploration setting of Bernoulli bandits. [Audibert and Bubeck, 2010] identified this

pure exploration problem as best arm identification problem and proposed the Succes-

sive Rejects algorithm under fixed budget constraints. [Bubeck et al., 2013] extended

this algorithm for finding m-best arms and proposed the Successive Accepts and Re-

jects algorithm. In another endeavour to adapt the UCB family to pure exploration

scenario, the LUCB family of frequentist algorithms are proposed [Gabillon et al.,

2012; Kaufmann and Kalyanakrishnan, 2013]. In the beginning, they sample all the

arms. Following that, they sample both the arm with maximum expected reward and

the one with maximum upper-confidence bound till the algorithm can identify each

of them separately. But these algorithms do not provide us an intuitive and rigorous

explanation of how a unified framework would work for both the pure exploration and

the explore–exploit scenario and what would be the critical construction needed to do

so. Furthermore, there is a clear void in the Bayesian literature to provide such a pure

exploration solution [Kaufmann and Kalyanakrishnan, 2013]. As discussed in previous

section, both Thompson sampling and Bayes-UCB lack this feature of constructing a

single successful structure for both pure explore and explore-exploit. In another trend

of literature, [Chen et al., 2014, 2016] focus on exploiting the underlying structure of

the bandit problem or the constraints to develop better ways to explore the reward

distributions of arms.

2.1.4 Our Contribution: BelMan

BelMan [Basu et al., 2018c], presented in detail in Chapter 5, proposes a Bayesian, in-

formation geometric algorithm that concurrently addresses the pure exploration prob-

lem, the exploration–exploitation problem and their concatenation in the form of the

2.1 Multi-Armed Bandits 49

two-phase reinforcement learning problem [Putta and Tulabandhula, 2017a]. BelMan

maintains a distribution over the parameter of the reward distribution, and a joint

distribution over both the parameter of the reward distribution and reward itself.

We refer to the distribution over the parameter as the belief distribution, and to the

joint one as the belief-reward distribution. Belief-reward distributions quantify the

total uncertainty of the underlying process. We further investigate the belief-reward

manifold of all possible belief-reward distributions. BelMan leverages the statistical

manifold [Amari and Nagaoka, 2007] structure of the space of belief-reward distribu-

tions to respond to the questions of information accumulation, summarisation and

exploration–exploitation trade-off. As rewards are accumulated, belief-reward distri-

butions are updated using Bayes’ theorem. This is equivalent to a displacement in

the belief space, and in turn, in the belief-reward space. The underlying structure of

statistical manifold allows us to rigorously formulate this assimilation of information

in the belief distribution of each arm. Exploiting the belief-reward distribution of

the arms independently would lead to an effective estimate of the reward distribution

of the most played arm but would get myopically stuck in it. Efficient exploration

requires a collective representation of the accumulated knowledge. BelMan uses the

pseudobelief-reward distribution as the geometric representation of this summarised

knowledge-base. Pseudobelief-reward minimises the sum of KL-divergences from the

belief–rewards of the arms. We show the pseudobelief-reward is a weighted barycentre

of the belief-reward distributions of the arms. In each iteration, the agent plays an

arm to update this pseudobelief and leverage this to choose the next arm. Though

pseudobelief-reward deals with exploration, in the exploration–exploitation problem,

it is essential to exploit the present knowledge of rewards and to gradually increase

exploitation in order to achieve higher cumulative reward [Macready and Wolpert,

1998]. BelMan constructs a focal distribution in the reward space that incrementally

focuses on higher rewards with each iteration. This evolution towards higher values

of reward depends on a time-variant factor, called exposure. Exposure decreases with

time and its variation decides the exploration–exploitation trade-off. Amalgamation

50 A Primer on Reinforcement Learning

of focal distribution with the pseudobelief-reward distribution leads to pseudobelief-

focal distribution on the belief-reward manifold. Pseudobelief-focal provides the scope

to exploit the present knowledge of rewards and to gradually increase exploitation in

order to achieve higher cumulative reward [Macready and Wolpert, 1998]. BelMan

sequentially takes decision to pull an arm and update the pseudobelief-focal distribu-

tion using the alternating information projection [Csiszár and Tusnády, 1984]. In the

information (I-) projection, an arm is chosen such that its belief-reward distribution

is at minimal distance with respect to the pseudobelief-focal distribution. In the re-

verse information (rI-) projection, the pseudobelief-focal distribution is updated by

assimilating the observed reward of the last played arm such that its distance from all

the arms’ belief-reward distributions would be minimum. Thus, BelMan iteratively

updates its knowledge about the reward distributions of the arms and decides the arm

to be explored to maximise the cumulative reward as well as the information. By con-

vergence of alternating information projection [Csiszár and Tusnády, 1984], BelMan

asymptotically estimates the ‘true’ reward distributions for the arms and converges to

the choice of the optimal arm.

2.2 Markov Decision Processes

Although bandit environments provide a useful formalism for many problems, they

are limited in scope as the actions do not have long term consequences, and the

environment remain unaffected by the actions taken by the agent. Such long term

consequences, and the dynamic interaction of the agent and the environment are ex-

pressed through the notion of an environment state which changes as a function of

the action taken. The interactions and changes can be both deterministic and stochas-

tic. If after every transition the state becomes observable to the agent, we arrive at

fully-observable Markov decision processes, or in short MDPs. Following the schema

of bandits in Figure 2.2, we illustrate a scheme for the MDP in Figure 1.2.

2.2 Markov Decision Processes 51

Though the notion of agent, environment, action, reward function, history and

policy as constructed for bandits would be here in extended forms, we would need

to define new components like the transition function and the value function. We

describe that in the problem setup of finite-state finite-action MDPs. Following that,

we describe some of the basic algorithms developed to solve it and are related with

the methodologies developed in this thesis.

2.2.1 Finite-State Finite-Action MDPs

Under its broadest definition, a Markov decision process formalism covers an eclectic

set of models. This generality makes it a powerful formalism but provides too little

structure to find efficient solutions. Thus, we define here the variant of Markov decision

process interesting to our problem formats and for AI practitioners. In the correspond-

ing chapters, we add the structures to this definition according to the requirement of

the real-life applications to solve them efficiently and effectively.

A finite-state finite-action discrete-time fully-observable Markov decision process

M is defined as a tuple ⟨S,A, [T] ,P ,R⟩, where

a. S is the finite set of all possible states of the environment. S is called the state

space with cardinality | S |<∞.

b. A is the finite set of all possible actions that the agent take. A is called the

action space with cardinality | A |<∞.

c. [T] is the finite or infinite sequence of natural numbers {1, 2, . . . , T} with time

horizon T ∈ R ∪ {∞}. If T < ∞, it is called finite-horizon MDP. If T = ∞, it

is called infinite-horizon MDP.

d. P : S×A×S× [T]→ [0, 1] is the transition function. P can be both stochastic

and deterministic. For the stochastic variant, P(s1, a, s2, t) quantifies the prob-

ability of reaching state s2 if the agent performs action a being in the state s2

at time t. For the deterministic variant, range of P becomes {0, 1} such that it

52 A Primer on Reinforcement Learning

What we need:

What goes on:

at−1 at

rt−1 rt

st−1 st st+1

Figure 2.4: The probabilistic graph representing the temporal flow of an MDP.

deterministically dictates whether the agent moves to, or not, to a state s2 if the

agent performs action a being in the state s2 at time t.

e. R : S × A × S × [T] → R is the reward function that returns a finite numeric

value to quantify the goodness of an action at a certain time at a certain state.

R(s1, a, s2, t) quantifies the reward obtained as the environment transits to state

s2 from state s1 while the agent performs action a at time t. R can generate

both a deterministic value or a random variable.

Since we almost always discuss finite-state finite-action discrete-time fully-observable

Markov decision process in this thesis, we will refer to them as MDPs for the rest of

the thesis.

Markovian assumption. We depict the above mentioned dynamics of MDPs through

the probabilistic graphical model of Figure 2.4. This figure depicts one of the funda-

mental observations of the MDP formalism. The transition function P(st−1, at, st, t)

deciding transition from state st−1 to state st does not depend on the previous states

or actions. Similarly, the reward obtained at time t, i.e., rt ≜ R(st−1, at, st, t) does

not depend on past states and actions such as st−1 and at−1. This assumption of de-

pending on the present state but not on the past sequence of state and actions in the

2.2 Markov Decision Processes 53

process is called the first-order Markov property. This assumption lays at the base of

this formalism and its nomenclature.

History. As shown in the Figure 2.4, the agent takes an action at at each time

t while she is in a state st. This returns her a reward rt. The agent sequentially

accumulate these observations to construct a history. The history Ht at time t ∈ [T]

is defined as an ordered set {(s1, a1, r1), . . . , (st−1, at−1, rt−1), st}. Let us call the space

of all possible histories the observed space of the agent H ≜ ∪[T]
t=1. The agent tries and

constructs functions that processes the history to decide the next action.

Policy. The function that determines the action of an agent given a history is called

a policy π : H × A → [0, 1]. It can be a probabilistic function or a deterministic

function. Thus, it may outcome a probability distribution over A, or may choose a

certain action at a certain point. Unluckily, this observed space can be very large due

to large number of possible histories. Such eclectic possibilities and uncertainty makes

it vary hard to deal with arbitrary history-dependent policies. Thus, in the literature,

another layer of first-order Markov assumption is added. It is assumed that the choice

of an action under a policy depends only on the current state and time step. This

family of policies are called Markovian policies. Hence, if π is a Markovian policy

and an action a is taken at state st, π(Ht, a) = π(H′
t, a) for any two histories Ht and

H′
t having st as the present state. Thus, Markovian policies are only functions of the

present state, time step and the present action, i.e., π : S × [T]× A→ [0, 1].

Fortunately, disregarding non-Markovian policies is hardly a limitation in practice.

For most variants of MDPs and objective functions there exists at least one optimal

Markovian policy [Szepesvári, 2010]. Thus, by restricting attention to Markovian

policies we are not eliminating the opportunity to solve these MDPs optimally. Instead

of that, we are making our solution space tractable enough to reach the optimal

solution faster.

If [T] is finite, the number of possible policies grow linearly with T . This can be

really bad if T is large in a practical application. Beside this, there are infinite horizon

54 A Primer on Reinforcement Learning

MDPs which are quite common in real-life applications since the horizon is not known.

For example, if the agent is a scheduler of jobs in a factory, one cannot predefine the

amount of time it has to work continuously or the days when it does not have to work

at all. Rather it is practical to design it irrespective of the time horizon and assuming

that the effect of a job schedule transcends far after it is finished. For such scenarios,

the stationary assumption is imposed on the Markovian policy. A Markovian policy

π is stationary if for any state s and action a, π(s, t1, a) = π(s, t2, a) for any two time

steps t1 and t2 in [T]. It implies that the decisions made by following π are independent

of time. Thus, we can write stationary Markov policies as functions of state and action,

i.e., π : S×A→ [0, 1]. Though this makes the space of feasible policies even narrower,

they construct a practical set of solutions for infinite horizon MDPs. [Szepesvári,

2010] shows that there exists at least one stationary Markovian policy as an optimal

solution of the infinite horizon MDPs. If not explicitly mentioned, we would refer to

the stationary Markovian policies as policies for any further discussion in this thesis.

Value function. When we were discussing policies, we mentioned about the opti-

mal solutions of MDPs. This naturally evokes the question of quantifying optimality

of a policy solving MDPs. This indicates the need of defining a utility metric on the

accumulated reward obtained through a sequence of states and actions in an MDP.

In reinforcement learning, we always assume existence of such a function quantifying

the goodness of a sequence of states and actions numerically. This is called utility

function hypothesis. It is originated from the prescriptive theory of decision making.

Specifically, von Neumann and Morgenstern proved that under reasonable axioms of

rational behaviour under uncertainty, a rational agent must choose amongst alterna-

tives by computing the expected utility of the outcomes. Though this assumption of

rationality of the agent is debated by the descriptive theorists of decision making, we

stick to this formalism as we are dealing with computer systems and not the human

beings. Thus, we define a value function V : H → R∪ {−∞,+∞} as a numeric quan-

tification of goodness of a history. As we have discussed in case of policies, Markovian

2.2 Markov Decision Processes 55

and stationary assumptions are imposed on value functions to define Markovian and

stationary Markovian value functions respectively. Markovian value functions are in-

dependent of the history. Thus, they are functions of present state and time only, i.e.,

V : S × [T] → R ∪ {−∞,+∞}. Stationary value functions are independent of the

time. Thus, they are functions of present state only, i.e., V : S → R ∪ {−∞,+∞}.

This definition of value function provides little structure to the value function.

Specifically, this definition does not explicitly connect it with the sequence of actions

that the agent has to take, and thus the policy she has to compute. Hence, the value

function of a policy π is defined and often dealt with in practical algorithms. Thus,

value function of a policy6 is defined as a numeric utility metric computed on the future

sequence of rewards obtained by using the policy. If we denote the reward obtained

after time t by following the policy π from state s as Rπ(st), the value function is

defined as V π(s) = u(Rπ(st), . . . , R
π(sT)) for an utility metric u. Rigorously speaking,

this is the stationary Markovian value function V π(s) of a stationary Markovian policy

π at state s. In this thesis, we would use this as the default definition of value

function. Sometimes the value function is called utility function or cost-to-go function

too. Generally in the literature and specifically in this thesis, all of these terminologies

refer to the same quantity.

Now, the question reduces to how to define the utility metric and how does it

effect the optimality of the policy computed to solve an MDP. Like the bandits, it is

intuitive to define it as the sum or rewards obtained from state s at time t. Thus,

u(Rπ(st), . . . , R
π(sT)) =

T∑
i=t+1

Rπ(si). Since Rπ(si)’s are random variables, they may

vary in different iterations and they belong to a predictive future of the agent This

definition of utility turns out to be a random variable which is not the same for different

runs of even same policy. Thus, it is not a proper metric to use to compare between

the performance of different policies. In order to resolve this, the expected linear

additive utility is defined. An expected linear additive utility metric is a function u

that computes the utility of reward sequence following a state and a policy as the

6Markovian stationary policy

56 A Primer on Reinforcement Learning

expected sum of discounted reward of an MDP as

u(Rπ(st), . . . , R
π(sT)) ≜ EP,π

[
T∑

i=t+1

γi−tRπ(si)

]
. (2.11)

Here, γ ∈ [0, 1] is the discount factor. The expectation is calculated with respect to

the transition function and the the policy that dictated the reward generation process.

Defining expectation as the utility metric is dependent on the application and intention

of the agent as we have discussed for the bandits. In the scope of the thesis and the

discussed application, we would stick to expectation as the eligible metric.

This expected linear additive utility is chosen from the intuition that the utility of

a reward sequence is it expected sum. If the discount factor γ = 1, all the reward in a

sequence are equally valued. For infinite horizon MDPs, γ = 1 makes the expected sum

of reward divergent and thus immeasurable for different policies. Thus, the discount

factor is assumed to be less than 1. Above this, the discount factor being zero means

that no future effect is recognised while computing the value function. A reasonable

discount factor belongs to (0, 1). This implies that the utility of a state is captured

better by its recent rewards than the rewards obtained in distant future and the effect

of a state in reward generation decreases by the discount factor per-step.

This discussion provides us a valid formulation of a value function of a policy

given an initial state as an expected linear additive function of the obtained rewards.

Though the choice is not universal and unique, the discussion clarifies the intuition

supporting the choice. Specifically, the Belman’s optimality principle which we will

elaborate now provides it the additional eligibility as the measure of optimality of a

sequence of actions in an MDP.

The optimal solution. As we have defined all the component to construct the

formalism of an MDP and its solutions, we want to discuss the optimality of a policy

solving an MDP.

2.2 Markov Decision Processes 57

A policy π∗ is an optimal solution of an MDP M ≜ ⟨S,A, [T],P ,R⟩ for a given

value function V such that the value function V π∗ dominates the value functions of

all other feasible policies for all the initial states s ∈ S. This means V π∗
(s) ≥ V π(s)

for all s ∈ S and for all π ̸= π∗. π∗ is called an optimal policy.

For the choice of expected linear additive value function, we obtain the Belman’s

optimality principle. This is a cornerstone of MDP literature, and in general, of the

dynamic programming approach to problem solving. The MDP version of this can be

stated as:

If goodness of every feasible policy π can be measured for every initial state by

the corresponding expected linear additive value function, there exists a policy that is

optimal in each step. The policy which is optimal in every step is also a globally optimal

policy π∗ and vice-versa.

This result assure that search for an optimal policy under such formalism is not

a dead end. The existence of the solution helped the researchers to focus only on

the solution methodologies. Though the result is general enough, the condition is

important to check while designing MDP for a real-life problem because there are

exception [Puterman, 2009]. It also reminds us of the fact that though the optimal

policy exists, it is not unique. This fact plays an important role in designing more

specific variants with unique and global optimal solution.

Infinite-horizon MDPs. Although finite-horizon MDPs have simple mathematical

properties and suited for some mathematical analysis, it is quite restrictive and also not

practical as the time horizon is not known often. For example, in the virtual machine

migration setting of Chapter 4, the scheduling algorithm has to keep on deciding which

virtual machine to migrate to which physical machine in the data center till the data

center or the algorithm is shut down. In such scenarios, the reward is accumulated

over a virtually infinite sequence of time steps. Thus, infinite-horizon MDP is the

formalism followed in the applications discussed in this thesis.

58 A Primer on Reinforcement Learning

Solving the infinite horizon MDPs require three specific design assumptions. Since

the time horizon is infinite, [T] is an uncountable set. Thus, the domains of the

transition function P : S × [T] × A → [0, 1] and the reward function R : S × [T] ×

A → R ∪ {−∞,+∞} are uncountably large. This makes any computation involving

them intractable. It leads to imposition of stationarity on the transition function and

reward function as a necessary design practice. Transition function P is stationary if

P(s1, a, s2, t) = P(s1, a, s2, t′) for any states s1, s2 ∈ S, action a ∈ A, and time t, t′ ∈

[T]. Similarly, the reward function R is stationary if R(s1, a, s2, t) = R(s1, a, s2, t′)

for any states s1, s2 ∈ S, action a ∈ A, and time t, t′ ∈ [T]. This implies that they

are independent of time and are only functions of present state, future state, and

present action. We call the MDPs with stationary transition and reward functions as

stationary MDPs.

The other design constraint is to keep the expected linear additive value function

finite. As we have discussed earlier, this is done by introducing a discount factor

γ ∈ [0, 1). Generally the value of γ is hard to know a priori. It is commonly set

through analysis of experimental results as we will see in Chapter 3 and 4. The only

plausible information we have for assigning the value is not to set it to zero as it

makes the value function oblivious to the future effects. The other application specific

information is available for finance problems, where γ can be modelled as the rate of

inflation or the interest as computed from economic data.

Additionally, we are assuming use of stationary Markovian policies and stationary

Markovian value functions as the default design choices. Though they are not a

fundamental requirement to design and solve an infinite-horizon MDP, we follow them

due to the reasons mentioned in earlier discussions.

Thus, we can define an infinite-horizon Markov decision process M∞ as a tuple

⟨S,A,P, R, γ⟩ with value function V π(s) = EP,π [
∑∞

t=0 γ
tRπ(st) | s0 = s] defined for a

policy π ∈ Π. Here, S is a finite state space, A is a finite action space, P is a stationary

transition function, R is a stationary reward function with bounded rewards, γ is the

discount factor, and Π is the space of feasible Markov stationary policies. They are also

2.2 Markov Decision Processes 59

called infinite-horizon discounted-reward MDPs [Puterman, 2009]. Since this structure

provides an effective formalism for the large scale problems with indefinite endpoints,

we will use it as the default structure throughout Chapter 3 and 4.

As we have defined the problem setup, we would elaborate the optimality principle

derived for this specific case.

Theorem 4 (Optimality principle of infinite-horizon MDP). Let us formulate an infi-

nite horizon MDP asM∞ ≜ ⟨S,A,P ,R, γ⟩ with value function V π(s) = EP,π [
∑∞

t=0 γ
tRπ(st) | s0 = s]

and γ ∈ [0, 1). Under such a formalism, there exists a stationary Markovian optimal

value function V ∗ solving M∞ such that for all s ∈ S,

V ∗(s) = max
a∈A

Es′∼P(s,a,·) [R(s, a, s′) + γV ∗(s′)] . (2.12)

The corresponding optimal policy π∗ is unique and deterministic stationary Markovian,

and satisfies for all s ∈ S

π∗(s) = argmax
a∈A

Es′∼P(s,a,·) [R(s, a, s′) + γV ∗(s′)] . (2.13)

2.2.2 Functional Abstraction of MDP

[Bertsekas, 2013, 2017] proposed an abstraction of this formulation of optimality prin-

ciple using the techniques of functional analysis and calculus of variations [Gelfand

et al., 2000]. They proposed this framework from a general perspective which is

valid for optimal control problems, stochastic control problems and MDPs. We would

express it using the formalism of infinite-horizon MDPs only [Chapter 4 of [Bert-

sekas and Shreve, 2004;Chapter 4]. If we assume the value function for a policy π is

V π : S → R ∪ {−∞,+∞} and V(S) is a set of such feasible value functions, we can

60 A Primer on Reinforcement Learning

define another mapping J : S × A× V(S)→ R ∪ {−∞,+∞} such that

J(s, a, V π(s)) ≜ E [R(s, a, s′) + γV ∗(s′)] ,

Using this construction, we can express Equation (2.12) using the Bellman operators T .

Bellman operator Tπ for a policy π is defined as

(TπV)(s) ≜ J(s, π(s), V π(s)) ∀s ∈ S. (2.14)

This, in turn, defines the Bellman operator T as

(T V)(s) ≜ inf
a∈π(s)

J(s, a, V π(s)) ∀s ∈ S. (2.15)

Let us we assume that there exists a termination stage where the value function return

V̄ (s) = 0 for all s ∈ S. We can always construct such a situation for infinite-horizon

MDPs [Bertsekas and Shreve, 2004]. Under mild conditions guaranteeing that Fubini’s

theorem holds [Section 2.3.2 of [Bertsekas and Shreve, 2004]], it reconstructs the value

function of infinite-horizon MDP as

V π(s0) = lim sup
T→∞

E

[
T∑
t=0

γtR(st, π(st), st+1)

]
= lim sup

T→∞
(T1 . . . TT V̄)(s0).

If γ < 1 and the reward function is bounded such as |R(s, a, s′)| < Rmax, the Bellman

operator T and Bellman operator Tπ for policy π are contraction mappings with respect

to the the standard sup-norm. Mathematically, we can show that for all π ∈ Π and for

all s ∈ S, || T V1 − T V2 ||∞≤ γ || V1 − V2 ||, where || . ||∞ is the functional sup-norm7

and the discount factor γ < 1. Following the results of Chapter 2 of [Bertsekas, 2013],

we conclude that the Bellman’s equation of an infinite-horizon MDP (Equation (2.12))

has a unique solution. This solution corresponds to the unique fixed points in V(S)

7|| . ||∞ is the sup-norm such that || V ||∞≜ maxs∈S V (s).

2.2 Markov Decision Processes 61

of the Bellman operators T and Tπ since T V ∗ = V ∗ and Tπ∗Vπ = Vπ. These fixed

points are the optimal value function V ∗ and the value function of the stationary

policy Vπ respectively. The solution V ∗ corresponds to the stationary policy π∗ such

that Tπ∗V ∗ = T V ∗.

This functional approach coupled with the Bellman’s optimality principle con-

structs the theoretical basis and design guideline for MDP algorithms. Value iteration

algorithm is equivalent applying a sequence of Bellman operators Tt starting from a

V0 ∈ V(s) such that V ∗ = lim
t→
TtV is satisfied. Policy iteration algorithm is equiva-

lent to the scheme of starting from an initial stationary policy π0 and generating a

sequence of stationary policies πt by solving Tπt+1Vπt = T Vπt . Here, Vπt is obtained as

the fixed point of the Bellman operator Tπt . This is done through different optimisa-

tion methods even through value iteration. Such a combination of policy update and

policy evaluation together constructs the actor-critic algorithms. This is the principle

family of methods which is used to solve MDP problems in Chapter 3 and 4.

If the dimension of V(S) is really large which means that the MDP has large state-

action space and/or large policy space, it is computationally expensive to compute the

fixed points of the Bellman operators. It is often found that for real-life applications

with some problem structure the fixed point of the Bellman operator is often based

on the solution of lower-dimensional equations defined on the subspace Vapprox(S).

Vapprox(S) is defined as a projection plane {ΦṼ | Ṽ ∈ R|S|} which is spanned by the

columns of a d × |S| matrix Φ for d < |S|. There are different methods of perform-

ing this approximation. Some methods perform it through multi-step version of the

mapping, such as TD(λ), LSTD (λ) and other temporal difference algorithms [Sutton,

1988]. Some methods perform this through functional approximation of the Bellman

operator and the value function such as LSPI, FDD, iFDD. Some methods combine

these two methodologies to perform the functional approximation through sequential

steps such as Gradient SARSA, Batch-iFDD augmented LSTD. The algorithms devel-

oped by us in Chapter 3 and 4 fall into this category due to their sequential functional

62 A Primer on Reinforcement Learning

approximation schemes as solving the large MDPs on-the-go requires both of these

techniques to be merged.

2.2.3 Dynamic Programming

Dynamic programming is a problem solving methodology inspired by the Bellman’s

optimality principle. In the dynamic programming, we generally divide a bigger prob-

lem into smaller overlapping problem such that their combined solution answers the

original bigger problem. The smaller subproblems are solved sequentially and their

results are stored in some tabular format. This is often referred to memoisation. Then,

they are assimilated according to the optimality corresponding Bellman operator to

get the global solution. As mentioned in Theorem 4 and the concluding discussion

of the preceding section, we observe that dynamic programming is one of the basic

and intuitive approaches to design algorithms for solving MDPs. Here, we discuss two

such basic algorithms such as value iteration and policy iteration. Following that, we

modify this technique to discuss the temporal difference algorithms. We conclude this

discussion by stating the practical limitations of these memoisation based dynamic pro-

gramming algorithms because they consume large memory and computational time

for large MDPs.

Value iteration

Value Iteration (VI) forms the basis of most of the MDP algorithms. It was originally

proposed by Richard Bellman in 1957 [Bellman, 1957a]. It is an indirect method

motivated by Equation (2.12) that searches in the value function space rather than

the policy space, and computes the current policy based on current estimates of value

function. VI computes the possible improvement of a value function for each of the

states, and choose the one with maximum increment as the updated value function

for that state. The pseudo-code is described in Algorithm 5. VI tabulates the Q

value for each of the state-action pairs (s, a), where Q : S × A → R. Thus, each

iteration of value iteration takes time O
(
|S|2 |A|

)
in the worst case. Though it is still

2.2 Markov Decision Processes 63

Algorithm 5 Value Iteration Algorithm
1: Initialise: a value function V0, say V0(s) = 0 for all s ∈ S.
2: if || Vt − Vt−1 ||∞> ϵ then
3: for all s ∈ S do
4: for all a ∈ A do
5:

Qt(s, a) =
∑
s′∈S

P(s, a, s′) [R(s, a) + γVt−1(s
′)] (2.16)

6: end for
7: Vt(s) = max

a∈A
Qt(s, a)

8: end for
9: end if

polynomial time on the dimensions of the state and action spaces, it can be quite

computationally costly and impractical for MDPs with large state-action spaces and

real-time applications.

Though we obtain the computational complexity for each time step, the next ques-

tion is whether it converges to a nearly-optimal enough value function. [Williams,

1993] proved that if the maximum difference between two successive value functions

is less than ϵ, the value of the greedy policy obtained by Algorithm 5 differs from the

optimal value by not more than 2ϵγ
1−γ

. Mathematically,

Theorem 5. If || Vt+1 − Vt ||∞≤ ϵ for ϵ ≥ 0, then we get a value function Vt which is
2ϵγ
1−γ

close to the optimal value function, i.e., || Vt − V ∗ ||∞≤ 2ϵγ
1−γ

.

This proves convergence of this algorithm for infinite-horizon MDPs. The proof

technique uses the fact that VI is equivalent to applying a sequence of Bellman oper-

ators Tt satisfying V ∗ = lim
t→
TtV , and the property that the Bellman operator for the

infinite-horizon MDP is a contraction mapping with a contraction factor γ.

Policy iteration

Policy iteration (PI) is another fundamental algorithm for solving MDPs that searches

directly in the policy space than optimising the value function. Policy iteration con-

64 A Primer on Reinforcement Learning

sists of two processes, policy evaluation and policy improvement. Policy evaluation

computes the value functions consistent with a given policy. Policy improvement greed-

ily updates the policy with respect to the value function obtained in policy evaluation.

Using the functional formulation of dynamic programming, we illustrate it in Algo-

rithm 6.8 Using this construction of the policy iteration algorithm, the monotonicity

Algorithm 6 Policy Iteration Algorithm
1: Initialise: a policy π0, say π0(s) = Unif(A) for all s ∈ S.
2: if πt ̸= π∗ then
3: Policy Evaluation: Compute Vπt as the unique solution of Vπt = TπtVπt

4: Policy Improvement: Find a policy πt+1 such that Tπt+1Vπt = T Vπt

5: end if

of the mapping J , and the contraction property of the Bellman operator T , we get

that PI asymptotically converges to the optimal value function.

Theorem 6. If [πt] is the sequence of policies generated by PI, then for all t there

would be a certain improvement in the value function until PI reaches the optimal

value function. This means Vπt+1 ≤ Vπt. The equality holds if and only if Vπt = V ∗.

Additionally, PI asymptotically converges to optimal value function

lim
t→∞
|| Vπt − V ∗ ||∞= 0.

In practice, the policy evaluation is done by some iterative optimisation method,

and policy improvement is also not performed indefinitely. In the simplest format,

policy is evaluated through iterative usage of Bellman’s equation till an error threshold

δ. The policy improvement is carried forward till the corresponding value function

improvement is bounded by an error threshold ϵ. We illustrate the pseudocode in

Algorithm 7.

Following a similar scheme as Theorem 6, it can be proved that the policy obtained

through PI returns a value function which is ϵ+2γδ
1−γ

close to the optimal value function.

8Unif(A) is a uniform distribution over the finite space A such that the probability of choosing
each element is 1

|A| .

2.2 Markov Decision Processes 65

Algorithm 7 (Approximate) Policy Iteration Algorithm
1: Initialise: a policy π0, say π0(s) = Unif(A) for all s ∈ S.
2: if (πt+1 ̸= πt) ∧

(
|| Vπt+1 − Vπt ||∞> ϵ

)
then

3: if || ˆVt+1 − Vπt ||∞> δ then
4: for all s ∈ S do
5: ˆVt+1(s) =

∑
s′∈S
P(s, πt(s), s

′) [R(s, π(s)) + γ Vt(s
′)]

6: end for
7: end if
8: for all s ∈ S do
9: πt+1(s) = argmax

a

∑
s′∈S
P(s, a, s′)

[
R(s, a) + γ ˆVt+1(s

′)
]

10: end for
11: end if

This shows convergence and optimality of PI. PI is often used than VI due to the

feasible policy space is often smaller than the value function space, and in practical

problems, we are more interested to find out the optimal policy than the value function.

Curse of dimensionality and approximate dynamic programming

The dynamic programming methodologies uses full-backup scheme which means that

they store all the history of the MDP till a stage. For each backup, they compute

the value functions for each successor state and action while also use the complete

knowledge of reward and transition functions to update the value function of the

present state. Thus, the memoisation trick proves to be computationally expensive

both in terms of space and time. This phenomenon makes dynamic programming

techniques applicable for medium-sized MDPs with a knowledge of the underlying

reward and transition function model. Though in reality, the number of states |S|

grows exponentially with the number of state variables, i.e., the degrees of freedom of

the state space. Thus, the dynamic programming methodologies become intractable

for large MDPs as even one backup takes too long to be performed. This bottleneck

of reinforcement learning problems is called the curse of dimensionality.

66 A Primer on Reinforcement Learning

Solving curse of dimensionality played a central role in the MDP literature. This

endeavour created the works on approximate dynamic programming [Powell, 2007].

The general idea is to approximate the value function using eclectic methodologies

such as sampling, linear projection, decision trees, Fourier or wavelet basis, and neural

networks [Silver et al., 2016]. The basic idea behind this methodology is discussed in

the final paragraph of Section 2.2.2 which is nothing but approximating the Bellman

operators and the value function in a lower dimensional subspace where computations

are less expensive to carry on. There are two principle families of such approximation

techniques such as the temporal difference methods and functional approximation

methods. We discuss the corresponding methodologies and algorithms in Sections 2.2.5

and 2.2.6 respectively. Generally, construction of such approximation takes extensive

training of the algorithm. The algorithms that perform elaborate training are called

offline algorithms. The algorithms that start from a tabula rasa and learns as it goes

are called online or real-time algorithms. In this thesis, we develop online algorithms

that work in real-time application to maintain the generality and efficiency of the

solutions.

2.2.4 On-Policy and Off-Policy Learning

Before delving into the approximation techniques, we would like to shed light on an-

other central challenge of reinforcement learning: the exploration–exploitation trade-

off [Macready and Wolpert, 1998]. The agent has to learn the optimal policy while

behaving non-optimally by exploring all actions. This dilemma engenders two ap-

proaches for learning action values: on-policy and off-policy [Sutton and Barto, 1998].

In on-policy methods, the agent learns the best policy while using the same to

make decisions. Off-policy methods separate it into two policies. The agent learns

a policy different from what currently dictates her behavior. The policy that she

learns about is called the target policy. The policy that dictates her behaviour of

action choice is called the behaviour policy. Since learning is from experience off the

target policy, these methods are classified as off-policy. The on-policy methods are

2.2 Markov Decision Processes 67

generally simpler than off-policy methods but they learn action values not for the

optimal policy, but for a near-optimal policy that the agent explores. The off-policy

methods learn the optimal policy, and they are considered more powerful and general.

They often cause greater variance and slower convergence. While on-policy methods

learn policies depending on actual behaviour, off-policy methods learn the optimal

policy independent of agents actual behaviour, i.e., the policy actually used during

exploration.

For example, SARSA [Rummery and Niranjan, 1994] updates action values using a

value of the current policys action a in next state s. Thus, it is an on-policy algorithm.

Q-learning [Watkins and Dayan, 1992] updates its action-value using the greedy (or

optimal) action a of next state s but the agent selects an action by ϵ-greedy policy.

Here, the target policy is the greedy policy and the behaviour policy is commonly

the ϵ-greedy policy. Thus, Q-learning is an off-policy algorithm. We discuss these

algorithms in further details in the following section.

2.2.5 Temporal-Difference Algorithm

As mentioned in the final paragraph of Section 2.2.2, temporal difference (TD) methods

try to sequentially estimate the value function and the Bellman operator. They do

not assume any model for the transition function or the reward function but try to

estimate them through sequentially accumulated state, action, and reward data. Thus,

these methods are called model-free reinforcement learning algorithms. They operate

in on-line and fully incremental manner. TD methods are the widely used due to

their computational simplicity, on-line learning approach, and learning directly from

experience as they go.

In TD algorithms, the total learning period is partitioned into episodes. Each

episode consists of a finite horizon or transitions from an initial state to a terminal

state. At each time step t of an episode, the agent takes an action at from the

present state st by following its behaviour policy. This leads the agent to another

state st+1 with reward rt. By accumulating these information, the algorithm updates

68 A Primer on Reinforcement Learning

Dynamic Programming with Full Backup TD Algorithms with Sequential Backup

Iterative Policy Evaluation TD Learning (TD(0))

V (s)← E [R + γV (S ′) | s] V (s)← V (s) + α(R + γV (S ′)− V (s))

Q-Value Iteration Q-Learning

Q(s, a)← E
[
R + γmax

a′∈A
Q(S ′, a′) | s, a

]
Q(s, a)← Q(s, a) + α

(
R + γmax

a′∈A
Q(S ′, a′)−Q(s, a)

)
Q-Policy Iteration SARSA

Q(s, a)← E [R + γQ(S ′, A′) | s, a] Q(s, a)← Q(s, a) + α(R + γQ(S ′, A′)−Q(s, a))

Table 2.3: Comparing dynamic programming and temporal difference algorithms.

the value function of st to V (st)← V (st) + α[rt + γV (st+1)− V (st)]. Here, the value

function is updated using the difference between the current estimate of value function

at st, and the updated value depending on the observed reward and estimated value

of the next state st+1 which is rt + γV (st+1). This quantity is called the TD error

δt ≜ rt + γV (st+1)−V (st). With repetitive update of the value function of each state,

their estimates become more and more accurate. Here, α ∈ (0, 1] is called the step-size

or the learning rate parameter. For α = 1, the TD algorithm becomes myopic and

considers only the one step information. Thus, for convergence of a TD algorithm, α

has to be in (0, 1). Specifically, we see in the proofs that if α is properly reduced over

time, the algorithm converges to optimal value function.

The relation between the full-backup dynamic programming methods and the tem-

poral difference algorithms is shown in Table 2.3.

Q-learning [Watkins and Dayan, 1992]. Q-learning is one of the off-policy TD

algorithms. This method is called Q-learning because it proposed to deal with the value

iterated of state-action pairs than that of the states only. The value functions for state-

action pairs are named as the Q-values Q : S×A→ R. Hence, the algorithm is called

Q-learning. The pseudocode of Q-learning is illustrated in Algorithm 8. This method

learns the Q-values based on transitions from a state-action pair to a state. The actions

2.2 Markov Decision Processes 69

Algorithm 8 Q-learning
1: Initialise: Q(s, a) > 0 for all s ∈ S and a ∈ A, Q(terminalstate, a) = 0 for all

a ∈ A.
2: for Each episode do
3: Choose an initial state s
4: for all Time step t in the episode do
5: if s is not a terminal state then
6: Choose a from the present state using a behaviour policy that uses Q-

values (e.g Boltzmann exploration)
7: Take action a
8: Observe the reward r and new state s′

9: Update the Q-value of (s, a) to Q(s, a) ← (1 − α)Q(s, a) + α[r +
γmaxa Q(s′, a)]

10: s← s′

11: end if
12: end for
13: end for

are chosen using a behaviour policy that induces the exploration–exploitation trade-off.

The behaviour policy can be a purely greedy policy which means that the empirically

best action is greedily selected all the time. The behaviour policy can be a purely

exploratory policy which means that all the actions are chosen uniformly randomly all

the time. Generally, the behaviour policies are no designed to belong to one of these

extremes rather to keep a balance between exploration and exploitation. We discuss

such methods in Section 2.2.8. If the state-action pairs are visited infinitely often and

the step-size α ∈ [0, 1), Q-learning is proved to converge to the optimal Q-values Q∗

with probability 1 [Jaakkola et al., 1994].

Though this method can learn irrespective of the underlying model and the be-

haviour policy used (e.g. ϵ-greedy or Boltzmann exploration), it suffers from slow

convergence and instability. Specifically, the optimal policy does not traverse through

all the state-action pairs or even the MDP is not stationary, which are the basic criteria

for the convergence of Q-learning.

SARSA [Rummery and Niranjan, 1994]. SARSA is proposed as the on-policy

version of Q-learning. This method learns Q-values based on transitions from a state-

70 A Primer on Reinforcement Learning

Algorithm 9 SARSA
1: Initialise: Q(s, a) > 0 for all s ∈ S and a ∈ A, and Q(terminal state, a) = 0 for all

a ∈ A.
2: for Each episode do
3: Choose an initial state s
4: Choose a from the state s using a policy that uses Q-values (e.g Boltzmann

exploration)
5: for all Time step t in the episode do
6: if s is not a terminal state then
7: Take action a
8: Observe the reward r and new state s′

9: Choose a′ from the new state s′ using a policy that uses Q-values (e.g
Boltzmann exploration)

10: Update the Q-value of (s, a) to Q(s, a)← (1−α)Q(s, a)+α[r+γQ(s′, a′)]
11: s← s′

12: a← a′

13: end if
14: end for
15: end for

action pair to another state-action pair. Since it uses a 5-tuple of station-action-reward-

state-action (st, at, rt+1, st+1, at+1) for each update, it is named SARSA. Similar to the

Q-learning, if all state-action pairs are visited infinitely often and α ∈ [0, 1), SARSA

is proved to converge to the optimal Q-values Q∗ with probability 1 [Jaakkola et al.,

1994]. The real-life performance of the algorithm highly depends on the α and the

behaviour policy itself.

TD(λ) algorithm [Sutton, 1988]. The TD algorithm is further generalised to

TD(λ) algorithm with λ ∈ (0, 1). Instead of looking into one-step into future like

TD algorithm, the TD(λ) algorithms try to look into n-steps into future and ideally

till the infinite horizon. They try to predict using some sampling method, such as

Monte Carlo sampling, up to n steps in future. This allows them to predict the n-step

future return at time t as Gn
t ≜ Rt+1 + γRt+2 + . . . + γn−1Rt+n + γnV (St+n). Thus,

the λ return to the infinite-horizon future is defined as Gt(λ) ≜ (1− λ)
∑∞

n=1 λ
n−1Gn

t .

This allows us to define the TD(λ)-error as δt(λ) ≜ Gt(λ)− V (st). This value is now

2.2 Markov Decision Processes 71

used than the standard TD error to update the value function. Additionally, we can

conclude the original TD algorithm to be a special case of TD(λ) algorithm for λ = 0.

From a functional point of view, we can think of this as approximating the Bellman

operator T with a multistep operators T (λ) : R|S| → R|S| such that

(T (λ)V)(s) = (1− λ)
∞∑
n=1

λn−1(T nV)(s) ∀s ∈ S. (2.17)

Here, λ is a predefined parameter in (0, 1) and T n is the n-fold composition of Bellman

operator T with itself for n times. Following this, the mapping T (λ) is used in place of

T in the Bellman optimality equation to determine the optimal value function. This

provides a framework to design model-free, online, incremental method to solve the

MDP problems.

Still there is one more glitch that appears in case of large state-action space, it is

really expensive to compute the exact value of λ return or the TD(λ) error. Beside this

still the dimension of the value function is as large as the state space, and that of the

Q-value function is as large as the state-action space. This takes us to the problem

of approximating the value functions or Q-value functions to a subspace of smaller

dimension that would lead to efficient and fast computation. Following this queue, we

describe the functional approximation methods in the next section, and illustrate the

state-of-the-art algorithms to respond to this issue.

2.2.6 Functional Approximation Algorithms

Classical reinforcement-learning algorithms are mostly applied to small finite and dis-

crete state spaces. They represent the value functions using a tabular form that stores

the state-action values. In small and discrete problems, a lookup table represents all

state-action values of a learning space. However, in real-life applications with large and

continuous state spaces, the size of the table grows exponentially. In such problems, a

major challenge is to represent and store value functions. Thus, the tabular methods

typically used in reinforcement learning are improved using functional approximation

72 A Primer on Reinforcement Learning

algorithms to apply to such large problems. The approximate value function is rep-

resented as a parametrised function of the weight vector Φ ∈ Rd. V̂ (s,Φ) ≈ Vπ(s)

denotes the approximate value of state s given weight vector Φ.

Mean-square error algorithms

In tabular algorithms like value iteration, learning at a certain state yields an update

to its value function, and the values of the other states remain unchanged. An update

is applied only to the current state and it does not affect value functions of the other

states. In approximation algorithms, the number of states is larger than the number

of weights w. Thus, an update at one state affects the estimated values of other states.

Updating one state makes the estimated value more accurate while it turns the values

of other states less correct. Hence, the functional approximation algorithms aim to

balance the errors in different states rather than trying to make zero error of value

functions for all states. Thus, it is necessary to specify a state weight or distribution

p(s) ≥ 0 and
∑

s p(s) = 1 to weigh the error in each state s. The squared difference

between the approximate value V̂ (s,Φ) and the true value Vπ(s) is averaged with

weights spanning over the state space by p. The mean squared value error is denoted

by V E : Rd → R ∪ {0}, such that

V E(Φ) ≜
∑
s∈S

p(s)
[
Vπ(s)− V̂ (s,Φ)

]2
. (2.18)

Gradient-descent algorithms

We consider gradient-descent algorithms to minimise the mean squared error of the

observed data. The gradient-descent algorithms are commonly used for functional

approximation. The approximate value function V̂ (s,Φ) is a differentiable function of

the weight vector Φ for all s ∈ S. We update the weight vector Φ. By the gradient

descent method, the weight vector is changed by in the direction that minimises V E,

i.e. the error between true value function under policy π and the approximate value

2.2 Markov Decision Processes 73

function V̂ (s,Φ)).

Φt+1 ≜ Φt + α[Vπ(st)− V̂ (st,Φt)]∇V̂ (st,Φt). (2.19)

α is a positive parameter called learning rate. ∇V̂ (st,Φt) is the gradient of V̂ with

respect to Φ. In Table 2.4, we enlist the gradients used for different algorithms solving

MDP.

Practically, this gradient is calculated sequentially or in batch by collecting data

points. If the update is done on a single example, the update is called a ‘stochastic

gradient-descent update. When more than one example is used for the update, the

gradient-descent algorithm is called ‘batch.

Feature mapping

In linear functional approximation, the value is computed as a sum of features times

corresponding weights. The computation relies on features. Appropriate design of

features facilitate estimation of values, but if the features are selected improperly,

it may result poor performance. Features are designed to represent the state-action

space and to process the information necessary to learn the environment’s dynam-

ics. Selecting appropriate features, i.e., feature engineering, is a challenge as it needs

domain-specific knowledge. Representational design is based on the system design-

ers knowledge and intuition. Additionally, the linear form has a limitation that it

cannot take into account any interactions between features or even nonlinearity of

features. Linear approximations assume that each feature is linearly independent of

other features. It is not computationally tractable for a designer to choose features

with considering all interaction between features. Research works have addressed this

problem to construct features automatically. These methods are based on errors of the

value function and add features to improve the estimation of value estimation. Incre-

mental Feature Dependency Discovery (iFDD) is an online feature expansion method

that facilitates a linear function approximation. iFDD sequentially creates features

74 A Primer on Reinforcement Learning

that eliminate error of the value function approximation. The process begins with an

initial set of binary features. iFDD identifies all conjunctions of existing features as

potential features and increases the relevance of each potential feature by the absolute

approximation error. If a potential features relevance crosses a threshold, the feature

is added to the pool of ‘good’ features used for future approximation. iFDD also has

a variant for the batch setting. Batch-iFDD is a Matching Pursuit algorithm with

guaranteed rate of error-bound reduction. Like iFDD, Batch-iFDD does not require

a large pool of features at initialization but expands the pool of potential features

incrementally which are the conjunction of previously selected features. Batch-iFDD

runs LSTD algorithm to estimate the TD-error over all samples. Following that, it

adds the most relevant feature to the ‘good’ feature set. Batch-iFDD experimentally

outperforms the previous state-of-the-art Matching Pursuit algorithm. Even though

features are constructed in an online manner and these methods overcome an imper-

fect initial selection of features, it is still crucial to provide good initial features and

designing them intelligently.

2.2.7 Actor, Critic, and Actor-critic Algorithms

Critic-only methods

Critic-only algorithms rely on value function approximation. They aim to learn an

approximate solution to the Bellman equation such that it will return a near-optimal

policy. Critic-only algorithms are indirect as they do not try to optimise directly over

a policy space. Even after constructing a good approximation of the value function,

these algorithms lack reliable guarantees in terms of near-optimality of the final policy.

For example, SARSA [Sutton and Barto, 1998] and Q-learning [Watkins and Dayan,

1992] are critic-only algorithms.

2.2 Markov Decision Processes 75

Actor-only methods

Actor-only algorithms operate on a parametrised family of policies. These algorithms

directly estimate the gradient of the performance with respect to the actor parameters

by simulation. In turn, the parameters of the policies are updated in a direction

of improvement. The major bottleneck of such algorithms is large variance of the

gradient estimators. Furthermore, in the original actor-only methods, a new gradient

of policy is estimated independently of past estimates. Hence, there is no learning in

form of accumulation and consolidation of older information. Though policy gradient

assures optimality almost always due to the properties of gradient descent, it has slow

convergence for large enough policy space and also the learning rate is hard to choose.

For example, REINFORCE [Williams, 1992] is an actor-only algorithm. Now, with the

advent of deep learning algorithms in reinforcement learning, policy gradient methods

got back the popularity. [Montgomery and Levine, 2016], and [Schulman et al., 2015]

proposed different variants of policy gradient methods for deep reinforcement learning

applications.

Actor-critic methods

Actor-critic algorithms combine the strengths of actor-only and critic-only algorithms.

The critic uses an approximation scheme and a simulation to learn a value function.

The actor uses this approximation to update the policy parameters towards perfor-

mance improvement. Such algorithm, as long as they are gradient-based, show desir-

able convergence properties, unlike critic-only algorithms that guarantees convergence

in limited settings. These algorithms deliver faster convergence, due to variance reduc-

tion, in comparison with the actor-only algorithms. [Grondman et al., 2012b] provides

a survey of the actor-critic algorithms. We provide a unified view of these algorithms

in Table 2.4.

76 A Primer on Reinforcement Learning

Algorithm Policy gradient

REINFORCE Eπθ [∇θ log πθ(s, a) Vt]

Q actor-critic Eπθ [∇θ log πθ(s, a) Qπ(s, a)]

Advantage actor-critic Eπθ [∇θ log πθ(s, a) Aπ(s, a)]

TD actor-critic Eπθ [∇θ log πθ(s, a) δ]

TD(λ) actor-critic Eπθ [∇θ log πθ(s, a) δe]

Natural actor-critic GθΦ

Table 2.4: Policy gradients for different Actor-critic algorithms.

2.2.8 Exploration in MDPs

In order to maximise the value function, the agent should choose the action with

highest reward (exploitation), but to discover such action she has to play and learn

the actions not selected before (exploration). Exploration enables to learn about the

reward generation of new actions. It may also increase the greater total reward in the

long run because we would discover better actions. In the optimisation sense, it does

not let the algorithms to be trapped in the local minima by myopically choosing an

action performing better according to the present knowledge. The trade-off between

exploitation and exploration is one of the challenges in reinforcement learning [Sutton

and Barto, 1998]. We have discussed that in multi-armed bandits. Here, we present

some well-known exploration methods for MDPs that we would use in Chapter 3 and

4. We also discuss the present research works to resolve this issue in MDPs and extend

this well-discussed phenomenon from bandits to MDPs. This would later provide us

the scope to extend the work in BelMan to MDPs and its implications.

Learning in MDPs

There are some research works that follows the investigation of regret upper bounds

in stochastic bandits to provide the basic limits of learn-ability in MDPs. Specifi-

cally, if the MDP is unknown, the problem of finding an optimal policy is no longer

2.2 Markov Decision Processes 77

just an optimization problem. The regret is introduced to measure the price of

tackling uncertainty. The regret of a policy π is often defined as the deficit of re-

wards with respect to the expected average reward of an optimal policy. Mathemat-

ically, R(π, T) = V ∗ −
∑T

t=1R(at, st). For a fully connected MDP M with diame-

ter D and bounded reward, the expected reward is upper bounded by E[R(π, T)] ≤

1+ C D |S|
√
2 |A|T log T . For a similar setup of MDP with sufficiently large diame-

ter and sufficiently large horizon to cover the state-action space, the expected reward

is lower bounded by E[R(π, T)] ≥ C
√

D |S| |A|T . The upper and lower bounds are

separated by a factor of at least
√
D |S| log T that allows a large window of variance.

There are recent works to focus on the exploration–exploitation aspect of MDPs that

leads to better theoretical bounds on regret and to more efficient algorithms.

Exploration strategies in MDP

Now, we illustrate three well-known exploration strategies in MDPs, such as ϵ-greedy,

Boltzmann, and Rmax exploration.

ϵ-greedy exploration [Sutton and Barto, 1998]. The ϵ-greedy strategy for MDPs

works as same as that of the bandits. With probability 1 − ϵ, the agent chooses an

action with the highest estimated value, but with small probability ϵ > 0 she chooses

an action uniformly at random. The drawback of ϵ-greedy is to choose equally among

all actions. This may cause a suboptimal exploration and increase the number of

samples required to learn enough about the comparatively better actions. If ϵ = 1, it

becomes a random exploration strategy. If ϵ = 0, it becomes a purely greedy strategy.

Boltzmann exploration [Sutton and Barto, 1998]. An alternative strategy is

Boltzmann exploration. It is also called the softmax exploration. This is a popular

strategy among researchers working on deep reinforcement learning. Boltzmann ex-

ploration gives exponentially more weight to the actions having higher value estimate.

78 A Primer on Reinforcement Learning

An action a at state s is chosen according to the probability

p(a | s) ≜ exp [Q(s, a)/τ]∑
a∈A

exp [Q(s, a)/τ]
.

The parameter τ > 0 is called the temperature. The temperature controls the degree

of exploration. As τ → ∞, the actions are selected uniformly at random. As τ → 0,

the actions are chosen in a completely greedy manner.

Both of these strategies are undirected strategies of exploration [Thrun, 1992].

These strategies do not use any information from the environment to make an informed

exploratory action. They predominantly rely on randomness to do exploration. It is

hard to theoretically determine the exact values of ϵ and τ to perform these meth-

ods optimally. [Singh et al., 2000] tried to propose a theoretical guideline to set the

exploration in MDPs. This guideline is called Greedy in the Limit with Infinite Explo-

ration that suggests every stage should be explored infinitely often while the algorithm

should be asymptotically greedy. This guides us to set an ϵ or τ which is inversely

proportional with time. This still does not guarantee any well-behaving property such

as unique or global solution to these strategies [Littman, 1996]. Thus, researchers

proposed several variants of the Boltzmann exploration and ϵ-greedy, such as mellow-

max [Asadi and Littman, 2016], Boltzmann with montone learning rate [Cesa-Bianchi

et al., 2017] and so on. Though these two strategies are naïve approaches towards the

exploration–exploitation problem in MDPs, but we still use it in large MDPs because

of its low resource requirements compared to the sophisticated alternatives.

Rmax exploration [Brafman and Tennenholtz, 2002]. It is an optimistic value

initialization strategy. Initially, the value of each state-action is assigned as the maxi-

mal discounted value function. This forces the agent to chooses uniformly at random

the initial action to perform, since there is no decision better than another. The tran-

sitions provided by the environment are used to update a model. When a state-action

pair has been observed exactly m times, the current model is used to update the value

2.2 Markov Decision Processes 79

function through value iteration. Here, m > 0 is a predefined parameter. Till then,

observing the same state-action pair again does not modify the model nor the value

function. Thus, exploration does not stop until each reachable state-action pair is cho-

sen m times. Then, the exploration stops and the agent starts to exploit the knowledge

about the explored state-action pairs. Since these methods use information about the

environment, they are called directed strategies of exploration [Thrun, 1992].

2.2.9 Balancing Exploration and Exploitation in MDPs

Instead of constructing two different on-policy and off-policy in an algorithm, re-

searchers began to investigate design of a single algorithm that can unify the optimal

policy finding and exploration–exploitation dilemma. [Schmidhuber, 1991a] quoted,

“The same complex mechanism which is used for ‘normal’ goal-directed learning is

used for implementing curiosity and boredom. There is no need for devising a sepa-

rate system which aims at improving the world model.”

Intrinsically motivated Reinforcement Learning

The first inspiration came from the side of animal learning and psychology [Berlyne,

1966]. This lead to classification of reward obtained by an agent in extrinsic and

intrinsic rewards. Extrinsic reward is the reward obtained from the decision process.

The reward function discussed till now constitute this category. While the intrinsic

reward is something inherent to the agent such as curiosity, exploratory joy, surprise

and so on. The idea is that the agent is motivated by this internal reward, and in

the process of maximizing this reward, they learn a collection of skills. This idea was

transferred to the domain of reinforcement learning by Schmidhuber in [Schmidhuber,

1991b]. [Schmidhuber, 1991b] proposed different kinds of internal reward signals like

adaptive curiosity and adaptive confidence. [Chentanez et al., 2005] approached this

problem from a hierarchical learning perspective. They use both external and internal

rewards to learn a behaviour policy. The extrinsic reward is simultaneously used to

learn multiple temporally extended behaviours. The intrinsic reward is attempting

80 A Primer on Reinforcement Learning

to provide a novelty bonus. The paper assumes that there are certain events in the

world that are salient and which the agent will be motivated to seek. [Oudeyer et al.,

2007; Konidaris and Barto, 2006] implemented these ideas in robotics problems. pro-

posed a novel approach to creativity and exploration using tools of information theory.

This family of works refer to this approach as intrinsically motivated reinforcement

learning [Oudeyer and Kaplan, 2009].

Curiosity-driven Reinforcement Learning

We can simultaneously look into this problem from a learning theoretic point of view. If

an MDP is not completely known, learning is required and optimisation is not sufficient

to find out the optimal policy. If too much exploration is conducted while choosing the

actions, too much information about suboptimal actions will be accumulated. This

would lead to higher sample complexity and a suboptimal policy. If too less exploration

is conducted due to extra attention to optimisation, enough information would not be

accumulated. This would lead to overfitting, and thus, to a suboptimal policy. In

learning theory, this problem is tackled by adding a regularisation term with the loss

function of the original problem. These regularisation terms are commonly exploration

bonuses for states with higher potential of learning [Şimşek and Barto, 2006; Baranes

and Oudeyer, 2009; Bellemare et al., 2016] or with higher uncertainty [Peters et al.,

2010; Filippi et al., 2010; Still and Precup, 2012; Lopes et al., 2012; Neu et al., 2017].

This term is often called curiosity and this series of works are called curiosity-driven

reinforcement learning.

Information-regularised MDPs. In an approach to the regularisation term, re-

searchers constructed terms inspired by information theory. Variants of entropy are

used as the regularisation terms for the classic Bellman equations in order to induce

safe exploration [Fox et al., 2015], and to formulate risk-sensitive policies [Howard and

Matheson, 1972; Ruszczyński, 2010], or to model behaviours of imperfect agents [Ziebart

et al., 2008; Ziebart, 2010]. [Still and Precup, 2012] proposed a Q-learning algorithm

2.2 Markov Decision Processes 81

where a learner should chose a policy that maximises its predictive power that is the

information about the future carried by the most recent state-action pair. Here, we

get a regularisation term similar to the KL-divergence between the state-action dis-

tribution induced by updated policy and the empirical state distribution constructed

from the past data. [Peters et al., 2010] proposed a policy search algorithm in which

new policies are penalized by the relative entropy between the new state distribution

and the empirical state distribution constructed from the past data. [Montgomery

and Levine, 2016; Schulman et al., 2015; O’Donoghue et al., 2016] proposed other vari-

ants of policy search algorithms with entropy-regularised value functions that lead to

safe online exploration in an unknown Markov decision processes. The state-of-the-art

deep reinforcement learning algorithms, such as [Mnih et al., 2016; Silver et al., 2016],

also use a form of such entropy-regularised value functions to balance the exploration–

exploitation trade-off. [Neu et al., 2017] unified these methods using the Lagrangian

duality of entropy-regularised Bellman’s equation, and proved them to be equivalent

to online convex optimization methods [Hazan et al., 2016]. [Neu et al., 2017] also pro-

vided methods to extend these regularised methods to infinite-horizon MDPs while

keeping the stability and optimality criteria intact.

Optimism in the Face of Uncertainty. Optimism in the face of uncertainty

(OFU) covers a family of algorithms as we have already described for multi-armed

bandits. They work on the philosophy that the Q-value of a state-action pair would

not only be its estimated Q-value which is computed from the previous experience but

also another time dependent function that leads to optimistic choices. We can think

of this extra factor as a function or uncertainty involved with a state-action pair. If a

state-action pair has not been visited sufficiently for the agent to be familiar with it,

the uncertainty factor assigns a high value to it such that it is considered good and the

agent will be driven towards it. This ensures that the agent will explore new options in

the state-action space. As time goes on and the state-action pairs are explored enough,

the uncertainty on the current Q-value estimation decreases and the Q-value reflects

82 A Primer on Reinforcement Learning

an informed approximation to the actual value. The first algorithm for MDP using this

idea, Explicit Explore and Exploit (E3), was developed by Kearns and Singh [Kearns

and Singh, 2002]. Later, it was extended by [Brafman and Tennenholtz, 2002] to

design the Rmax algorithm that we have already discussed. These set of methods are

sometimes called optimistic initial value methods [Szita and Lőrincz, 2008].

The other set of OFU methods are directly inspired by the upper confidence bound

algorithms (UCB) in bandits. [Auer and Ortner, 2007] provided an extension of UCB

called UCRL for MDPs that incur logarithmic growth in regret with respect to time

for finite-horizon ergodic MDPs. [Filippi et al., 2010] improved this to propose KL-

UCRL algorithm that extends the KL-UCB algorithm to finite-horizon MDPs. KL-

UCRL also achieves logarithmic regret for finite-horizon ergodic MDPs. [Lattimore

and Hutter, 2014] extended the UCRL approach for infinite-horizon MDPs and pro-

posed UCRL-γ algorithm that achieves nearly-optimal PAC bounds of regret.

Another family of OFU methods are called the model-based interval estimation

methods. Initially, all confidence intervals are wide. They shrink gradually towards

the true Q- values. IEQL+ [Meuleau and Bourgine, 1999] algorithm directly estimates

confidence intervals of Q -values. [Wiering and Schmidhuber, 1998] compute confi-

dence intervals for the transition and reward functions to obtain the Q-value bounds

indirectly. [Strehl et al., 2009] improved this method and prove a polynomial-time

PAC convergence bound.

The problem with OFU methods is when the size of state-action pair gets too

large, its hard to store all the information for successful exploration. Furthermore,

this way of exploration seeks to explore the entire space of state-action pair. This

might be computationally expensive, useless, and highly dependent on the initial es-

timate. Osband and Van Roy illustrated in [Osband and Van Roy, 2017] that “In

principal, there should be optimistic approaches that fare well relative to randomized

approaches, but that would require intractable computation. Optimistic approaches

that have been proposed in the literature sacrifice statistical efficiency for the sake

2.2 Markov Decision Processes 83

of computational efficiency. Randomized approaches, on the other hand, may enable

simultaneous statistical and computational efficiency.”

Bayesian Exploration Methods. The other set of methods are Bayesian explo-

ration methods. Here, the MDP is assumed to be drawn form a parametrised prior

distribution B0. The distributions are further updated to Bt using the prior distribu-

tion B0 and the collected history. [Strens, 2000] proposed a framework to compute the

policy that minimises the uncertainty of the parameters of the distributions. The draw-

back is the exact computation of the optimal policy is infeasible under this Bayesian

formalism and the optimal policies are computationally demanding even under simpli-

fying assumptions. [Bellemare et al., 2017] recently proposed an alternative formula-

tion of this distributional approach that seem to be compatible with the present deep

reinforcement learning and experimentally proved to generate optimal algorithms for

different problems [Dabney et al., 2017]. [Osband et al., 2013] propose a posterior

sampling algorithm for MDPs which is an extension of the information sampling algo-

rithm for bandits, while [Gopalan and Mannor, 2015] extended Thompson sampling

to solve the MDP problems. In [Osband and Van Roy, 2016], the authors illustrate

the posterior sampling methods provide better solutions for general MDPs than the

OFU methods. Till now, these methods are theoretically analysed and operated on

comparatively smaller MDPs where the memoisation is not a central issue for perfor-

mance. Extension of these methods to large scale MDPs is still an open and active

research problem.

Linear MDPs

Interestingly, the linear MDP [Todorov, 2007; Dvijotham and Todorov, 2012] approach

came from the optimal control theory, specifically differential dynamic programming.

Though the motivation behind the approach is very different, the results obtained from

it is very similar to that of the entropy-regularised MDPs [Malek et al., 2014]. Linear

MDP addresses the problem of finding closed-form solutions to reinforcement learning

84 A Primer on Reinforcement Learning

problems, by reformulating the optimization function. The system is assumed to have

a ‘passive’ or ‘base’ dynamics induced by a default policy. The optimization criterion

includes both the value function and a regularisation term. The regularisation term is

the KL-divergence between the state distributions induced by the updated policy and

the default policy. This term penalises any deviation form this base dynamics. Such

a regularisation leads to the Bellman optimality equations characterizing the optimal

policy that take the form of a system of linear equations. Linear MDPs generalise

the existing duality between optimal control and Bayesian inference [Todorov, 2008].

The belief propagation algorithm used in dynamic probabilistic graphical models is

equivalent to the power iteration method in linear MDPs [Kappen et al., 2012]. This

duality shows that the continuous formulation of linear MDP in both space and time

lead to path integral control proposed by [Kappen, 2005]. [Neu and Gómez, 2017]

proved its connection with online convex optimisation problem and has shown that

the follow-the-leader approach for stochastic linear bandits lead to regret of order

log2 T for the linear MDP.

This body of research opens up an interesting direction to investigate the con-

nection between linear MDPs, entropy-regularised MDPs, online convex optimisation,

and bandit algorithms. In the concluding chapter, we would discuss how our informa-

tion geometric approach of BelMan indicates towards a path of bridging these lines of

work.

Part I

A Functional Approximation

Approach to Learning with Unknown

Reward and Unknown Transition

Function

Chapter 3

Learning with Unknown Reward:

Automated Database Tuning

If people are good only because they fear punishment, and hope for reward, then we are

a sorry lot indeed.

— Albert Einstein1

In this chapter, we propose an algorithm design methodology for Markov decision

processes without a known reward function, and develop it in the context of the adap-

tive performance tuning of database applications. The objective is to devise, and to

validate a tuning strategy that does not need prior knowledge of a cost model. Instead,

the cost model is learned through a reinforcement learning algorithm. We instantiate

our approach to the use case of adaptive index tuning. We model the execution of

queries and updates as a Markov decision process whose states are database config-

urations, actions are configuration changes, and rewards are functions of the cost of

configuration change and query and update evaluation. While solving the Markov

decision process (MDP), we encounter two important challenges, which are ‘unavail-

ability of a cost model’ and ‘size of the state space’. In order to address the former, we

sequentially learn the cost model, in a principled manner. In the initial endeavour, we
1Quoted in “All the Questions You Ever Wanted to Ask American Atheists” by Madalyn Murray

O’Hair, 1982.

88 Learning with Unknown Reward: Automated Database Tuning

design an algorithm, COREIL that adapts a least square estimator and also facilitates

the convergence of the MDP solving algorithm. Following that, we improve COREIL

using regularisation to avoid overfitting, in order to propose rCOREIL that achieves a

logarithmic regret in estimation. In order to address the large size of the state space,

we devise strategies to prune the state space, both in the general case and for the use

case of index tuning. We empirically and comparatively evaluate our approach on a

standard OLTP dataset. We show that the proposed algorithms are competitive with

state-of-the-art adaptive index tuning, which is dependent on a cost model.

3.1 Introduction

In a recent SIGMOD blog entry [Lohman, 2014], Guy Lohman asked “Is query opti-

mization a solved problem?”. He argued that current query optimisers and their cost

models can be critically wrong. Instead of relying on wrong cost models, [Stillger

et al., 2001] have proposed LEO-DB2, a learning optimiser. Enhanced performance of

LEO-DB2 with respect to the classical query optimisers strengthens the claim of dis-

crepancies introduced by the predetermined cost models. This is our perspective when

we choose automated performance tuning of database applications as an MDP with

unknown reward function. By performance tuning, we mean selection of an optimal

physical database configuration in view of the workload. In general, configurations

differ in the indexes, materialised views, partitions, replicas, and other parameters.

While most of the existing tuning systems and literature [Bruno and Chaudhuri, 2007a;

Schnaitter et al., 2007; Schnaitter and Polyzotis, 2012] rely on a predefined cost model,

the objective of this work is to validate the opportunity for a tuning strategy to do

without.

In order to achieve this objective, we propose a formulation of automated database

tuning as a reinforcement learning problem (see Section 3.3). The execution of queries

and updates is modelled as an MDP whose states are database configurations, whose

actions are configuration changes, and whose rewards are functions of the cost of

3.1 Introduction 89

configuration change and query/update evaluation. This formulation does not rely on

a pre-existing cost model but learns it.

We present a solution to the MDP formulation that tackles the curse of dimen-

sionality (Section 3.4). In order to resolve this issue, we reduce the search space by

exploiting the quasi-metric properties of the configuration change cost, and we ap-

proximate the cumulative cost with a linear model. We formally prove that assuming

such a linear approximation is sound as our approach converges to an optimal policy

even after estimating the cost. In Section 3.5, we tackle the problem of overfitting. In

order to avoid and the corresponding instability, we add a regularisation term in the

objective function while learning the cost model. We formally derive a bound on the

total regret of the regularised estimation, that is logarithmic in the time step (i.e., in

the size of the workload). We instantiate our approach to the use case of index tuning

(Section 3.6), developing in particular optimisations specific to this use case to reduce

the search space. Approaches developed in Sections 3.4 and 3.5 provide us with two

algorithms COREIL and rCOREIL to solve the index tuning problem.

We use this case to demonstrate the validity of a cost-model oblivious database

tuning with reinforcement learning, through experimental evaluation on a TPC-C

workload [Raab, 1993] (see Section 3.7). We compare the performance with the Work

Function Index Tuning (WFIT) algorithm [Schnaitter and Polyzotis, 2012]. Results

show that our approach is competitive yet does not need knowledge of a cost model.

Comparison of WFIT with COREIL establishes reinforcement learning as an ef-

fective approach to automatise the index tuning problem. Performance evaluation

of rCOREIL with respect to COREIL demonstrates that the learning performance is

significantly enhanced by a crisp estimation of the cost model. The theoretical and ex-

perimental results along with the algorithm design methodology shows us a functional

approximation approach to develop algorithm to solve MDPs with unknown reward

function.

90 Learning with Unknown Reward: Automated Database Tuning

3.2 Literature Review and Contextualisation

In this section, we introduce a brief review of related works and highlight the contribu-

tions of our proposed approach for online automated database configuration. First, we

discuss existing work related to automated database configuration. Later, we review

how learning algorithms is exploited in the field of data management.

3.2.1 Automated Database Configuration

There is a large body of work in the field of automated physical database design.

Table 3.1 provides a brief classification of these related works in terms of various

dimensions. The classification considers whether the algorithm is online or offline.

We also consider the physical design aspects, such as index selection [Agrawal et al.,

2000; Zilio et al., 2004b], vertical partitioning [Lightstone and Bhattacharjee, 2004;

Rasin and Zdonik, 2013], or mixed design together with horizontal partitioning and

replication [Bruno and Nehme, 2008; Bruno and Chaudhuri, 2008].

Offline Algorithms

Traditionally, automated database configuration is conducted in an offline manner.

In this approach, database administrators (DBAs) identify representative workloads

from the trace of historical database queries and updates. This task can be done

either manually or with the help of sophisticated tools provided by database vendors.

Based on these representative workloads, new database configurations are realised. For

example, new beneficial indexes are created [Agrawal et al., 2000; Zilio et al., 2004b;

LeFevre et al., 2014], smart vertical partitioning is done for reducing I/O costs [Rasin

and Zdonik, 2013; Hammer and Niamir, 1979; Lightstone and Bhattacharjee, 2004], or

possibly a combination of index selection, partitioning and replication for both stand-

alone databases [Papadomanolakis et al., 2007a; Bruno and Nehme, 2008; Bruno and

Chaudhuri, 2008; Zilio et al., 2004a] and parallel databases [Agrawal et al., 2004; Rao

et al., 2002; Nehme and Bruno, 2011; Pavlo et al., 2012].

Index selection Vertical partitioning Mixed (index+part.+repl.)

Offline [Agrawal et al., 2000; Zilio et al., 2004b] [Rasin and Zdonik, 2013] Stand-alone databases :
[LeFevre et al., 2014] [Lightstone and Bhattacharjee, 2004] [Bruno and Nehme, 2008; Bruno and Chaudhuri, 2008]

[Hammer and Niamir, 1979] [Papadomanolakis et al., 2007a; Zilio et al., 2004a]

Parallel databases :
[Agrawal et al., 2004; Rao et al., 2002]

[Nehme and Bruno, 2011; Pavlo et al., 2012]

Online [Schnaitter and Polyzotis, 2012; Schnaitter et al., 2007] [Li and Gruenwald, 2013]
[Sattler et al., 2003; Luhring et al., 2007] [Rösch et al., 2012] COREIL: [Basu et al., 2015a,b]

[Bruno and Chaudhuri, 2007a, 2010, 2007b] [Alagiannis et al., 2014] rCOREIL: [Basu et al., 2016]

Table 3.1: Classifying automated database design literature.

92 Learning with Unknown Reward: Automated Database Tuning

Online Algorithms

The complication and agility of database applications is growing with the introduction

of modern database environments such as database as a service. Though the aforemen-

tioned manual task of database administrators can be done in an offline fashion, it has

become even more tedious, problematic, and prone to errors. Therefore, it is desirable

to design automated solutions to database design and tuning problems. Specifically,

there is a need of solutions which are able to continuously monitor changes in the

workload, and to react in real-time by adapting the database configuration to the

new workload. In fact, the problem of online index selection is studied in [Schnaitter

and Polyzotis, 2012; Bruno and Chaudhuri, 2007a; Malik et al., 2009; Luhring et al.,

2007; Schnaitter et al., 2007; Bruno and Chaudhuri, 2010, 2007b; Sattler et al., 2003;

Schnaitter et al., 2006]. Generally, these techniques adopt the same working model in

which the system continuously tracks the incoming queries for identifying candidate

indexes, profiles the benefit of the indexes, and realises the ones that are most useful

for query execution. Specifically, an online approach to database tuning, such as index

selection, was proposed in [Bruno and Chaudhuri, 2007a]. The algorithm progressively

chooses the optimal plan at each step by using a case-by-case analysis on the potential

benefits that we may lose by not implementing relevant candidate indexes. A new

database configuration is selected only when a physical change, such as creation or

deletion of an index, would be helpful in improving system performance. Similarly,

a framework for continuous online physical tuning was proposed in [Schnaitter et al.,

2007]. [Schnaitter et al., 2007] creates and deletes effective indexes in response to the

shifting workload. This framework is able to self-regulate its performance by providing

explicit mechanism for controlling the overhead by profiling the benefit of indexes.

One of the key components of an index selection algorithm is profiling indexes’

benefit. These algorithms evaluate the cost of executing a query workload with the

new indexes as well as the cost of configuration change like creation and deletion of

indexes. In order to realise these functionalities, most of the online algorithms exploit

the what-if optimiser [Chaudhuri and Narasayya, 1998] that returns such estimated

3.2 Literature Review and Contextualisation 93

costs. For example, the what-if optimiser of DB2 was used in [Schnaitter and Polyzotis,

2012]. The what-if optimiser of SQL Server is leveraged in [Bruno and Chaudhuri,

2007a]. The classical optimiser of PostgreSQL is extended to support what-if analysis

in [Schnaitter et al., 2007]. However, it is well-known that invoking the optimiser

for estimating the cost of each query is computationally expensive [Papadomanolakis

et al., 2007b]. In this work, we propose an algorithm that is free from the what-if

optimiser and also able to adaptively provide a better database configuration in the

end. We validate these properties in the experimental results.

Recently column-oriented databases have attracted a great deal of attention in

both academia and industry. This development has invoked online algorithms for au-

tomated vertical partitioning which are critical for this emerging breed of database

systems [Rösch et al., 2012; Alagiannis et al., 2014; Li and Gruenwald, 2013]. Specifi-

cally, a storage advisor for SAP, called HANA in-memory database system, is proposed

in [Rösch et al., 2012]. It takes advantage of both columnar and row-oriented storage

layouts. At the core of this storage advisor, there is a cost model that estimates and

compares query execution times for different stores. Similarly, a continuous layout

adaptation is introduced in [Alagiannis et al., 2014]. [Alagiannis et al., 2014] supports

multiple storage layouts in a single engine which is able to adapt to changing data

access patterns. This adaptive store monitors the access patterns of incoming queries

through a dynamic window of N queries, and devises cost models for evaluating the

workload and layout transformation cost. Furthermore, in order to efficiently find a

near optimal data layout for a given workload, the hybrid store exploits proper heuris-

tic techniques to prune the immense search space of alternative data layouts. On the

contrary, the algorithm introduced in [Li and Gruenwald, 2013] uses data mining tech-

niques for vertical partitioning in database systems. The technique is based on closed

item sets mining from a query set and system statistic information at run-time. Hence

it is able to automatically detect changing workloads and to perform a re-partitioning

action without the need of interaction with DBAs.

94 Learning with Unknown Reward: Automated Database Tuning

Context of Our Contributions

Compared to the above state-of-the-art in online automated database design, our pro-

posed approach is more general and can be applied for various problems such as index

selection, horizontal/vertical partitioning design, and a combination with replication

as well. As our proposed online algorithm is able to learn the estimated cost of queries

sequentially, it does not need the what-if optimiser for estimating query cost. There-

fore, our proposed algorithm is applicable to a wider range of database management

systems which may not implement what-if-optimiser or expose its interface to the

users.

3.2.2 Reinforcement Learning in Data Management

As we describe in Chapter 2, reinforcement learning [Sutton and Barto, 1998] is about

determining the next best thing to do in order to reach a goal while the knowledge

of the environment evolves continuously. This goal is represented as maximisation

of the cumulative reward obtained through a sequence of actions. Here each action

leads to an individual reward and to a new state, usually in a stochastic manner.

We mentioned in Chapter 2 that Markov decision process (MDP) [Puterman, 2009]

is a model of reinforcement learning problem. In this model each action leads to a

new state and a given reward according to a probability distribution that must be

learned. This implies an inherent trade-off between exploration, i.e. trying out new

actions leading to new states and to potentially high rewards, and exploitation, i.e.

performing actions already known to yield high rewards [Audibert et al., 2009]. Despite

of these flexibilities under uncertain environments use of MDP in data management

applications has been limited so far, for the following reasons,

(i) The state space is large as it represents all possible partial knowledge of the world.

This is mentioned as the curse of dimensionality.

(ii) States have complex structures due to the data, or, in our case, the indexes.

[Benedikt et al., 2006] uses MDP for modelling the data cleaning tasks. The authors

3.3 Automated Database Tuning as a Learning Problem 95

discuss about the absence of a straightforward technique to do that because of the

large state space. Other common issues in using MDP for database applications are –

(i) Rewards can be delayed, i.e. obtained after a long sequence of state transitions.

For example, we observe such issues in focused Web crawling [Gouriten et al., 2014].

Still a variant of multi-armed bandits have been successfully applied [Gouriten et al.,

2014] in this problem.

(ii) Due to data uncertainty, there may be only partial observability of the current

state. This leads a partially observable Markov decision process [White, 1993].

Fortunately, last two problems are hardly prevalent in the online tuning problem

discussed here. This let us formulate online tuning problem as an infinite-horizon

MDP and to emphasise into the problems of exploration-exploitation, and curse of

dimensionality.

3.3 Automated Database Tuning as a Learning Prob-

lem

In this section, we model the process of executing queries and changing configurations

as a Markov decision process. We formalise the problem of adaptive performance

tuning as a stochastic optimisation problem. A policy is a selection strategy of the

next configuration given a current configuration and query. The problem is to find a

policy that maximises the expected performance. For the sake of simplicity, we focus

on response time as our performance metric. We define an infinite horizon problem in

which the cost of future events is amortised by a discount factor.

Let R be a logical database schema. We can consider R to be the set of its

possible database instances. Let S be the set of physical database configurations of

the instances of R. For a given database instance, configurations may differ in the

indexes, materialised views, partitions, replicas, and other parameters and they are

logically equivalent if they yield the same results for all queries and updates.

96 Learning with Unknown Reward: Automated Database Tuning

Problem parameters
R ≜ {r} A Database schema

r Database instances of R
s Physical configuration of r

S ≜ {s} Set of physical database configurations
δ : S × S → R≥0 Cost function of changing configuration

t ∈ N Time step
qt Query at time t

Q ≜ [qt]t≥0 Workload which is an ordered set of queries
T Number of queries in the workload

Design variables
cost : S ×Q→ R≥0 Cost function for executing a query at a configuration
C : S × S ×Q→ R≥0 Per-stage cost of configuration change and query execution

γ ∈ (0, 1) Discount factor
ϕ(s) Feature vector of V π(s)

η(s, q) Feature vector of cost(s, q)
n Dimension of feature vectors

Decision variables
π : S ×Q→ S Policy
U ≜ {π} Policy space

V π : S → R≥0 Cost-to-go function

Table 3.2: Notations used in Chapter 3.

The cost of changing configuration from s ∈ S to s′ ∈ S is denoted by the function

δ : S × S → R≥0. The function δ(s, s′) has the following properties:

• Non-negativity: for all s, s′ ∈ S, δ(s, s′) ≥ 0.

• Identity of indiscernible: for all s, s′ ∈ S, δ(s, s′) = 0 if and only if s = s′.

• Triangle inequality: for all s, s′, s′′ ∈ S, δ(s, s′′) ≤ δ(s, s′) + δ(s′, s′′).

The first and second property imply that there is no free configuration change. Whereas

the triangle inequality means that it is always cheaper to do a direct configuration

change than going through an intermediate state. The function δ is not necessarily

symmetric. This means for all s, s′ ∈ S the equality δ(s, s′) = δ(s′, s) may not hold

because the cost of changing configuration from s to s′ and the reverse may not be

the same. Therefore, δ is a quasi-metric on S.

3.3 Automated Database Tuning as a Learning Problem 97

Let Q be the workload which is defined as a sequential schedule of queries and

updates. For brevity, we simply refer both of them as queries. Query qt ∈ Q is the tth

query in the schedule which is executed at time t. We model a query qt as a random

variable. The generating distribution is not known a priori, and qt is only observable

at time t. The cost of executing query q ∈ Q on configuration s ∈ S is denoted by the

function cost : S ×Q→ R≥0. Though we are aware of the aforementioned properties

of δ and cost, the exact functional form of them are not known in this application. For

the sake of simplicity and without significant loss of generality, we assume the issue of

concurrency control [Bhargava, 1999] is orthogonal to the current presentation.

Let s0 ∈ S be the initial configuration of the database. At any time t the configu-

ration changes from st−1 to st with the following events in order:

1. Arrival of query qt. We call q̂t the observation of qt2.

2. Choice of the configuration st ∈ S based on q̂1, q̂2, . . . , q̂t ∈ Q and st−1 ∈ S.

3. Change of configuration from st−1 to st. If no configuration change occurs at

time t, then st = st−1.

4. Execution of observed query q̂t under the configuration st.

The cost of configuration change and query execution at time t, referred as the

per-stage cost, is the sum of the cost of configuration change, and the cost of query

execution.

C(st−1, st, q̂t) ≜ δ(st−1, st) + cost(st, q̂t). (3.1)

We phrase the stochastic decision process of choosing the configuration changes

as an MDP [Puterman, 2009], where states are database configurations, actions are

configuration changes, and costs (negative rewards) are the per-stage cost of the action.

In this case, transitions from one state to another on an action are deterministic. In
2qt is a random variable that can possibly be evaluated as one of the logical statements. The

observation q̂t is an instantiation of the random variable qt in form of a particular instruction or
logical statement. Generally, capital letters are used for random variables in this thesis. qt is an
exception of notation format.

98 Learning with Unknown Reward: Automated Database Tuning

1ts  t
s

tqQuery

DB configuration
Updated

DB configuration

 1,t ts s 

 cost ,t ts q

Query execution

   1 1(, ,) , cost ,t t t t t t tC s s q s s s q  Per-stage cost

Configuration update

Figure 3.1: The events involved in a step of database transition.

contrast to the general framework of MDPs, update to the new configuration is certain

when a configuration change is decided. On the other hand, costs are both stochastic

and uncertain. The stochastic property is caused due to the dependence on the query,

which is a random variable. The cost of a query is uncertain as it is is not known in

advance, specifically in the absence of a reliable cost model. This transition is shown

in Figure 3.1.

Ideally, the problem would be to find the sequence of configurations that minimises

the sum of future per-stage costs. Assuming an infinite horizon [Sutton and Barto,

1998] makes the sum of future per-stage costs infinite. One practical way to circum-

vent this problem is to introduce a discount factor γ that gives more importance to

immediate costs than to costs distant in the future, and to try and minimise a cu-

mulative cost defined with γ. Under Markov assumption, a sequence of configuration

changes is determined by a Markovian policy π : S×Q→ S, which, given the current

configuration st−1 and a query q̂t, returns a configuration st ≜ π(st−1, q̂t).

3.3 Automated Database Tuning as a Learning Problem 99

Let Π be the set of all feasible Markovian policies. Our objective is to find a policy

that minimises the expectation of cumulative sum of per-stage cost.

argmin
π∈Π

E

[
∞∑
t=1

γt−1 (δ(st−1, st) + cost(st, qt))

]
such that, st = π(st−1, qt), ∀t ∈ N.

(P1)

We define the discounted utility function of a policy π as the discounted sum of costs

obtained by following it. In this chapter, we call it the cost-to-go function to dif-

ferentiate it from the classical value function that deals with rewards than the costs

(Section 2.2). The cost-to-go function V π of following policy π is defined as

V π(s) ≜E

[
∞∑
t=1

γt−1 (δ(st−1, st) + cost(st, qt))

]
such that, π ∈ Π, s0 = s,

st = π(st−1, cost(qt)), ∀t ∈ N.

The value of V π(s) represents the expected cost following policy π from current time

to the future with the current configuration being s. The problem (P1) is equivalent

to:

argmin V π(s0)

such that, π ∈ U.

Given a cost-to-go function V , an policy π can be recovered by solving the following

Bellman equation at each step t.

πt = argmin
s∈S

[δ(st, s) + cost(s, qt) + γV (s)] . (3.2)

100 Learning with Unknown Reward: Automated Database Tuning

Let π∗ be the optimal policy of P1 and V ∗ be the cost-to-go function following π∗.

This implies the corresponding Bellman’s equation:

V ∗(s) = E
[
min
s′∈S

(δ(s, s′) + cost(s′, q) + γV ∗(s′))

]
. (3.3)

This indicates that V ∗(s) is an expectation of the optimised cost summation of chang-

ing configuration, query execution under the new configuration, and the discounted

optimal cost-to-go value for the new configuration.

3.4 Automated Database Tuning with Cost-Model

Learning

3.4.1 Algorithmic Framework

In the MDP framework, we generally provide the algorithm a cost function that in-

dicates whether the learning agent is doing well or poorly. It will be the learning

algorithm’s job to figure out how to choose sequence of configurations over time that

minimises the cost. We begin the design of our algorithm with the policy iteration

algorithm as described in Section 2.2. For Sections 3.4.1, 3.4.2 and 3.4.3, we assume

the cost functions are known or at least accessible for evaluation. In Section 3.4.4,

we introduce the scheme of cost model learning on top of the algorithmic framework

developed till Section 3.4.3.

The policy iteration framework iteratively tries and updates the policy and its esti-

mated value function using Bellman Equations (3.2) and (3.3). Let V̄ be an estimation

of cost-to-go function. If the probability distribution of qt was known in advance, the

policy iteration algorithm would operate as per Algorithm 10. We begin with an

arbitrary policy and iteratively improve it using the current estimate of cost–to–go

function. The algorithm terminates when there is no change in the policy. The proof

of optimality and convergence of Algorithm 10 is described in [Powell, 2007]. We also

3.4 Automated Database Tuning with Cost-Model Learning 101

Algorithm 10 Policy iteration algorithm [Sutton and Barto, 1998]

1: Initialisation an arbitrary policy π0.
2: Set t = 1.
3: for all s ∈ S do
4:

V̄ t(s) = min
s∈S

(
δ(st, s) + E [cost(s, qt)] + γV̄ t−1(s)

)
(3.4)

5: end for
6: πt ← applying (3.2) on V̄ t.
7: if πt = πt−1 then
8: return πt

9: else
10: t← t+ 1.
11: Go to line 3.
12: end if

discuss the implications of this algorithm and its relation with Bellman operators in

Section 2.2.

Unfortunately, Algorithm 10 suffers from the curse of dimensionality [Powell, 2007].

First, solving (3.4) for every s ∈ S (line 3 of Algorithm 10) is intractable when the

set S is combinatorial (discussed in Section 3.6.1). Therefore it might be impractical

to solve (3.4) for every s ∈ S. Second, if the size of Q is large, it would become

impractical to compute the expectation of the query execution E [cost(s′, q)] in (3.4).

Moreover, the probability distribution of queries is not known a priori, which makes

the expectation not explicitly computable. Third, while solving (3.4), we need to

enumerate the cost-to-go function for all possible s ∈ S. This leads to an intractable

search space for solutions.

The basic framework of our algorithm is shown in Algorithm 11. In line 5 of Algo-

rithm 11, we overcome the issues of the curse of dimensionality by amalgamating the

original problem and approximating the cost-to-go function. We map a configuration

to a vector of associated features. This is called a feature mapping. It has to be

designed succinctly and in accordance with the application. Let ϕ represent a feature

mapping and V be the cost-to-go function. We design a linear projection with the

102 Learning with Unknown Reward: Automated Database Tuning

Algorithm 11 Algorithmic Framework
1: Initialisation an arbitrary policy π.
2: for dot ≥ 1
3: Observe the query q̂t and the current configuration st−1 .
4: Estimate δ and cost from the previous observations as δt and costt.
5: V̂t ← mins∈S (δt(st−1, s) + costt(s, q̂t) + γVt−1(s))
6: V̄t ← using V̂t and feature mapping.
7: πt ← applying (3.2) on V̄t.
8: end for

feature mapping such that V (s) ≈ θTϕ(s) for some vector θ. We update θ and π

iteratively and make decisions based on the approximation. At time t, the state st

minimises the right-hand side of line 5 of Algorithm 11. We update the parameter θ,

and hence, the approximation V̄ by using the observation V̂t. By using the feature

mapping, when the value of V̄ for one configuration is updated, the values of V̄ for

the other configurations are also updated automatically. This solves the first curse of

dimensionality. Also by using this method, computing the expectation of query execu-

tion becomes unnecessary and thus we can get rid of the second curse of dimensionality.

In line 5 of Algorithm 11, the size of the searching set needs to be reduced. This

will be discussed in Section 3.4.2. The function δ and the function cost need to be

evaluated. We assume the availability of a cost model, to the degree of sophistication.

Since it is unknown to the algorithm, it learns the cost function through sequential

estimation. Quality of learning will depend on the cost model and accuracy.

3.4.2 Reducing the Search Space

In order to reduce the size of the search space in (5), we filter the configurations that

satisfy certain necessary conditions which is derived from an optimal policy.

Lemma 2. Let s ∈ S be a database configuration and q̂ ∈ Q be any observed query.

Let π∗ ∈ Π be an optimal policy. If s′ is the state reached from state s through the

3.4 Automated Database Tuning with Cost-Model Learning 103

optimal policy i.e. π∗(s, q̂) = s′, then

cost(s, q̂)− cost(s′, q̂) ≥ 0.

Furthermore, if the cost of a configuration update δ(s, s′) > 0 ,

cost(s, q̂)− cost(s′, q̂) > 0.

Proof. Since π∗(s, q̂) = s′, we have

δ(s, s′) + cost(s′, q̂) + γV (s′) ≤ cost(s, q̂) + γV (s)

= cost(s, q̂) + γE
[
min
s′′

(δ(s, s′′) + cost(s′′, q̂) + γV (s′′))
]

≤ cost(s, q̂) + γδ(s, s′) + γV (s′).

The first inequality holds as δ(s, s′) > 0 for all s ̸= s′ ∈ S. The second inequality is

derived from the triangle inequality δ(s, s′′) ≤ δ(s, s′) + δ(s′, s′′) for all s, s′, s′′ ∈ S.

This infers that cost(s, q̂)− cost(s′, q̂) ≥ (1− γ)δ(s, s′) ≥ 0. The assertion follows.

By Lemma 2, if π∗ is an optimal policy and s′ = π∗(s, q̂) ̸= s, then cost(s, q̂) >

cost(s′, q̂). This implies that if a policy is optimal, it would update to such a database

configuration where the cost of executing the query is less than or equal to the cost

of executing it at the present configuration. Thus, while we are evaluating the value

function of a policy, it is not necessary to evaluate it for the configurations that have

higher query execution cost than the present configuration. This allows us to define a

narrower state space Ss,q̂ to search for such that

Ss,q̂ ≜ {s′ ∈ S | cost(s, q̂) > cost(s′, q̂)}.

Hence at time t, it is sufficient solve the modified Bellman equation

V̂t = min
s∈Sst−1,q̂t

(
δ(st−1) + cost(s, q̂t) + γV̄t−1(s)

)
(3.5)

104 Learning with Unknown Reward: Automated Database Tuning

instead of (5). This smaller search space reduces the computational cost per-step which

is important to solve the real-time problem. We devise an algorithm that converges

to an optimal policy while searching in the reduced set Sst−1,q̂t for all t.

3.4.3 Reducing the Dimensionality in Policy Iteration

Narrowing down the search space is not sufficient to design an online MDP solver

that works fast enough for a real-life database tuning scenario. Thus, we follow the

sequence of tricks described in the Section 2.2. We take an actor-critic approach

to solve the problem. As we discussed in Section 2.2.7, the actor-only and critic-

only methods have their own pros and cons. Critic-only methods approximates the

value function and tries to solve an approximate Bellman equation using this. This

method is helpful to compute the value function fast. Specifically, the TD algorithms

provide an approximate dynamic programming framework to perform this efficiently.

Since we are facing the large state space in this problem, TD algorithm alone does

not suffice. Thus, we use functional approximation technique of feature mapping and

solving Least Square Temporal Difference (LSTD) [Bradtke and Barto, 1996] algorithm

using such a map to evaluate the value functions (Section 2.2.6). Actor-only methods

use the policy iteration technique with a set of parametrised policies. As we follow

the policy iteration methodology in our framework, as described in Algorithm 11, this

functionality of actor-only methods is an integral part of our algorithms. Thus, we use

the actor-only style to update the evaluated policy at each step. In order to tackle the

curse of dimensionality, we also use the functional approximation technique of Least

Square Policy Iteration (LSPI)[Lagoudakis and Parr, 2003a] here. Merging these two

methods in a single actor-critic algorithm provides us the strengths of both paradigms

which are stability and fast convergence respectively. Additionally, we develop the

online version of this actor-critic method such that it can work in a sequential manner

for the real-time application.

Hence, our algorithm evaluates the cost-to-go function of a policy by projecting it

into a feature space and approximating it in that space as well as possible. Following

3.4 Automated Database Tuning with Cost-Model Learning 105

that, the cost-to-go function is sent to evaluate the policy and its next possible update

using the Bellman equation that searches in the restricted state space Sst−1,q̂t at time

t. This step provides us a policy update. Till now, we are assuming the cost function

is known and it is evaluated accurately at each step. We would add the extra layer of

computation for unknown reward in the next section.

Cost-to-go function evaluation. In order to perform the functional approxima-

tion in a lower dimensional subspace, we project the value function for a given policy

and observed for a present state in a feature space. Though a feature space has to

maintain some properties, such as linearity and existence of an orthogonal basis, con-

struction of the feature space is dependent on the application. We would discuss about

the design of such a feature space in Section 3.6 in case of index tuning. For now, let us

assume that we have such a feature space with basis functions ϕ(s) ∈ Rd for all s ∈ S

and a dimension d ∈ (0, 2|S|). This feature space allows us to approximate the value

function for a given policy as V (s) ≊ ⟨θ,ϕ(s)⟩ for all s ∈ S. We use the notation ϕt

to represent the vector ϕ(st) evaluated at configuration st. Since the exact projection

is not known and the projections ϕt are not known till the states are explored, the

projection specifically the parameter vector θ has to be computed depending on the

samples observed.

An online learning model needs to be build and updated iteratively. The obser-

vations to evaluate the cost-to-go function V come from a sequential process. Hence,

the effect of a recent action on the observed cost-to-go function would be more than

that of an action in distant past. It is intuitive to assign higher weights on the re-

cent observations than the old ones but still to incrementally build a model of value

function from the whole experience [Powell, 2007]. We use LSTD [Bradtke and Barto,

1996] as shown in Algorithm 12 to update θ. LSTD is very efficient for extracting

information from the training experiences. LSTD is based on the theory of linear

least-squares function approximation. It shows that the parameter vector θ at time

t can be computed as θt = Bt−1ξt. Here, the projected vector ξt ∈ Rd is defined as

106 Learning with Unknown Reward: Automated Database Tuning

a weighted sum of the feature basis vectors where the weights are proportional to the

rewards collected from the corresponding states. Strictly speaking, ξt ≜ 1
t

∑t
i=1C

tϕt.

The projection matrix Bt−1 ∈ Rd×d captures the effect of the cumulative difference of

auto-covariance of visited states, and the covariance of the visited state with the next

future step. The projection matrix is defined as Bt−1 =
(
1
t

∑t
i=1ϕ

t
(
ϕt − γϕt+1

))−1
.

In Algorithm 12, we present an online version of this approximation algorithm that

uses Sherman-Morrison formula [Hager, 1989]3 to perform the inversion and the up-

date on-the-go. In Algorithm 12, Ĉt is the one-step contribution function given as

δ(st−1, st) + cost(st, q̂t). We can show that the time complexity of this step is O
(
d2
)
,

or O
(
m
)

to be specific where m is the number of non-zero entries in Bt−1. This gain

in computational speed can be achieved by a proper design of the feature mapping.

Algorithm 12 Least squares temporal differencing.

1: procedure LSTD(Ĉt, Bt−1,θt−1,ϕt−1,ϕt)
2: ϵt ← Ĉt − (ϕt−1 − γϕt)Tθt−1

3: Bt ← Bt−1 − Bt−1ϕt−1(ϕt−1−γϕt)TBt−1

1+(ϕt−1−γϕt)TBt−1ϕt−1

4: θt ← θt−1 + ϵtBt−1ϕt−1

1+(ϕt−1−γϕt)TBt−1ϕt−1

5: return Bt,θt.
6: end procedure

Updating the policy. As we introduce the online LSTD algorithm with feature

mapping ϕt for value function evaluation, now we solve P1 by using the LSPI algo-

rithm [Lagoudakis and Parr, 2003a]. LSPI has the convergence guarantee if for any

policy π ∈ Π, there exists a vector θ such that V π(s) = θTϕ(s) for any configuration

s. Algorithm 13 shows a modified online LSPI algorithm for our infinite horizon MDP

problem P1. The main difference between Algorithm 13 and the original LSPI algo-
3Sherman-Morrison formula states that the new matrix obtained after one-rank update of an

invertible matrix would also be invertible under some technical condition. Mathematically, if A is a
square invertible matrix and u, v are column vectors, the matrix A+ uvT is invertible if and only if
1 + vTA−1u ̸= 0 and is given by

(A+ uvT)−1 = A−1 − A−1uvTA−1

1 + vTA−1u

.

3.4 Automated Database Tuning with Cost-Model Learning 107

rithm lies in (3.6), and the online update used to speed-up. In (3.6), we search in a

reduced set Sst−1,q̂t instead of searching all the possible configurations in S.

Algorithm 13 Modified least squares policy iteration.
1: Initialise the configuration s0.
2: Initialise θ0 = θ = 0 and B0 = ϵI.
3: for t=1,2,3,. . . do
4: Observe the query q̂t at time t.
5:

st ← argmin
s∈Sst−1,q̂t

(δ(st−1, s) + cost(s, q̂t) + γθTϕ(s)) (3.6)

6: Change the configuration to st.
7: Execute query q̂t.
8: Evaluate the cost of the present actions Ĉt ← δ(st−1, st) + cost(st, q̂t).
9: Update the value function approximation

(Bt,θt)← LSTD(Ĉt, Bt−1,θt−1,ϕ(st−1),ϕ(st))

10: if (θt) converges then
11: θ ← θt.
12: end if
13: end for

In Algorithm 13, the vector θ determines the current policy. The decision at time t

is made by solving (3.6). The values of δ(st−1, s) and cost(s, q̂t) are obtained from the

cost model. The vector θt is used to approximate the cost-to-go function following the

current policy. If θt converges, we update the current policy (Lines 10-12). Figure 3.2

illustrates the workflow of Algorithm 13, where the model parameter refers to θ.

Now, we prove Theorem 1 that guarantees the convergence of the modified online

LSPI algorithm (Algorithm 13).

Proposition 1. If for any Markovian policy π ∈ Π and feature mapping ϕ(s) ∈ Rd

for all s ∈ S, there exists a vector θ such that V π(s) = θTϕ(s) for any configuration

s, then Algorithm 13 will converge to an optimal policy π∗ ∈ Π.

Proof. Let us define V to be the set of all feasible cost-to-go functions V π(s) for any

s ∈ S. The cost-to-go-functions are bounded for bounded cost functions. Specifically,

108 Learning with Unknown Reward: Automated Database Tuning

configuration

query

configuration

model parameters

Next Query

executed

Figure 3.2: Workflow of automated database tuning with online actor-critic algorithm.

if the upper bound on the per-step cost is sups,q,s′ C(s, q, s′) = Cmax ∈ R, then the

upper bound of the cost-to-go function would be Cmax
1−γ

. Thus, V : S → R is a set

of bounded, real-valued functions. This structure makes V a Banach space with the

norm ∥v∥ = ∥v∥∞ = sups |v(s)| for any v ∈ V.

If we modify P1 by limiting the search space at time t to the configurations can

be changed to in each iteration i.e Sst−1,q̂t , we get

argmin
π∈Π

E

[
∞∑
t=1

γt−1 (δ(st−1, st) + cost(st, qt))

]
such that, st = π(st−1, qt), st ∈ Sst−1,q, ∀t ∈ N.

(3.7)

Under this problem statement of Equation (3.7), Algorithm 13 is equivalent to the

original LSPI. Additionally, Algorithm 13 converges to a unique cost-to-go function

Ṽ ∈ V . In order to prove the convergence to optimal policy, we need to show that

V ∗ = Ṽ .

3.4 Automated Database Tuning with Cost-Model Learning 109

Let us define the restricted Bellman operator T : V → V based on Equation (3.6).

T V (s) ≜ E
[
min
s′∈Ss,q

(δ(s, s′) + cost(s′, q) + γV (s′))

]

For a particular configuration s and query q̂, the optimal action chosen for the next

step would be

a∗s,q(V) = arg min
s′∈Ss,q

(δ(s, s′) + cost(s′, q) + γV (s′))

If T V (s) ≥ T U(s) for U, V ∈ V , then

0 ≤ T V (s)− T U(s) = E
[
δ(s, a∗s,q(V)) + cost(a∗s,q(V), q) + γV (a∗s,q(V))

]
− E

[
δ(s, a∗s,q(U)) + cost(a∗s,q(U), q) + γU(a∗s,q(U))

]
≤ E

[
δ(s, a∗s,q(U)) + cost(a∗s,q(U), q) + γV (a∗s,q(U))

]
− E

[
δ(s, a∗s,q(U)) + cost(a∗s,q(U), q) + γU(a∗s,q(U))

]
= γE

[
γV (a∗s,q(U))− U(a∗s,q(U))

]
≤ γE [∥V − U∥]

= γ∥V − U∥.

This result states that if T V (s) ≥ T U(s), then T V (s)−T U(s) ≤ γ |V (s)− U(s)|.

If we assume that T V (s) ≤ T U(s), then the same reasoning produces T V (s) −

T U(s) ≥ −γ|V (s)−U(s)|. This means that we have |T V (s)− T U(s)| ≤ γ|V (s)− U(s)||

for all configuration s ∈ S. From the definition of the sup-norm, we write

sup
s∈S
∥Mv(s)−Mu(s)∥ = ∥Mv −Mu∥

≤ γ∥v − u∥.

This means that if 0 ≤ γ < 1 then M is a contraction mapping. By[Powell, 2007;Propo-

sition 3.10.2], there exists a unique V ∗ such that T V ∗ = V ∗, and an arbitrary V 0, the

110 Learning with Unknown Reward: Automated Database Tuning

Algorithm 14 Recursive least squares estimation.

1: procedure RLSE(ϵ̂t, B̄t−1, ζt−1,ηt)
2: γt ← 1 + (ηt)T B̄t−1ηt

3: B̄t ← B̄t−1 − 1
γt
(B̄t−1ηt(ηt)T B̄t−1)

4: ζt ← ζt−1 − 1
γt
B̄t−1ηtϵ̂t

5: return Bt, ζt.
6: end procedure

sequence V n generated by V n+1 = T V n converges the fixed point of the space V ∗. By

the convergence of LSPI [Lagoudakis and Parr, 2003a], V ∗ = Ṽ . From Proposition 2,

the optimal cost-to-go function V ∗ also satisfying MV ∗ = V ∗. Hence V ∗ = Ṽ and the

assertion follows.

3.4.4 Learning the Cost Model

In this section, we do not assume the availability of any form of cost model. The cost

model is learned through iterative projection and estimation. We assume that there

exists a feature mapping η : S × Q → Rn such that cost(s, q) ≈ ζTη(s, q) for some

vector ζ ∈ Rn. Changing the configuration from s′ to s′′ can be considered as execut-

ing a special query q(s′, s′′). Therefore, we approximate δ(s′, s′′) = cost(s′, q(s′, s′′)) ≈

ζTη(s′, q(s′, s′′)). The vector ζ can be updated iteratively using the well-known recur-

sive least squares estimation (RLSE) as shown in Algorithm 14. Here, ηt = η(st−1, q̂t)

and ϵ̂t = (ζt−1)Tηt − cost(st−1, q̂t) is the prediction error. Combining RLSE with Al-

gorithm 13 brings the new algorithm with recursive least squares estimation of cost

model which is shown in Algorithm 15. It follows the same workflow as Figure 3.2

where the model parameters now refer to θ and ζ.

3.4 Automated Database Tuning with Cost-Model Learning 111

Algorithm 15 Least squares policy iteration with recursive least squares estimation.
1: Initialise the initial configuration s0.
2: Initialise θ0 = θ = 0 and B0 = ϵI.
3: Initialise ζ0 = 0 and B̄0 = ϵI.
4: for t=1,2,3,. . . do
5: Let q̂t be the just received query.
6:

st ← argmin
s∈Sst−1,q̂t

(ζt−1)Tη(st−1, q(st−1, s)) + (ζt−1)Tη(s, q̂t) + γθTϕ(s) (3.8)

7: Change the configuration to st.
8: Execute query q̂t.
9: Ĉt ← δ(st−1, st) + cost(st, q̂t).

10: ϵ̂t ← (ζt−1)Tη(st−1, q̂t)− cost(st−1, q̂t)
11: (Bt,θt)← LSTD(Ĉt, Bt−1,θt−1,ϕ(st−1),ϕ(st))
12: (B̄t, ζt)← RLSE(ϵ̂t, B̄t−1, ζt−1,ηt)
13: if (θt) converges then
14: θ ← θt.
15: end if
16: end for

112 Learning with Unknown Reward: Automated Database Tuning

3.5 Automated Database Tuning with Regularised

Cost-Model Learning

In the results that we will present in Section 3.7.3, we observe a higher variance of

Algorithm 15 for index tuning than that of the state-of-art WFIT algorithm [Schnait-

ter and Polyzotis, 2012]. This high variance is caused mainly due to the unstable

estimation of the cost model. As Algorithm 15 decides the policy depending on the

estimated cost model, any error in the cost model causes instability in its outcome.

The process of cost-model estimation by accumulating information of incoming

queries is analogous to approximating a function online from its incoming samples.

Here, the function is the per-stage cost model C : S × S × Q̃ → R. Here, Q̃ is

the extended set of queries given by Q ∪ {q(s, s′) | s, s′ ∈ S}. We obtain this Q̃ by

considering configuration updates as special queries, as explained in Section 3.4.3.

Now, the per-stage cost function can be defined as

C(st−1, st, q̂t) = cost(st−1, q(st−1, st)) + cost(st, q̂t)

This equation shows that if we consider changing the configuration from s to s′ as

executing a special query q(s, s′), approximating the function cost : S × Q̃ → R in

turn approximates the per-stage cost.

As explained in the previous section, we approximate cost online using linear pro-

jection to the feature space of the observed state and query. At each step we obtain

some vector ζ such that cost(s, q) ≈ ζTη(s, q). Here, η(s, q) is the feature vector

corresponding to state s and query q. In order to obtain the optimal approximation,

we initialise with an arbitrary ζ and then recursively improve our estimate of ζ using

recursive least squares estimation (RLSE) algorithm [Young, 2011]. But the issues

with RLSE are:

3.5 Automated Database Tuning with Regularised Cost-Model Learning 113

i. It tries to minimise the square error per step

ϵ̂2t =
(
(ζt−1)Tηt − cost(st−1, q̂t)

)2
which is highly sensitive to outliers. If RLSE faces some query or configuration

update which is very different from the previously observed queries, the estimation

of ζ can change drastically.

ii. The algorithm becomes unstable if the components of η(s, q) are highly correlated.

This may happen when the algorithm passes through a series of related queries.

As the reinforcement learning algorithm uses the estimated cost model to decide

policies and to evaluate them, error or instability in the estimated cost model at

any step affects its performance. Specifically, large deviations arise in the estimated

cost model due to the queries which are far from the previously learned distribution.

This costs the learning algorithm some time to adapt. It also affects the policy and

evaluation of the present state and action. We thus propose to use a regularised cost-

model estimator instead of RLSE, which is less sensitive to outliers and relatively

stable, so as to improve the performance of Algorithm 15 and decrease its variance.

3.5.1 Regularised Cost-Model Estimator

In order to avoid the effect of outliers, we can penalise high variance of ζ by adding

a regularisation term with the squared prediction error of RLSE. Thus at time step t,

the new estimator will try to find

ζt = argmin
ζ

P t given ϵ̂t, B
t−1

, ζt−1,ηt (3.9)

such that:

P t ≜ ϵ̂2t + λ∥ζt−1∥22

=
(
⟨ζt−1,ηt⟩ − cost(st−1, q̂t)

)2
+ λ⟨ζt−1, ζt−1⟩.

114 Learning with Unknown Reward: Automated Database Tuning

Here, λ ∈ R+ is the regularisation parameter. Square of L2-norm, ∥ζ∥22, is the regular-

isation function. ηt ≜ η(st−1, q̂t) is the feature vector of state st−1 and query q̂t. We

call this squared error the loss function Lt which is defined at time t > 0 for a given

choice of ζt. Thus,

Lt(ζ
t) ≜

(
⟨ζt,ηt⟩ − cost(st−1, q̂t)

)2
.

The dual of this problem can be considered as picking up such a vector ζt inside an

n-dimensional Euclidean ball Bn
λ of radius s(λ) that minimises the error ϵ̂2t . From an

optimisation point of view, we choose ζt inside Bn
λ ≜ {ζ | ∥ζ∥22 ≤ s(λ) and ζ ∈ Rn}

rather than searching for it in the whole space of Rn. This estimator penalises any

drastic change in the cost model due to some outlier query. If some query tries to pull

ζt out of Bn
λ, this estimator regularises ζt at the boundary. It also induces sparsity

in the components of estimating vector ζ that eliminates the instability due to highly

correlated queries.

Algorithm 16 Regularised cost-model estimation.

1: Initialise ζ0 = 0 and R0 = εI.
2: for t=1,2,3,. . . do
3: ϵ̂t ← (ζt−1)Tηt − cost(st−1, q̂t)
4: γt ← λ+ (ηt)TRt−1ηt

5: Rt ← Rt−1 − 1
γt
(Rt−1ηt(ηt)TRt−1)

6: ζt ← ζt−1 − 1
γt
Rt−1ηtϵ̂t

7: return Rt, ζt

8: end for

The online penalised cost-model estimation algorithm obtained from this formula-

tion is shown in Algorithm 16. Generally, the optimal values of ε and λ are decided

using a cross-validation procedure. In Section 3.6.4, we derive the optimal value of

ε and a probable estimation for λ for the index tuning problem. This will decide

optimal values of the hyper-parameters for a given set of workload with theoretical

performance bounds.

3.5 Automated Database Tuning with Regularised Cost-Model Learning 115

3.5.2 Performance Bound

Now, we depict this online cost-model estimation task as a game between a decision

maker and an adversary [Rockafellar, 2015]. In database tuning, the decision maker is

our cost-model estimation algorithm, and the adversary is the workload providing an

uncertain sequence of queries. Then, we can formulate the game as Algorithm 17.

Algorithm 17 Cost-model Estimation Game.

1: Initialise ζ0 = 0.
2: for t=1,2,3,. . . , T do
3: Algorithm 16 picks ζt ∈ Bn

λ according to Equation (3.9)
4: Adversary picks (ηt, ct)
5: Algorithm suffers loss Lt(ζ

t)
6: end for

We can define the regret of this game after time step T as,

RegT :=
T∑
t=1

Lt(ζ
t)−

T∑
t=1

Lt(ζ
OPT) (3.10)

where ζOPT is the optimal solution picked up by an offline expert that minimises the

cumulative loss after time step T . RegT is the difference between cumulative sum of

errors up to time T obtained using Algorithm 16 and the optimal offline algorithm.

This regret term captures deviation of the cost-model estimated by the Algorithm 17

from the computable optimal cost model.

As the loss function L(ζ) is the square of the error between estimated and actual

values of cost at time t, it is a convex function over the set of ζ. According to the

analysis given in [Rockafellar, 2015], we canonically describe our estimation model as

a scheme to develop a Legendre potential function Φ : Bn
λ → R≥0 that evolves with

time t for the given workload. The initial value of potential is given by

Φ0(ζ
OPT) ≜ ∥ζOPT∥2

116 Learning with Unknown Reward: Automated Database Tuning

and its value at time t is updated as

Φt(ζ
OPT) ≜ Φt−1(ζ

OPT) +
1

λ
Lt(ζ

t).

Now, we can reformulate Equation (3.9) as

ζt = argmin
ζ∈Bnλ

[
DΦ0(ζ

OPT, ζt−1) +
1

λ

(
∇Lt−1(ζt−1)

)T
ζt−1

]
(3.11)

Here, DΦ0(ζ
OPT, ζt−1) is the Bregman divergence [Nielsen and Bhatia, 2013] between

ζOPT and ζt−1 along the potential field Φ0(ζ
OPT). This term in Equation (3.11)

inclines Algorithm 16 to choose such a ζ which is nearest to optimal ζOPT on the ∥ζ∥2

manifold. (∇Lt−1(ζt−1))
Tζt−1 is the change of the loss function in the direction of

ζt−1. Minimisation of this term is equivalent to selection of such a ζt that minimises

the corresponding loss.

Thus, the ζt picked up by the Algorithm is the one that minimises a linear com-

bination of these two terms weighted by λ. From this formulation we can obtain the

following lemma for the regret bound.

Lemma 3. After time step T , the upper bound of the regret of Algorithm 16 can be

given by

RegT ≤ λ∥ζOPT∥2 + 1

λ

T∑
t=1

ϵ̂t
2(ηt)TRtηt. (3.12)

Proof. Applying Theorem 1 of [Warmuth and Jagota, 1997] on Equation (3.11) we get

the inequalities,

RegT ≤ λ

[
DΦ0(ζ

OPT, ζ0)−DΦT (ζ
OPT, ζT+1) +

T∑
t=1

DΦt(ζ
t, ζt+1)

]

≤ λ

[
DΦ0(ζ

OPT, ζ0) +
T∑
t=1

DΦt(ζ
t, ζt+1)

]
.

3.5 Automated Database Tuning with Regularised Cost-Model Learning 117

From the definition of the Legendre potential we get:

Φt(ζ) = Φt−1(ζ) +
1

λ
Lt(ζ)

= ∥ζ∥2 +
T∑
t=1

(
⟨ζ,ηt⟩ − cost(st−1, q̂t)

)2
= ζT

(
I +

1

λ

T∑
t=1

ηt(ηt)T

)
ζ − ζT

(
1

λ

T∑
t=1

cost(st−1, q̂t)η
t

)
+

T∑
t=1

cost(st−1, q̂t)
2

= ζT (RT)−1ζ − ζT bT + CT

where bT =
∑T

t=1 c
tηt and CT =

∑T
t=1 cost(st−1, q̂t))

2. Thus, the dual of the potential

is

Φ∗
t (ζ) = ζ

TRTζ − 2ζTRT bT + (bT)
TRT bT

Following this, we get by using the definition of Φ0 and properties of Bregman diver-

gence,

DΦ0(ζ
OPT, ζ0) = D∥ζOPT∥2(ζ

OPT, ζ0)

= ∥ζOPT∥2

and

DΦt(ζ
t, ζt+1) = DΦ∗

t

(
∇Φt(ζ

t+1),∇Φt(ζ
t)
)

= DΦ∗
t

(
0,∇Φt(ζ

t)
)

= DΦ∗
t

(
0,

1

λ
∇Lt(ζ

t)

)
=

1

λ2

(
∇Lt(ζ

t)
)T

Rt
(
∇Lt(ζ

t)
)

=
1

λ2

(
⟨ζ,ηt⟩ − cost(st−1, q̂t)

)2
(ηt)TRtηt

=
1

λ2
ϵ̂t

2(ηt)TRtηt.

118 Learning with Unknown Reward: Automated Database Tuning

By substituting these results in the aforementioned inequality, we get

RegT ≤ λ∥ζOPT∥2 + 1

λ

T∑
t=1

ϵ̂t
2(ηt)TRtηt.

Lemma 4. If R0 ∈ Rn×n and invertible,

(ηt)TRtηt = 1− det(Rt)

det(Rt−1)
∀t = 1, 2, . . . , T (3.13)

Proof. From [Lai and Wei, 1982], we get if there exists an invertible matrix B ∈ Rn×n

such that A = B + xxT , where x ∈ Rn, then

xTA−1x = 1− det(B)

det(A)
(3.14)

We define in Algorithm 16, R0 = εI with ε ∈ (0, 1). Thus, R0 it is invertible. Since

(Rt)−1 = (Rt−1)−1+ηt(ηt)T , by the Sherman–Morrison formula, all Rt’s are invertible

for t ≥ 0. Thus, simply replacing A by (Rt)−1 and B by (Rt−1)−1 in Equation (3.14),

we obtain

(ηt)TRtηt = 1− det((Rt−1)−1)

det((Rt)−1)
= 1− det(Rt)

det(Rt−1)

since, det((Rt)−1) = 1
det(Rt)

.

Using Lemmas 3 and 4, we finally derive the regret bound for the regularised

cost-model estimator in the following theorem.

Theorem 7. If we consider the error as a bounded function such that 0 ≤ ϵ̂t
2 ≤ Emax

and ∥ηt∥∞ ≤ δ,

RegT ≤ λ∥ζOPT∥2 + Emax

λ

[
nln

(
1 +

εδ2T

n

)
− (n− 1)ln(ε)

]
(3.15)

where R0 = εI, and ε ∈ (0, 1).

3.5 Automated Database Tuning with Regularised Cost-Model Learning 119

Proof. Let us assume the squared error has an upper bound Emax for a given workload.

Under this assumption, we get from Equations (3.12) and (3.13),

RegT ≤ λ∥ζOPT∥2 + Emax

λ

T∑
t=1

(
1− det(Rt)

det(Rt−1)

)

≤ λ∥ζOPT∥2 − Emax

λ

T∑
t=1

ln

(
det(Rt)

det(Rt−1)

)
= λ∥ζOPT∥2 + Emax

λ
ln

(
det(R0)

det(RT)

)
= λ∥ζOPT∥2 + Emax

λ

[
ln(ε)− ln(det(RT))

]
= λ∥ζOPT∥2 + Emax

λ

[
ln(ε) + ln

(
det

(
1

ε
I +

T∑
t=1

ηt(ηt)T

))]

= λ∥ζOPT∥2 + Emax

λ

[
n∑

k=1

ln (1 + ελk)− (n− 1) ln(ε)

]
.

Because

det

(
1

ε
I +

T∑
t=1

ηt(ηt)T

)
= ε−ndet

(
I + ε

T∑
t=1

ηt(ηt)T

)
= ε−n

n∏
k=1

(1 + ελk)

where λ1, . . . , λn are eigenvalues of the matrix
∑T

t=1 η
t(ηt)T . As the eigenvalues of∑T

t=1 η
t(ηt)T are equal to the eigenvalues of its Gram matrix Gij = (ηi)Tηj, we can

write

n∑
k=1

λk = Trace(G) =
T∑
t=1

(ηt)Tηt ≤ δ2T

where ∥ηt∥∞ ≤ δ, that is, the maximum value of any component of η is bounded by

δ. In the above inequality, the equality holds if and only if λ1 = λ2 = . . . = λn = δ2T
n

.

By applying this condition, we get the regret bound as

RegT ≤ λ∥ζOPT∥2 + Emax

λ

[
nln

(
1 +

εδ2T

n

)
− (n− 1)ln(ε)

]
.

120 Learning with Unknown Reward: Automated Database Tuning

This theorem shows that our estimation of the cost model using Algorithm 16 is

always upper bounded by a constant value depending on the optimal solution added

with a term that increases with time logarithmically. This shows that the regret, which

is the cumulative deviation of the cost model computed by Algorithm 16 with respect

to the optimal one, increases logarithmically with time. This implies that the error

of estimation of the cost function at each time step is considerably small, stable, and

does not blow up with time.

3.6 Case Study: Adaptive Index Tuning

In this section, we consider the design of instances of Algorithms 13 and 15 for the

case of configurations differing in their secondary indexes. Configuration changes

correspond to creating and deleting indexes. We show how the search space can be

reduced in this case. We design feature mappings ϕ and η for index tuning. We

also show tighter regret bounds, and also in turn, how it leads to optimal parameter

selection.

3.6.1 Reducing the Search Space

Let I be the set of indexes can be created. Each configuration s ∈ S is a subset of

the power set 2I . For each s ∈ S, let |s| be the number of indexes contained in s. For

example, 7 attributes in the schema of R yield a total of 13699 indexes and a total of

213699 possible configurations. Such a large search space invalidates a naive brute-force

search for P1.

For any query q̂, we let r(q̂) be a function that returns a set of recommended

indexes. This function may be already provided by the database system (e.g., as

with IBM DB2), or it can be implemented externally [Agrawal et al., 2000; Bruno

and Chaudhuri, 2007a]. Let d(q̂) ⊆ I be the set of indexes being modified (update,

3.6 Case Study: Adaptive Index Tuning 121

insertion or deletion) by q̂. We define the reduced search space as

Ss,q̂ ≜ {s′ ∈ S | (s− d(q̂)) ⊆ s′ ⊆ (s ∪ r(q̂))}. (3.16)

Deleting indexes in d(q̂) will reduce the index maintenance overhead and creating in-

dexes in r(q) will reduce the query execution cost. Note that the definition of Ss,q̂ here

is a subset of the one defined in section 3.4.2 which deals with general configurations.

For indexes, we can further reduce the size of searching set because deleting an index

not in d(q) or creating an index not in r(q) for the current configuration s does not

reduce the cost of query execution.

Notice that for tree-structured indexes (e.g., B+-tree) we could further consider

the prefix closure of indexes for optimisation. For any configuration s ⊆ 2I , define the

prefix closure of s as

⟨s⟩ = {i ∈ I | i is a prefix of an index j for some j ∈ s}. (3.17)

Thus in (3.16), we use ⟨r(q̂)⟩ to replace r(q̂) for better approximation. The intuition is

that in case of i /∈ s but i ⊆ ⟨s⟩ we can leverage the prefix index to answer the query.

3.6.2 Defining the Feature Mapping ϕ

Let V be the cost-to-go function following a policy. As aforementioned, both Algo-

rithms 13 and 15 rely on a proper feature mapping ϕ towards an appropriate approxi-

mation V (s) ≈ θTϕ(s) for some vector θ. The challenge lies in how to define ϕ under

the scenario of index tuning. We explain its definition as following. For each s, s′ ∈ S,

define

ϕs′(s) =

1, if s′ ⊆ s

−1, otherwise.

122 Learning with Unknown Reward: Automated Database Tuning

Let ϕ = (ϕs′)s′∈S. Notice that ϕ∅ is an intercept term since ϕ∅(s) = 1 for all s ∈ S.

The following proposition shows the effectiveness of ϕ for capturing the values of the

cost-to-function V .

Proposition 2. There exists an unique θ = (θs′)s′∈S such that

V (s) =
∑
s′∈S

θs′ϕs′(s) = θ
Tϕ(s). (3.18)

Proof. Suppose S = {s1, s2, . . . , s|S|}. Notice that we use superscripts to denote the

ordering of elements in S.

Let V = (V (s))Ts∈S and M be a |S| × |S| matrix such that

Mi,j = ϕsj(s
i).

Let θ be a |S|-dimension column vector such that Mθ = V . If M is invertible then

θ = M−1V and thus (3.18) holds. We now show that M is invertible. Let ψ be a

|S| × |S| matrix such that

ψi,j = Mi,j + 1.

We claim that ψ is invertible and its inverse is the matrix τ such that

τ i,j = (−1)|si|−|sj |ψi,j.

To see this, consider

(τψ)i,j =
∑

1≤k≤|S|

(−1)|si|−|sk|ψi,kψk,j

=
∑

sj⊆sk⊆si

(−1)|si|−|sk|.

3.6 Case Study: Adaptive Index Tuning 123

Therefore (τψ)i,j = 1 if and only if i = j. By the Sherman-Morrison formula, M is

also invertible.

However, for any configuration s, θ(s) is a |2I | dimensional vector. To reduce the

dimensionality, based on (3.18), the cost-to-go function can be approximated by

V (s) ≈
∑

s′∈S,|s′|≤N

θs′ϕs(s) (3.19)

for some integer N . Here we assume that the collaborative benefit among indexes

could be negligible if the number of indexes exceeds N . In particular when N = 1, we

have

V (s) ≈ θ0 +
∑
i∈I

θiϕi(s). (3.20)

and

ϕi(s) =

1, if i ∈ s

−1, otherwise.

where we ignore all the collaborative benefits among indexes in a configuration. This

is reasonable since any index in a database management system is often of individual

contribution for answering queries [Ramakrishnan et al., 2003]. Therefore, we derive

ϕ from (3.20) as

ϕ(s) = (1, (ϕi(s))
T
i∈I)

T .

By using this feature mapping ϕ ∈ R|I|+1, we can approximate the cost-to-go function

V (s) ≈ θTϕ(s) for some vector θ ∈ R|I|+1.

124 Learning with Unknown Reward: Automated Database Tuning

3.6.3 Defining the Feature Mapping η

A good feature mapping for approximating the function δ and the function cost must

take into account both the benefit from the current configuration and the maintenance

overhead of the configuration.

To capture the difference between the index set recommended by the database

system and the index set of the current configuration, we define a function

β(s, q̂) = (1, (βi(s, q̂))
T
i∈I)

T ,

where β is a |I|+ 1 dimensional real-valued vector with components

βi(s, q̂) =


0, i /∈ r(q̂)

1, i ∈ r(q̂) and i ∈ s

−1, i ∈ r(q̂) and i /∈ s.

(3.21)

If the execution of query q̂ cannot benefit from index i then βi(s, q̂) always equals zero;

otherwise, βi(s, q̂) equals 1 or -1 depending on whether s contains i or not.

For tree-structured indexes, we could further consider the prefix closure of indexes

as defined in (3.17) for optimisation. Thus in (3.21), we use ⟨s⟩ and ⟨r(q̂)⟩ to replace

s and r(q̂), respectively, for better approximation.

On the other hand, to capture whether a query (update, insertion or deletion)

modifies any index in the current configuration, we define a function

α(s, q̂) = (αi(s, q̂))i∈I

where α is a |I| dimensional real-valued vector with components

αi(s, q̂) =

1, if i ∈ s and q̂ modify i

0, otherwise.

3.6 Case Study: Adaptive Index Tuning 125

Notice that if q̂ is a selection query, α trivially returns 0.

By combining β and α, we get the feature mapping

η = (βT ,αT)T

such that η ∈ {0,±1}2|I|+1. Thus, n ≤ |I| + 1. We use this feature mapping η to

approximate the cost function of configuration update δ, and the cost function of query

execution cost as mentioned in Section 3.4.4.

3.6.4 Performance Bounds for Regularised COREIL

rCOREIL applies Algorithm 16 for cost-model estimation, while COREIL uses RLSE

for this. If we follow Algorithm 15, on line 13 rCOREIL calls the regularised cost-model

estimator with arguments ϵ̂t, Rt−1, ζt−1,ηt instead of RLSE. Following Theorem 7 and

the construction of the feature map in Section 3.6.3, Proposition 3 gives a tighter

regret bound for the cost-model estimation of rCOREIL.

Proposition 3. If we consider the error as a bounded function such that 0 ≤ ϵ̂t
2 ≤

Emax, and the horizon T and the number of indexes n satisfies 0 < n2 − n < T , then

RegrCOREIL
T ≤ λ∥ζOPT∥2 + Emax

λ

[
nln

(
1 +

T

n

)
+ nln

(
T

n

)]
(3.22)

and the optimal value for ε is given by:

ε∗ =
n2 − n

T
.

Proof. From Section 3.6.3, ∥ηt∥∞ ≤ 1. Equation (3.15) transforms into

RegrCOREIL
T ≤ λ∥ζOPT∥2 + Emax

λ

[
nln

(
1 +

ϵT

n

)
− (n− 1)ln(ε)

]
.

126 Learning with Unknown Reward: Automated Database Tuning

Now, we determine the optimal value of ε by minimising the RHS of above inequality

as this will impose tighter limit on the bound. Thus,

[
∂(RHS)

∂ε

]
ε∗=0

= 0.

By solving this, we get ε∗ = n2−n
T

. Substituting this value in the previous inequality

gives us the regret bound for regularised COREIL algorithm as

RegrCOREIL
T ≤ λ∥ζOPT∥2 + Emax

λ

[
nln

(
1 +

T

n

)
+ nln

(
T

n

)]
.

Similarly, we can also find out the optimal value of λ that will make the upper

bound tightest.

Corollary 1. If the value of optimal solution ζOPT can be predicted beforehand, the

optimal value of λ is given by

λ∗ =
Emax

∥ζOPT∥2

[
nln

(
1 +

T

n

)
+ nln

(
T

n

)]
,

where the stopping time T satisfies n2 − n < T .

Proof. As an optimal λ will minimise the RHS of Equation (3.22), we get it by setting

the partial derivative of the RHS with respect to λ as zero. This simply gives us,

λ∗ = Emax

∥ζOPT ∥2
[
nln
(
1 + T

n

)
+ nln

(
T
n

)]
.

Substituting the optimal value of λ in Equation (3.22) for a given T and ζOPT , we

get

RegrCOREIL
T ≤ ∥ζOPT∥2 + 2Emax ln

(
1 +

T

n

)
.

This shows the guarantee on the logarithmic growth of regret for cost-model estimation

by rCOREIL once the parameters are properly set.

3.7 Performance Evaluation 127

0 500 1,000 1,500 2,000 2,500 3,000
0

1,000

2,000

3,000

4,000

5,000

Query Number

T
im

e
(m

s)

COREIL
WFIT

Figure 3.3: Evolution of the efficiency (total time per query) of the two systems from
the beginning of the workload (smoothed by averaging over a moving window of size
20)

3.7 Performance Evaluation

In this section, we present an empirical evaluation of COREIL and rCOREIL through

two sets of experiments. In the first set of experiments, we implement a prototype

of COREIL in Java. We compare its performance with that of the state-of-the-art

WFIT algorithm [Schnaitter and Polyzotis, 2012] (briefly described in Section 3.7.2).

In the results, we can see that COREIL shows competitive performance with WFIT

but has higher variance. This validates the efficiency of the reinforcement learning

approach to solve the index tuning problem on the fly. This shows that, even without

any assumption of a pre-determined cost model, it is possible to perform at the level of

the state-of-the-art. In the second set of experiments, we evaluate the performance of

rCOREIL with respect to COREIL. The results show enhancements in performance by

rCOREIL as reasoned in Section 3.5. This validates the claim in Section 3.5 that the

higher variance of COREIL is due to suboptimal use of the RLSE algorithm. It also

establishes the fact that if we serve the learning algorithm with an enhanced estimation

of cost-model, it improves the performance substantially. In these experiments, we also

128 Learning with Unknown Reward: Automated Database Tuning

COREIL WFIT

100

200

300

400

500

600

700

800
T
im

e
(m

s)

Figure 3.4: Box chart of the efficiency (total time per query) of the two systems. We
show in both cases the 9th and 91th percentiles (whiskers), first and third quartiles
(box) and median (horizontal rule).

check the sensitivity of rCOREIL with respect to the parameter λ and cross-validate

the optimal value for the given workload.

3.7.1 Dataset and Workload

The dataset and workload is conforming to the TPC-C specification [Raab, 1993] and

generated by the OLTP-Bench tool [Difallah et al., 2013]. The 5 types of transactions

in TPC-C are distributed as NewOrder 45%, Payment 43%, OrderStatus 4%, Delivery

4% and StockLevel 4%. Each of these transactions are associated with 3 ∼ 5 SQL

statements (query/update). The scale factor used throughout the experiments is 2.

We do not leverage any repetition or periodicity of the workload in our approach; still

for robustness there may be up to 10% of repetition of queries. Note that [Schnaitter

and Polyzotis, 2012] additionally uses the dataset NREF in its experiments. However,

this dataset and workload are not publicly available.

3.7 Performance Evaluation 129

0 500 1,000 1,500 2,000 2,500 3,000
0

500

1,000

1,500

Query Number

T
im

e
(m

s)

COREIL
WFIT

Figure 3.5: Evolution of the overhead (time of the optimisation itself) of the two
systems from the beginning of the workload (smoothed by averaging over a moving
window of size 20)

3.7.2 WFIT: Brief Description

WFIT is proposed in [Schnaitter and Polyzotis, 2012] as a method of semi-automatic

index tuning. This algorithm keeps the database administrator in the loop by generat-

ing recommendations. These recommendations are generated through a feedback loop

originating from the administrator’s preferences. This process is based on the Work

Function Algorithm [Borodin and El-Yaniv, 1998]. In order to determine the change

of configuration, WFIT considers all the queries observed in the past. Then it solves

a deterministic problem of minimising the total processing cost. However, while doing

so, it assumes the existence of a pre-determined cost model served by the database sys-

tem or administrator. Due to use of a pre-defined cost model for all the datasets and

workloads it faces the problems discussed in the Introduction. Results documented in

the following sections will show the importance of a reinforcement learning approach

to make the process generic and cost-model oblivious.

130 Learning with Unknown Reward: Automated Database Tuning

0 500 1,000 1,500 2,000 2,500 3,000
0

5,000

10,000

15,000

20,000

Query Number

T
im

e
(m

s)

COREIL
WFIT

Figure 3.6: Evolution of the time taken by configuration change (index creation and
destruction) of the two systems from the beginning of the workload; no configuration
change happens past query number 700. All values except the vertical lines shown in
the figure are zero.

3.7.3 COREIL: Experiments and Results

Experimental Set-up

We conduct all the experiments on a server running IBM DB2 10.5. The server is

equipped with Intel i7-2600 Quad-Core @ 3.40 GHz and 4 GB RAM. We measure

wall-clock times for execution of all components. Specially, for execution of workload

queries or index creating/dropping, we measure the response time of processing cor-

responding SQL statement in DB2. Additionally, WFIT uses the what-if optimiser of

DB2 to evaluate the cost. In this setup, each query is executed only once and all the

queries were generated from one execution history.

Efficiency

Figure 3.3 shows the total cost of processing TPC-C queries for online index tuning

of COREIL and WFIT. Total cost consists of the overhead of corresponding tuning

algorithm, cost of configuration change and that of query execution. Results show that,

3.7 Performance Evaluation 131

after convergence, COREIL has lower processing cost most of the time. But COREIL

converges slower than WFIT, which is expected since it does not rely on the what-if

optimiser to guide the index creations. 4 With respect to the whole execution set, the

average processing cost of COREIL (451 ms) is competitive to that of WFIT (452 ms).

However, if we calculate the average processing cost of the 500th query forwards, the

average performance of COREIL (357 ms) outperforms that of WFIT (423 ms). To

obtain further insight from these data, we study the distribution of the processing time

per query, as shown in Figure 3.4. As can be seen, although COREIL exhibits larger

variance in the processing cost, its median is significantly lower that that of WFIT.

All these results confirms that COREIL has better efficiency than WFIT under a long

term execution.

Figures 3.5 and 3.6 show analysis of the overhead of corresponding tuning algorithm

and cost of configuration change respectively. By comparing Figure 3.3 with Figure 3.5,

we can see that the overhead of the tuning algorithm dominates the total cost and

the overhead of COREIL is significantly lower than that of WFIT. In addition, WFIT

tends to make costlier configuration changes than COREIL, which is reflected in a

higher time for configuration change. This would be discussed further in the micro-

analysis. Note that both methods converge rather quickly and no configuration change

happens beyond the 700th query.

A possible reason for the comparatively smaller overhead of COREIL with respect

to WFIT, in addition to not relying on a possibly costly what-if optimiser, is the MDP

structure. In MDPs, all the history of the system is assumed to be summarised in the

present state and the cost-function. Thus, COREIL has to do less book-keeping than

WFIT.

4By convergence we mean the first stable patch in Figure 3.3 after the series of high spikes, around
the 500th query. The convergence point is qualitatively chosen by observing characteristics of the
curve.

132 Learning with Unknown Reward: Automated Database Tuning

0 500 1,000 1,500 2,000 2,500 3,000
0

500

1,000

1,500

Query Number

T
im

e
(m

s)

COREIL
WFIT

Figure 3.7: Evolution of the effectiveness (query execution time in the DBMS alone)
of the two systems from the beginning of the workload (smoothed by averaging over
a moving window of size 20); logarithmic y-axis

Effectiveness

To verify the effectiveness of indexes created by the tuning algorithms, we extract the

cost of query execution from the total cost. Figure 3.7 (note the logarithmic y-axis)

indicates that the set of indexes created by COREIL shows competitive effectiveness

with that created by WFIT, though WFIT is more effective in general and exhibits less

variance after convergence. Again, this is to be expected since COREIL does not have

access to any cost model for the queries. As previously noted, the total running time

is lower for COREIL than WFIT, as overhead rather than query execution dominates

running time for both systems.

We have also performed a micro-analysis to check whether the indexes created by

the algorithms are reasonable. We observe that WFIT creates more indexes with longer

compound attributes, whereas COREIL is more parsimonious in creating indexes. For

instance, WFIT creates a 14-attribute index as shown below.

[S_W_ID, S_I_ID, S_DIST_10, S_DIST_09, S_DIST_08, S_DIST_07,

S_DIST_06, S_DIST_05, S_DIST_04, S_DIST_03, S_DIST_02,

3.7 Performance Evaluation 133

COREIL λ300 λ350 λ400 λ450 λ500

1,700

1,800

1,900

2,000

2,100

T
im

e
(m

s)

Figure 3.8: Box chart of the efficiency (total time per query) of COREIL and its
improved version with different values of λ. We show in both cases the 9th and 91st
percentile (whiskers), first and third quartiles (box) and median (horizontal rule).

S_DIST_01, S_DATA, S_QUANTITY]

The reason of WFIT creating such a complex index is probably due to multiple queries

with the following pattern.

SELECT S_QUANTITY, S_DATA, S_DIST_01, S_DIST_02, S_DIST_03,

S_DIST_04, S_DIST_05, S_DIST_06, S_DIST_07, S_DIST_08,

S_DIST_09, S_DIST_10

FROM STOCK

WHERE S_I_ID = 69082 AND S_W_ID = 1;

In contrast, COREIL tends to create shorter compound-attribute indexes. For

example, COREIL created an index [S_I_ID, S_W_ID] which is definitely beneficial

to answer the query above and is competitive in performance compared with the one

created by WFIT.

3.7.4 rCOREIL: Experiments and Results

Experimental Set-up

We run COREIL and rCOREIL, with a set of λ values 300, 350, 400, 450, and 500.

The previous set of experiments have already established competitive performance of

134 Learning with Unknown Reward: Automated Database Tuning

0 500 1,000 1,500 2,000 2,500 3,000

1,600

1,800

2,000

2,200

2,400

Query Number

T
im

e
(m

s)

COREIL
rCOREIL

Figure 3.9: Evolution of the efficiency (total time per query) of COREIL and rCOREIL
with λ = 400 from the beginning of the workload (smoothed by averaging over a
moving window of size 20)

COREIL with WFIT. In this set we evaluate the basic idea of rCOREIL: providing

regularised estimation of cost-model enhances the performance of COREIL and also

stabilises it. We conduct all the experiments on a server running IBM DB2 10.5 with

scale factor and time measure, mentioned in the previous set of experiments. But here

the server is installed on a 64 bit Windows virtual box with dual-core 2-GB hard disk.

It operates in an Ubuntu machine with Intel i7-2600 Quad-Core @ 3.40 GHz and 4 GB

RAM. This eventually makes both version of algorithms slower in comparison to the

previous physical machine installation.

Efficiency

As the offline optimal outcome for this workload is unavailable beforehand, we set an

expected range of λ as [300, 600] depending on the other parameters like the number

of queries and the size of state space. Figure 3.8 shows efficiency of COREIL and

rCOREIL with different values of λ. As promised by Algorithm 16, variations of

rCOREIL are always showing lesser median and variance of total cost. We can also

observe from the boxplot, the efficiency is maximum as well as the variance is minimum

3.7 Performance Evaluation 135

0 500 1,000 1,500 2,000 2,500 3,000

1,600

1,800

2,000

2,200

2,400

Query Number

T
im

e
(m

s)

COREIL
rCOREIL

Figure 3.10: Evolution of the overhead (time of the optimisation itself) of COREIL and
rCOREIL with λ = 400 from the beginning of the workload (smoothed by averaging
over a moving window of size 20)

for λ = 400. As efficiency is the final measure that controls runtime performance of

the algorithm, we have considered this as optimal value of λ for further analysis. This

process is analogous to cross-validation of parameter λ, where the proved bounds help

us to set a range of values for searching it instead of going through an arbitrary large

range of values. Though here we are validating depending upon the result obtained

from the whole run of 3,000 queries in the workload, the optimal λ would typically be

set, in a realistic scenario, after running first 500 queries of the workload with different

parameter values and then choosing the optimal one. Figure 3.9 shows that rCOREIL

with λ = 400 outperforms COREIL. With respect to the whole execution set, the

average processing cost of rCOREIL is 1758 ms which is significantly less than that of

COREIL (1975 ms). Also the standard deviation of rCOREIL is 90ms which is half of

that of COREIL, 180ms. This enhanced performance and low variance establishes the

claim that if we serve the learning algorithm with a better estimation of cost-model it

will improve.

Figures 3.10 and 3.11 show analysis of the overhead of corresponding tuning algo-

rithms and cost of configuration change respectively. In this set of experiments also,

136 Learning with Unknown Reward: Automated Database Tuning

0 500 1,000 1,500 2,000 2,500 3,000
0

1,000

2,000

3,000

4,000

Query Number

T
im

e
(m

s)

COREIL
rCOREIL

Figure 3.11: Evolution of the time taken by configuration change (index creation
and destruction) of COREIL and rCOREIL with λ = 400 from the beginning of the
workload; no configuration change happens past query #2000. All values except the
vertical lines shown in the figure are zero.

we can see that the overhead of the tuning algorithms dominates their total cost. Here,

the overhead of rCOREIL for each query is on an average 207ms lower than that of

COREIL. This is more than 10% improvement over the average overhead of COREIL.

In addition, rCOREIL (mean: 644ms) also makes cheaper configuration changes than

COREIL (mean: 858ms). rCOREIL also converges faster than COREIL as the last

configuration update made by rCOREIL occurs at the 335thquery but the last two

updates for COREIL occur at the 358th and 1940th queries respectively. If we look

closely, the 358th and 1940th queries in this particular experiment are:

SELECT COUNT(DISTINCT (S_I_ID)) AS STOCK_COUNT

FROM ORDER_LINE, STOCK

WHERE OL_W_ID = 2 AND OL_D_ID = 10 AND OL_O_ID < 3509

AND OL_O_ID >= 3509 - 20 AND S_W_ID = 2

AND S_I_ID = OL_I_ID AND S_QUANTITY < 20;

and

SELECT COUNT(DISTINCT (S_I_ID)) AS STOCK_COUNT

3.7 Performance Evaluation 137

0 500 1,000 1,500 2,000 2,500 3,000

1,600

1,800

2,000

2,200

2,400

Query Number

T
im

e
(m

s)

COREIL
rCOREIL

Figure 3.12: Evolution of the effectiveness (query execution time in the DBMS alone)
of COREIL and rCOREIL with λ = 400 from the beginning of the workload (smoothed
by averaging over a moving window of size 20); logarithmic y-axis

FROM ORDER_LINE, STOCK

WHERE OL_W_ID = 1 AND OL_D_ID = 8 AND OL_O_ID < 3438

AND OL_O_ID >= 3438 - 20 AND S_W_ID = 1

AND S_I_ID = OL_I_ID AND S_QUANTITY < 11;

In reaction to this, COREIL creates indexes [ORDER_LINE.OL_D_ID,ORDER_LINE.

OL_W_ID] and [STOCK.S_W_ID, STOCK.S_QUANTITY] respectively. It turns out that

such indexes are not of much use for most other queries (only 6 out of 3000 queries

benefit of one of these indexes). COREIL makes configuration updates to tune the

indexes for such queries, while the regularised cost model of rCOREIL does not make

configuration updates due to rare and complex events, because it regularises any big

change due to such an outlier. Instead, rCOREIL has a slightly higher the overhead

to find out the optimal indexes. For example, in the window consisting of 10 queries

after the 359th query average overhead of rCOREIL increases from 1724ms to 1748ms.

138 Learning with Unknown Reward: Automated Database Tuning

0 500 1,000 1,500 2,000 2,500 3,000

10−3

10−2

10−1

100

101

102

103

Query #

E
st
im

a
te
d
C
o
st

COREIL
rCOREIL

Figure 3.13: Evolution of the estimated costs of COREIL and rCOREIL with λ = 400
from the beginning of the workload (smoothed by averaging over a moving window of
size 20); logarithmic y-axis

Effectiveness

Like Section 3.7.3, here also we extract the cost of query execution to verify the

effectiveness of indexes created by the tuning algorithms. Figure 3.12 indicates that

the set of indexes created by rCOREIL are significantly more effective than those

created by COREIL. We can see the average query execution time of rCOREIL is less

than that of COREIL almost by a factor of 10.

At a micro-analysis level, we observe rCOREIL creates only one index with two

combined attributes, all other indexes being single-attribute. On the other hand,

COREIL creates only one index with a single attribute whereas all other indexes have

two attributes. This observation shows that though COREIL creates parsimonious and

efficient indexes, rCOREIL shows even better specificity and effectiveness in doing so.

3.7 Performance Evaluation 139

0 100 200 300

0

200

400

600

800

Execution time (ms)

C
O
R
E
IL

es
ti
m
a
te
d
co
st

0 100 200 300

100

101

102

103

104

Execution time (ms)

W
h
a
t-
if
es
ti
m
at
ed

co
st

Figure 3.14: Scatter plot of the estimated cost by COREIL and the what-if optimiser
vs execution time. Left shows correlation between cost estimated by COREIL and
actual execution time (in ms). Right shows (on a log y-axis) correlation between the
cost estimated by the what-if optimiser and the actual execution time (in ms) in the
same run.

3.7.5 Analysis of Cost Estimator

In order to examine the quality of the three cost estimators used by WFIT, COREIL,

and rCOREIL to predict the actual cost of query executions or configuration updates,

we observe the actual execution time, the estimated cost, and that returned by the

what-if optimiser during every run of experiments for COREIL and rCOREIL, respec-

tively. The scatter plot of Figure 3.14 shows that the what-if cost has significantly

less correlation (0.013) with the actual execution time than COREIL (0.1539) Again,

the scatter plot of Figure 3.15 shows the regularised cost estimated by rCOREIL has

significantly higher positive correlation (0.1558) than that predicted by the what-if

optimiser. This proves that the execution time estimated by COREIL and rCOREIL

are significantly more reliable than the ones estimated by what-if optimiser. It can also

been observed that rCOREIL provides better estimations: visually, there are many

more points at the middle of Figure 3.15 (left) with positive inclination.

Finally, Figure 3.13 shows that the regularised cost model estimator of rCOREIL

gives a more stable estimation of the cost model than that of COREIL, as the cost

140 Learning with Unknown Reward: Automated Database Tuning

0 200 400 600
0

0.2

0.4

0.6

0.8

1

Execution Time (ms)

rC
O
R
E
IL

E
st
im

at
ed

C
os
t

0 200 400 600

101

102

103

104

Execution Time (ms)

W
h
at
-i
f
E
st
im

at
ed

C
os
t

Figure 3.15: Scatter plot of the estimated cost by rCOREIL and the what-if optimiser
vs execution time. Left shows correlation between cost estimated by rCOREIL and
actual execution time (in ms). Right shows (on a log y-axis) correlation between the
cost estimated by the what-if optimiser and the actual execution time (in ms) in the
same run.

model estimated by COREIL (averaged over 20 queries) shows higher variance and

also sensitivity to changes in types of queries.

3.8 Conclusion

Cost-model oblivious adaptive database tuning. We have presented a cost-

model oblivious solution to the problem of performance tuning. We first formalised

the problem as a Markov decision process. Then we devised and presented a solution,

which addresses both issues of the curse of dimensionality and of over-fitting. We

instantiated the problem to the case of index tuning. For this case, we implemented

and evaluated the COREIL and rCOREIL algorithms, with and without regularisa-

tion, respectively. Experiments show competitive performance with respect to the

state-of-the-art WFIT algorithm, despite our approach being cost-model oblivious.

We also show that as our cost-model estimation becomes crisp and stable the perfor-

mance of learner improves significantly. Beyond the material presented in this paper,

we continue studying the universality and robustness of the COREIL and rCOREIL

approaches.

3.8 Conclusion 141

Specially for rCOREIL, it is an interesting problem to determine the optimal regu-

larisation parameter on the go or to adapt it with the dynamics of workload. Though

now this process causes us only a one-time up-front cost, following the flavour of our

approach we would like to perform it online. One possible method is to run COREIL

for the first 500 queries and to calculate the costs for different set of regularisation

parameter values simultaneously for that period. Following that, we can choose the

parameter value that causes minimum average estimation of the cost function.

We are now running further empirical performance evaluation tests with other

datasets such as TPC-E, TPC-H and dedicated benchmarks for online index tun-

ing [Jimenez et al., 2011]. For completeness from an engineering perspective, we are

considering concurrent access, which was ignored in the algorithm and experiments

presented in this paper for the sake of simplicity. We are also going to look at the

favourable case of predictable workload such as periodic transactions. Furthermore,

we are extending the solution to other aspects of database configuration, including

partitioning and replication. For each of these aspects, we need to devise specific and

non-trivial heuristics that help curb the combinatorial explosion of the configuration

space as well as specific intelligent initialisation techniques.

Finally, note that a critical assumption in our approach is that queries arrive

sequentially and that nothing is known ahead of time about the workload. Both

assumptions do not held in a number of realistic settings: queries can be submitted

concurrently to the database, and a workload may often be predictable, such as when

it consists of similar transactions, repeated on different data items.

Cost-model oblivious online algorithm for MDPs. Designing COREIL and

rCOREIL actually develops a general approach to design online algorithms to solve

MDPs. In the proposed scheme, an algorithm has to use functional approximation

technique for resolving curse of dimensionality, estimates a cost model to learn a func-

tion, and uses actor-critic approach to exploration-exploitation is shown in Figure 3.16.

Figure 3.16 shows the arrangement of these blocks that leads to an online algorithm

142 Learning with Unknown Reward: Automated Database Tuning

Database Tuning Process

Actor

Tuning algorithm

Critic

Figure 3.16: Designing online cost-model oblivious MDP solving algorithm with func-
tional approximation technique.

with fast computational time, guaranteed convergence, and cost-model learning ca-

pability. Here, the environment is the database tuning process with unknown query

distribution. We choose the LSTD for the policy evaluation block. The restricted

search space approximation of Bellman equation for the policy update block. The cost

function estimation uses recursive least square estimation and recursive regularised

least square estimation techniques. Design of feature maps is instantiated for index

tuning problems such that they take values like ±1, or 0. Assignment of such values to

different components is application motivated while the values themselves are chosen

to induce sparsity during computation.

Though we have chosen such blocks according to the application that we are dealing

with, and our intention to achieve theoretical guarantees of convergence, speed, and

accuracy of estimation, the blocks can be varied widely. The cost function estimators

can be replaced by other online regression, and functional regression blocks. Even

probabilistic estimators like Gaussian process regression or online bandit optimisation

3.8 Conclusion 143

techniques can be used to estimate the cost function. In case of the policy evaluation

block, online versions of several algorithms like LSTD(λ) or Batch-iFDD can be used.

The policy update block can be replaced by several gradient based techniques, such as

natural actor-critic or advantage actor-critic. Even following the present developments

in reinforcement learning algorithms, the actor-critic block can be replaced by a deep

reinforcement learning algorithm for applications with sufficient amount of offline data.

We only instantiate a specific variant of this algorithm design technique for COREIL

and rCOREIL that indicates that using a stable cost-estimator with reasonable regret

bound, and a feature mapping with compatible convergence properties would lead to

a well-behaved, fast, and converging online algorithm for cost-model oblivious MDPs.

Chapter 4

Learning with Unknown Transitions:

Live Migration of Virtual Machines

Life is pleasant. Death is peaceful. It’s the transition that’s troublesome.

-Isaac Asimov 1

In this chapter, we discuss design of algorithms using functional approximation

methods for Markov decision processes with unknown transition functions, and develop

it in the context of energy- and performance-efficient live migration of virtual machines

in Clouds.

Cloud providers leverage live migration of virtual machines [Clark et al., 2005] to

reduce energy consumption and allocate resources efficiently in data centers. Each

migration decision depends on three questions. The questions are when to move a

virtual machine, which virtual machine to move, and where, i.e. to which physical

host to move it? Dynamic, uncertain, and heterogeneous workloads running on vir-

tual machines make such decisions difficult. Knowledge-based and heuristics-based

algorithms are commonly used to tackle this problem. Knowledge-based algorithms,

such as MaxWeight scheduling algorithms [Maguluri et al., 2012], are dependent on

the specifics and the dynamics of the targeted Cloud architectures and applications.
1Quoted in “Digital video transition analysis and detection" by Wei Jyh Heng and King N. Ngan,

2002.

146 Learning with Unknown Transitions: Live Migration of Virtual Machines

Heuristics-based algorithms, such as MMT algorithms [Beloglazov and Buyya, 2012;

Beloglazov et al., 2012], suffer from high variance and poor convergence because of

their greedy approach. We propose an online reinforcement learning algorithm called

Megh [Basu et al., 2017c]. Megh does not require prior knowledge. It learns the dynam-

ics of the workload as-it-goes. Megh models the problem of energy- and performance-

efficient resource management during live migration as a Markov decision process and

solves it. While several learning algorithms are proposed to solve this problem, these

algorithms remain confined to the academic realm as they face the curse of dimen-

sionality. They are either not scalable in real-time, as it is the case of MadVM [Han

et al., 2016], or need an elaborate offline training, as it is the case of Q-learning. Megh

overcomes these deficiencies. Megh uses a novel dimensionality reduction scheme to

project the combinatorially explosive state-action space to a polynomial dimensional

space with a sparse basis. Megh has the capacity to learn uncertain dynamics and

the ability to work in real-time. Megh is both scalable and robust. We implement

Megh using the CloudSim toolkit [Calheiros et al., 2011] and empirically evaluate its

performance with the PlanetLab [Park and Pai, 2006], and the Google Cluster [Reiss

et al., 2011] workloads. Experiments validate that Megh is more cost-effective, incurs

smaller execution overhead and is more scalable than MadVM and MMT. An empirical

sensitivity analysis explicates the choice of parameters in experiments.

4.1 Introduction

Infrastructure as a Service (IaaS) environments of Cloud computing leverage virtu-

alisation technology [Barham et al., 2003] to provide a shared platform of resources

accessible at any time and from anywhere through the Internet. Cloud providers al-

locate Virtual Machine instances (VM) on a cluster of Physical Machines (PM). VMs

allow users to share physical resources concurrently. Therefore, VMs enhance utilisa-

tion of resources and increase return on investment for Cloud providers.

4.1 Introduction 147

Making such an optimal allocation of resources is challenging not only in general-

purpose IaaS Clouds [Li et al., 2017] but also in Clouds with specialised features like

scientific computing [Iosup et al., 2011] or online transaction. A large number of users

accessing the Cloud, the diversity of applications, and the heterogeneity of hardware

yield significant variations in performance. Furthermore, the uncertain dynamics of

workloads creates abrupt and unpredictable changes in resource utilisation. Thus,

dynamic allocation of VMs in Clouds is indispensable. In order to avoid disruption

due to dynamic allocation, [Clark et al., 2005] and [Nelson et al., 2005] proposed the

idea of a live migration scheme. During live migration, pages from the memory of

the migrating VM are copied to the destination machine while it keeps on running on

its present host. If properly carried out, live migration causes minimal downtime and

minimal noticeable effect from the user end. Live migration raises three questions to

the Cloud administrator: which VM to move, where, i.e. to which physical host to

move, and when to move?

These resource management decisions during live migration drastically affect the

energy consumption of the Cloud data centres. As energy consumption contributes

almost 75% of the operation cost of a data center [Belady, 2007], from the Cloud

provider side it is the most important metric for live migration. Migration events may

also cause significant deterioration of the Quality of Service (QoS) promised by the

Cloud providers and can violate the Service Level Agreements (SLAs) [Wieder et al.,

2011]. These agreements also define monetary penalties for the Cloud providers when

violated. In this work, we develop cost models for the SLA violations and the energy

consumption during a live migration and aggregate them to construct an operation

cost.

Energy- and performance-efficient resource management in Cloud data centres is

difficult as the workloads running on the corresponding VMs are uncertain, dynamic

and heterogeneous. Figures 4.1(a) and 4.1(b) reasserts this nature of the workloads

in Cloud data centers. Knowledge-based and heuristics-based algorithms are applied

to solve the resource management problem. Knowledge-based algorithms, such as

148 Learning with Unknown Transitions: Live Migration of Virtual Machines

Time (in 5 minutes)

W
o

rk
lo

a
d

 (
in

 %
 o

f
C

P
U

 u
ti

liz
a

ti
o

n
)

10

100

0

0 500 1000 1500 2000

MAXIMUM

90 PERCENTILE

MEAN

10 PERCENTILE

(a) PlanetLab Workload

0 500 1000 1500 2000 2500
0

0.5

1

2

x 10 6

Starting Time (in seconds)

T
a

s
k

 I
D

1.5

(b) Google Cluster workload

Figure 4.1: Dynamics of PlanetLab workloads and starting times of tasks in Google
Cluster. The y-axis shows the %of CPU usage by the user and the x-axis shows
time discretised in the unit of 5 minutes. Lines from up to down show maximum, 90
percentile, mean, and, 10 percentile of all the workloads at any instance.

MaxWeight scheduling algorithms [Maguluri et al., 2012], or [Tseng et al., 2017] for

video streaming data centers, are oblivious to the specifics and the dynamics of Cloud

architectures and applications that do not belong to their knowledge-base. Heuristics

like dynamic consolidation algorithms [Beloglazov and Buyya, 2012; Beloglazov et al.,

2012] do not use such specific knowledge base. They save the power by greedily

accumulating a majority of VMs on a smaller number of servers. Heuristics-based

algorithms improve the performance by taking cost-effective VM migration decisions

from under- or over-utilised servers. These heuristics may become unstable while

tackling uncertain dynamics and may make suboptimal decisions due to their myopic

and greedy nature.

The shortcomings of knowledge-based and heuristics-based algorithms has moti-

vated us to look into reinforcement learning [Sutton and Barto, 1998]. Reinforcement

learning is a framework of machine learning as discussed in Chapters 1 and 2. In

reinforcement learning, an agent operating in an uncertain environment tries to take

optimal decisions by learning more about the dynamics of its surroundings as-it-goes.

If we consider the Cloud administrator system as a learning agent and the user work-

loads operating on the Cloud with corresponding resource distribution as the uncertain

environment, our problem manifests as a reinforcement learning problem. Here, the

4.1 Introduction 149

system tries to take optimal live migration decisions as-it-goes by learning the dynam-

ics of the workload and adapting accordingly. A policy or a sequence of decisions

made by reinforcement learning is optimal if it does live migration and resource man-

agement of data center with minimum operation cost. Reinforcement learning tries

and computes such an optimal policy by predicting as-it-goes the optimal decisions

based on immediate costs. As the number of ways the VMs can be allocated to the

hosts or PMs is combinatorially large, it creates a huge state space and also makes

reinforcement learning intractable. This problem of exploding state space is called

curse of dimensionality in reinforcement learning. Curse of dimensionality restricts

the applicability of recently proposed learning algorithms in real-life scenarios. These

algorithms are either not scalable in real-time, as it is the case of MadVM, or need

an elaborate offline training, as it is the case of Q-learning. We propose an online

reinforcement learning algorithm, called Megh, to solve this problem as-it-goes. Megh

projects the state space into a smaller vector space and learns the dynamics of the

workloads without assuming any model or prior knowledge. Megh is a robust algo-

rithm to learn the uncertainty and diversity of workloads as-it-goes. At each step,

the sparsity of the projected space is leveraged to act effectively without creating any

significant overhead in the course of live migration. The data structure exploiting this

sparsity makes Megh time-efficient and therefore, a contending real-time solution for

energy- and performance-efficient live migration.

We evaluate the performance of Megh by simulating it using the CloudSim toolkit [Cal-

heiros et al., 2011] over workload data extracted from PlanetLab [Park and Pai, 2006]

and Google Cluster [Reiss et al., 2011]. We compare Megh with state-of-the-art dy-

namic consolidation based Minimum Migration Time (MMT) algorithms: THR-MMT,

IQR-MMT, MAD-MMT, LR-MMT, and LRR-MMT [Beloglazov et al., 2012; Bel-

oglazov and Buyya, 2012]. We also test the performance of Megh against MadVM [Han

et al., 2016], which is the most recent reinforcement learning based algorithm for dy-

namic resource management in a data center. Experiments prove the efficiency of

Megh as it significantly reduces the total operation cost and the number of VM mi-

150 Learning with Unknown Transitions: Live Migration of Virtual Machines

grations occurring over a period of time with respect to the competing algorithms.

Unlike MadVM suffering from the curse of dimensionality, Megh takes significantly

smaller execution time than MMT heuristics even for large data center configurations.

The results validate the robustness, efficiency and real-time execution of Megh to

cost-effectively decide live migrations under uncertain workload dynamics. A compar-

ative scalability analysis also demonstrates Megh’s better scalability than THR-MMT.

A sensitivity analysis empirically explicate our choices of parameters controlling the

exploration-exploitation trade-off of Megh.

Our Contribution. We propose an online reinforcement learning algorithm, Megh,

to solve the problem of energy- and performance-efficient live VM migration where the

workload dynamics are not known a priori. We develop a sparse projection scheme that

approximates the value function uniquely (Theorem 1). While the projection scheme

reduces the complexity of Megh and practically resolves the curse of dimensionality,

Megh asymptotically converges to the optimal policy (Theorem 2). The projection

scheme and the proposed online transition operator update induce two significant im-

provements in Megh’s performance. Firstly, Megh is oblivious to the training phase.

Megh learns the workload dynamics on-the-go while optimizing the decisions simul-

taneously. Secondly, each iteration of Megh incurs small execution time proportional

to the number of VM migrations happening at that iteration. We experimentally ver-

ify these outcomes for the system and the cost model discussed in Section 4.3, and

the workload traces from PlanetLab and Google Cluster. Comparative performance

evaluation validates that Megh reduces 14% and 8% operational cost with respect to

THR-MMT and MadVM (in testing phase) respectively, while Megh incurs 95% and

25% execution time in comparison with THR-MMT and MadVM.

Structure of the Chapter. The rest of this chapter is organised as follows. In Sec-

tion 4.2, we review the related work. In Section 4.3, we depict the system model and

build up the mathematical formulation to calculate costs of energy consumption and

SLA violation. We introduce the problem of cost-optimal live migration as a reinforce-

4.2 Literature Review and Contextualisation 151

ment learning problem and formulate it mathematically in Section 4.4. Following that

in Section 4.5, we propose an algorithm Megh to solve it in real-time. In Section 4.6,

we elaborate the detailed experimental set-up and also evaluate the performance of

Megh. We discuss the future research directions and conclude the paper in Section 4.7.

4.2 Literature Review and Contextualisation

While Megh tries to perform energy and performance efficient live VM migrations for

resource management, the form of the problem it solves and the way it solves are based

on reinforcement learning. Here, we review the related works in these two areas.

4.2.1 Dynamic VM Consolidation

A profitable strategy for Cloud vendors is the dynamic consolidation of underutilised

virtual machines to fewer physical servers to save hardware, to reduce energy con-

sumption [Nathuji and Schwan, 2007], and to eliminate hotspots [Wood et al., 2007].

Due to the dynamic nature of Cloud workloads, there have been many studies in the

field to investigate an optimal dynamic VM provisioning plan. One key requirement

of dynamic VM consolidation is to pack VMs tightly while preserving SLAs. [Mann,

2015] recently presented an extensive survey of the problem models and optimisation

algorithms. [Wang et al., 2011] consider the dynamic network bandwidth demand for

real workloads and model the VM consolidation into a Stochastic Bin Packing problem.

[Song et al., 2014] similarly applied a variant of the relaxed on-line bin packing model,

which was shown to work well on a small-scale cluster. [Maguluri et al., 2012] further

modelled VM consolidation using a stochastic model where jobs arrive according to

a stochastic process, and described MaxWeight algorithms, a family of frame-based

non-preemptive VM configuration policies to improve overall throughput. Compared

to existing models and algorithms, Megh makes no a priori assumption on the work-

load arriving pattern or load distribution, which may be adapted to various scenarios

152 Learning with Unknown Transitions: Live Migration of Virtual Machines

while requiring a small number of migration requests and thus having little impact on

running workloads.

In the existing literature, the Minimum Migration Time (MMT) family of algo-

rithms [Beloglazov et al., 2012; Beloglazov and Buyya, 2012] function without any

assumption on the workload model like Megh and perform in real-time. Due to this

general structure and online mode of operation, we have compared Megh’s performance

with them. These algorithms are heuristics designed for energy and performance effi-

cient dynamic consolidation of VMs in Clouds. They start migrating a VM when its

utilisation crosses a certain threshold. The threshold can be fixed (for THR-MMT) or

determined adaptively (for IQR-MMT, MAD-MMT, LR-MMT and LRR-MMT) from

the summary statistics of workloads’ history. The VM is migrated to a different host

such that the migration time is minimum. These methods are greedy heuristics that

suffer from high variation and instability like other heuristic-based algorithms, while

Megh, being a learning algorithm, does not.

4.2.2 Reinforcement Learning Algorithms for VM Migration

Reinforcement learning [Sutton and Barto, 1998] is a framework of machine learning.

In reinforcement learning, an agent aims at taking optimal decisions by developing

an understanding of the constantly evolving environment around it. As mentioned

in 2.2, Markov decision process (MDP) [Puterman, 2009] is a formulation for modelling

and solving reinforcement learning problems. MDPs assume that it is sufficient to

remember the present state of the system to decide the next decision or action, while

rewards of state-action pairs carry the relevant information of system’s history. The

agent tries to fix a policy or a sequence of decisions that will maximise the cumulative

sum of rewards acquired.

[Farahnakian et al., 2014] and [Masoumzadeh and Hlavacs, 2013] apply Q-learning

algorithm [Watkins and Dayan, 1992] for energy–efficient resource management in

Clouds. [Rao et al., 2009] uses it for automatic reconfiguration of resource sharing VMs.

Q-learning is an offline algorithm. We have to go through computationally expensive

4.2 Literature Review and Contextualisation 153

training periods of a few hundred iterations before using it in an online setup like

the one addressed. But there is no reliable guarantee on the optimality of Q-learning

for online learning setup for any approximated value function [Baird et al., 1995].

The general efficient VM migration problem may consist of cases where the algorithm

encounters a significant variance in the real-life workload than the training one due

to change in user base or their applications. Under such conditions, Q-learning has a

high probability to break down or perform sub-optimally.We have done a comparative

performance analysis with respect to Q-learning. We omit an elaborate description of

that in this article due to Q-learning’s dependence on offline training and presence of

a recent, on-line approach called MadVM.

MadVM [Han et al., 2016] models the energy-efficient dynamic resource manage-

ment of VMs as an approximate MDP. This algorithm assumes no prior knowledge of

workload and uses value iteration [Bellman, 1957b] algorithm to solve the problem. At

each step, MadVM tries to select decisions that simultaneously maximise the expected

cumulative rewards of each of the VMs. This algorithm is indirect as it does not try

to optimise directly over a policy space but rather rely exclusively on value function

approximation, that hopefully returns a near-optimal policy. Due to the combinatori-

ally large state space of the problem, MadVM also faces the curse of dimensionality

of reinforcement learning approaches. This leads to a key state selection procedure to

connect the policy space and the value functions. This procedure for dimensionality

reduction, however, is computationally expensive. MadVM tries to simultaneously

optimise the utility functions of each of the VMs. Simultaneous optimisation requires

bookkeeping of transition functions and evaluation of key states for each of them. This

computational burden makes MadVM poorly scalable for real-time applications.

Furthermore, MadVM is a critic-only algorithm whereas Q-learning is an actor-only

algorithm. Actor-only algorithms suffer from high variance due to its sensitivity to the

estimates of the gradient. Critic-only algorithms are stable but usually needs a discre-

tised version of the state-action space. Discretisation may lead to suboptimal results.

Megh relies on the actor-critic [Grondman et al., 2012a] approach of algorithm design.

154 Learning with Unknown Transitions: Live Migration of Virtual Machines

The actor tries to evaluate the policy as an incremental functional approximation prob-

lem. The critic leverages this estimated policy for approximating and updating value

function using samples collected as-it-goes. This feedback ensures better convergence

property and stability. In the proposed approach, we use such an off-policy actor-critic

variant of least-square policy iteration (LSPI) algorithm [Lagoudakis and Parr, 2003b]

as the skeleton. We utilise the projection based dimensionality reduction techniques

and sparsity-based improved data structures described in Section 4.5 to construct our

real-time learner Megh.

4.3 A Cloud Data Centre: System and Cost Models

In the following subsections, we describe the system model of a data centre used by

Megh. Following that, we formulate cost models for energy consumption and SLA

violation.

4.3.1 System Model

In IaaS environments Cloud providers serve the users with virtualised computing re-

sources over the Internet. In order to model such a system, we consider a data centre

consisting of M heterogeneous physical machines (PMs) or hosts. Each of these PMs

is characterised on the basis of the number of CPUs, the number of cores, the amount

of RAM and the network bandwidth. Here, the performance of a CPU is defined in

Millions Instructions Per Second (MIPS). In our paper, we consider the CPUs belong-

ing to the same PM as a single-core CPU with the cumulative MIPS performance of all

the cores. Independent users submit requests for provisioning of computing resources

to the Cloud. In turn, N users are assigned to N heterogeneous VMs hosted by M

PMs. Each of the VMs is allocated CPU performance, memory size, RAM, and net-

work bandwidth as per the users’ requirements. We assume no a priori knowledge of

the applications, workload dynamics and the provisioning time of VMs. This allows

4.3 A Cloud Data Centre: System and Cost Models 155

us to deal with both general-purpose and specialised setting of mixed workloads with

uncertain dynamics that utilise the resources of a PM concurrently.

The proposed reinforcement learning algorithm, Megh, is implemented as a part

of the global resource manager of the Cloud. This global manager acts as an interface

between users’ workloads and requirements, and the virtualisation layer. The Virtual

Machine Managers (VMMs) operating at each of the physical nodes act as the con-

tinuous monitoring systems. They send the workload dynamics of each VM and the

resources utilised by them to the global manager. The global manager acts as the

learning agent in Megh. The global manager accumulates the information and allo-

cates the resources such that the energy consumption as well as the SLA violation will

be minimised. Following this, the decision is sent to VMMs as a resource map. VMs

are migrated and consolidated accordingly. Megh may migrate the VMs allocated

in an underloaded PM to another PM with potential capacity and put the first PM

down to sleep. Similarly, if a PM gets overloaded, some of the VMs operating on it

are migrated to another PM such that the expenditure for energy consumption and

SLA violation remains minimal.

Following previous works on energy–efficient live migration of Clouds [Beloglazov

and Buyya, 2012; Beloglazov et al., 2012; Han et al., 2016], we consider CPU utili-

sation data as the key metric of characterising the workloads. We are aware of the

importance of bandwidth and memory as resources, and research works [Lago et al.,

2017; Yu et al., 2017] accounting available bandwidth and network traffic as principal

decision variables for VM migration. One can build cost models for these resources

and add them as additional modules in the cost calculation without modifying Megh

algorithmically.

156 Learning with Unknown Transitions: Live Migration of Virtual Machines

4.3.2 Energy Consumption Cost

Energy consumption cost of the Cloud data center can be considered as a function of

time Cp : N→ R≥0, such that

Cp(t) = cp

∫ t

0

P (τ)dτ, ∀t ≥ 0. (4.1)

Here, cp ∈ R+ denotes the cost of consuming 1 Watt of power for 1 second. It is a fixed

constant according to the place where the data center is built up, whereas P : N→ R≥0

is the function representing the amount of power (in Watts) consumed by the data

center at time τ (in seconds). This function does not only depend on the workload

dynamics of VMs but also on the CPU performance, memory size, disk storage and

cooling system of the PMs installed in the data center [Minas and Ellison, 2009]. Fol-

lowing the works by [Beloglazov et al., 2012], we leverage the power consumption data

provided by the SPECpower_ssj® 2008 benchmark [Huppler et al., 2012; SPECpower

Committee, 2014] rather than moving our focus to precisely modelling P (θ). This is

a certified industry-standard benchmark to evaluate the power and performance char-

acteristics of server-class computer equipments. SPECpower_ssj® 2008 is tested on

a wide variety of operating systems and hardware architectures to remove extensive

dependence on data center infrastructure for power–performance characteristics calcu-

lations. This benchmark [SPECpower Committee, 2014] provides energy consumption

level y for a collection of servers with different CPU architectures under a workload of

x% working on its CPU, as shown later in Table 4.1. Now, if we assume that the Cloud

management system extracts the workload dynamics at a certain time granularity, say

τ > 0, we can model the cost of energy consumption up to time t as

Cp(T) = cp

T∑
k=0

M∑
i=1

yi(kτ)τ, ∀ T ≥ 0 (4.2)

4.3 A Cloud Data Centre: System and Cost Models 157

where, T ≜ ⌈ t
τ
⌉ represents the discretised version of time t, yi(kτ) ∈ R≥0 is the power

consumed by the ith PM at time kτ ∈ (0, t), and M denotes the total number of PMs

operating in the data center.

4.3.3 SLA Violation Cost

Though energy consumption covers the major part of the Cloud provider’s expenditure,

Quality of Service (QoS) provided by the Cloud is a concern from the user’s side.

Specifically, QoS is negotiated using a legal agreement between the user and the Cloud

provider, called Service Level Agreement (SLA). SLAs provided by companies like

Amazon, Microsoft and Google confirm that service providers promise to pay users

certain monetary penalties if the QoS degrades below certain levels. We also observe

that QoS is defined as the uptime percentage of the user. Uptime is the percentage

of total access time for which the user can utilise the Cloud services without any

interruption. Downtime is the percentage of total access time for which the user

cannot utilise the Cloud services due to the interruption. Some of the Cloud providers

do not consider any continuous downtime below 5 minutes as a degradation of QoS to

provide the system privilege. In this paper, we consider the exact downtime without

such bias. Thus, SLA violation cost at time t for a Cloud with M PMs and N VMs

can be expressed as,

Cv(t) =
N∑
j=1

cjv(t), ∀t ≥ 0 (4.3)

Here, cjv(t) is the SLA violation cost for VM j at time t. We define cjv(t) as

cjv(t) =


cv1, if user’s downtime percentage up to t ∈ (0.05%, 0.10%]

cv2, if user’s downtime percentage up to t > 0.10%

0, otherwise

158 Learning with Unknown Transitions: Live Migration of Virtual Machines

The system model considers each VM is used to virtually assign computing resources

to each of the users. Thus, the user would be paid a certain penalty if the service is

down for more than certain threshold of total usage.

As we allocate and manage the resources by migrating the VMs from one machine

to another, we face two scenarios of QoS degradation. In the first case, when one or

multiple VMs are allocated to a PM, it faces a sudden rise of workload. The PM gets

overloaded. Overloading occurs when VMs try to use more resources than the capacity

of the host PM. Overloading provokes migration of VMs from that host to another.

Due to discretised time of observations by the global learning agent, and the inherent

delay of the host system to react and adapt to the scenario, some time is lost before the

migration decision is made and executed. During this period, the VMs working on that

host remain suspended or their performance degrades substantially. This phenomenon

introduces a downtime in each of the VMs working on that host. This window of time

is termed as the overloading time. In this paper, we denote overloading time of host

PM i at time t as Toit . Toit represents the total time during which the host i has

experienced the utilisation of greater than β% leading to overloading. The active time

Tait of the PM i is defined as the total time for which it is serving the users. Thus, we

define the percentage of overloading time as the fraction of the active time for which

the host is overloaded, i.e.

Oi(t) ≜ Toit

Tait
. (4.4)

In the second case, the downtime is caused by the live migration process itself.

Though the live migration transfers a VM from a host PM to another destination PM

without suspending the running application, it still causes a downtime. The migration

time is defined as the time required to copy all the pages of a VM from its present

host memory to the destination memory for a given network bandwidth. Mjt denotes

the amount of memory used by VM j right before initiating the migration at time t.

Bjt denotes the available bandwidth of the network. The expected migration time of

4.3 A Cloud Data Centre: System and Cost Models 159

VM j is defined as

TM jt ≜
Mjt

Bjt

.

Thus, the downtime of VM j during live migration is estimated as the time for which

its estimated CPU utilisation ûj(t) will be less than a certain threshold. This threshold

is introduced as a given α% > 0 of the workload uj(t) that is demanded from the VM

by the user. Thus, we estimate the live migration downtime of VM j at time t as

Tdjt ≜
∫ t+TM jt

t

1 (ûj(τ) < αuj(τ)) dτ,

where uj(t) is the CPU utilisation by VM j at that time t. 1 is the indicator function

defined as

1 (ûj(t) < αuj(t)) ≜

1, ûj(t) < αuj(t)

0, otherwise
, ∀t ≥ 0.

If Trjt is the total active time requested by the VM j till the time t, we estimate the

percentage of live migration downtime of VM j as the ratio of the estimated migration

time of VM j and the total active time.

Dj(t) ≜
Tdjt

Trjt
. (4.5)

Thus, the total downtime percentage for VM j up to time t is defined as the sum

of its downtime due to live migration and the overloading time of the PMs, which

got overloaded while the VM was operating on it. Equations (4.4) and (4.5) provide

us a mathematical model to calculate the SLA violation cost for each of the VMs.

Though we develop and use the aforementioned cost model for SLA violation, it can

be replaced with other cost models considering varying market prices and various

subtle factors [Alsarhan et al., 2018] without further modifying Megh.

160 Learning with Unknown Transitions: Live Migration of Virtual Machines

4.4 Live Virtual Machine Migration as a Learning

Problem

In this section, we formulate the problem of energy– and performance–efficient resource

management during live migration of VMs as a reinforcement learning problem.

Let us consider a Cloud data center with M PMs. Each of the PMs has homoge-

neous CPU capacity h. Each of the VMs is assigned to each of the users on the basis of

their requests. Thus, the maximum number of users that the Cloud can handle is the

maximum number of VMs it can allocate. Though the workloads and requirements

of users may differ, the maximum CPU capacity that can be allocated to a VM is a

constant, say v. Under the worst case scenario, when each of the VMs will ask for

maximum CPU capacity, the maximum number of VMs n that can be allocated to a

single PM is ⌊h
v
⌋. Furthermore, the total number of VMs N that can be allocated to

the data center at any instance is Mn. The VMs are accessed by a large volume of

users with diverse requirements and applications, and the dynamics of these workloads

are also uncertain. This may cause a sudden change in workloads of one or multiple

VMs and consequently overloading of hosts. Then one of the VMs working on the

overloaded host has to be migrated to another destination PM such that cost for en-

ergy consumption and SLA violation remains minimal. While doing so the system has

to decide which VM to move to which destination host and when to start moving, so

that the penalty will be minimum ensuring maximum profit of Cloud provider and

also maximum QoS for users.

[Dertouzos and Mok, 1989] proves that optimal scheduling of tasks in a multiproces-

sor system is impossible in the absence of any prior knowledge of the deadline and the

request distribution. [Sha et al., 2004] states that resource allocation among even soft

real-time tasks under fully stochastic environment is analytically intractable. Thus,

online allocation of tasks in a data center with unknown job request distribution and

unknown job durations is intractable, and learning the stochastic nature of workload

is essential for taking optimal decisions.

4.4 Live Virtual Machine Migration as a Learning Problem 161

We model the process of live migration with uncertain workloads as a Markov

Decision Process [Puterman, 2009]. In this model, the state space S is Cartesian

product of the set of all configurations of the VMs on the PMs C, and the workloads

W (t) operating on the VMs at time t. At a given time t, W (t) is a real-valued

vector with N components, where each component represents the CPU usage of a

VM at that instance. Since W (t) varies continuously and stochastically, it makes the

state space infinite dimensional and introduces uncertainty in state transitions. The

action space A corresponds to migration of any of the VMs from one PM to another

depending on the operating workloads. Each action is represented by a pair (j, k),

where j is the migrating VM, and k is the destination PM. In order to capture the

uncertainty of workloads, we define transition function f : S × A → P(S), where P

is a probability measure over state space. Given the present state and an action, f

returns the probability to reach another state. But in our problem, it is not known

a priori and has to be learned. The cost of changing a configuration st−1 of VMs to

another configuration st is given by

C(st−1, st) = △Cp(st−1, st) +△Cv(st−1, st) ∀ t ∈ {τ, 2τ, . . .}. (4.6)

△Cp(st−1, st) and△Cv(st−1, st) are the costs of energy consumption and SLA violation

in the interval (t− 1, t]. Here, Cp and Cv are defined by Equations (4.2) and (4.3)

respectively. We observe △Cp(st−1, st) is always positive as the system will always

consume some energy whether any migration happens or not. We also observe that

△Cv(st−1, st) ≥ 0. The equality holds if and only if there is no SLA violation in that

interval.

This formulation reduces the problem to finding the sequence of configurations that

minimises the sum of future per-stage costs. Unlike MadVM that assumes an average

cost structure and computationally considers the effect of a migration is limited to a

fixed future time horizon, we assume an infinite horizon formulation of MDP [Sutton

and Barto, 1998]. Infinite horizon means an action will affect all the future states

162 Learning with Unknown Transitions: Live Migration of Virtual Machines

and actions of the system. This formulation makes the cumulative sum of future per-

stage costs infinite. In order to circumvent this problem a discount factor γ ∈ [0, 1)

is introduced. Mathematically, γ makes the cumulative sum of per-stage costs con-

vergent. Physically, γ let the effect of a past action decay with each passing instance.

The discount factor inclines the system to give more importance to immediate costs

than to costs distant in the future, which follows a practical intuition. Now, the prob-

lem translates into finding the sequence of configurations that minimises a discounted

cumulative cost. Under Markov assumption, a configuration change depends on its

present state only. Given the current configuration and workloads, i.e the current

state st, a policy π : S → A determines the next decision at. We define the cost-to-go

function V π for a policy π as

V π(s) ≜ Ef

[
∞∑
t=1

γt−1C(st−1, st)

]
(4.7)

such that the initial state s0 = s, and st is the state reached from state st−1 through

an action π(st−1)). The value of V π(s) represents the expected cumulative cost for

following the policy π from the current configuration s. Thus, V π(s) allows us to

optimise the long-term effect of migration decisions, unlike greedy MMT algorithms

that try to minimise the present cost only. Let Π be the set of all policies for the given

set of VMs on the cluster of PMs. Now, the problem can be phrased as computing an

optimal policy π∗ that minimises the expected cumulative cost.

π∗ ≜ argmin
π∈Π

V π(s0) (4.8)

4.5 Megh: Learn to Migrate As-you-go

Depending on the cost model developed in Section 4.3 and the problem formulation in

Section 4.4, we propose an online actor-critic algorithm, Megh. Megh answers three

basic questions of the VM migration problem: when to start migrating the VM, which

VM to migrate, and where i.e, to which PM to migrate it.

4.5 Megh: Learn to Migrate As-you-go 163

Megh answers these questions by solving the minimisation problem of Equation (4.8).

This equation shows that optimal decision making is analogous to computing the op-

timal function π∗ that minimises the cost-to-go function. We can perceive this as a

sequential functional approximation problem over the space Π. In order to do so, we

begin with an initial guess of the policy π0. Following that, we gain more information

about the configuration of VMs and also the dynamics of workloads running on them.

We use this information to improve the policy such that it keeps the current estimation

of cost-to-go function minimum. In reinforcement learning literature, this strategy is

known as policy iteration [Sutton and Barto, 1998] (Algoirthm 7).

If transition function f i.e, the stochastic nature of workload and its effect on

migration, is known a priori, we can apply Bellman’s dynamic programming tech-

nique [Bellman and Kalaba, 1965] to update the estimate of cost-to-go function at

every time t. The update equation is known as Bellman equation. In this problem,

we express is as

V πt(s) = Ef

[
C(s, s′) + γV πt−1(s′)

]
. (4.9)

Thus, the updated policy would be πt = argminπt∈Π V πt(s). The algorithm terminates

when there is no or very small change in the policy. Policy iteration has strong

optimality and convergence properties [Powell, 2007].

In the VM migration problem policy iteration suffers from two main issues. Firstly,

to update the cost-to-go function in Equation (4.9) and to find the optimal policy, we

have to search through the whole state-action space. The state space consists of all

possible configurations of VMs on all the PMs and is combinatorially large. As com-

putation of an estimate of the cost-to-go function involves searching through the state

space S, high dimensionality of S makes the policy update expensive and almost im-

possible to perform in real-time. This exponential blow-up in computation due to the

huge state space is called the curse of dimensionality [Powell, 2007]. Secondly, the

expectation in Equation (4.9) is not computable as the stochastic nature of workload,

its correlation with VM configurations and their transitions are not known a priori.

In order to conserve the robustness and universality of Megh, we cannot restrict this

164 Learning with Unknown Transitions: Live Migration of Virtual Machines

workload dynamics to a specific model. Indeed that would narrow down the applica-

tions and the hardware architectures the algorithm can deal with. Megh solves both

the issues.

In order to solve the curse of dimensionality, Megh projects the state-action space

to a d = N ×M dimensional space X. X is spanned with d basis vectors {ϕjk}N,M
j=0,k=0.

Each of the basis ϕjk corresponds to an action (j, k) such that the jkth component of

it is one, and all other elements are zero. All the actions or configuration changes in

the Cloud is represented using these basis vectors or linear combinations of them. The

basic rationale behind this projection is that during transition from a state to another

only a part of the state space, which is one action away from the present state, is

reachable. Instead of searching over the whole state space in each and every step, it

is logical to search in a subspace X that contains all the states s′ reachable from s by

actions ϕjk or linear combinations of them. Thus, the combinatorially explosive state-

action space of VM configurations is projected to a polynomial dimensional vector

space with a sparse basis. The basis is called sparse because they have the dimension

d = N×M but has only one non-zero component that matters for computation. Hence

Megh approximates the cost-to-go function as V (st+1) = θTϕat , where at = πt(st) is the

action taken at time t. This enable Megh to update the cost-to-go function effectively

in real-time. We prove that for the basis function that we have constructed, we would

obtain a unique projection to approximate the value function at a given time.

Theorem 8. Given the basis vectors {ϕjk}N,M
j=0,k=0 spanning the state-action space S×A,

there exists a unique projection vector θ ∈ RMN that expresses the value function as

V (s) = θTϕπ(s).

Proof. As we project the state-action space S × A to the space X spanned by d

dimensional basis vectors {ϕj}dj=0, we reduce our search space from whole state-action

space to a subspace St. St is the set of all the states reachable through one migration

action from the present state st ∈ S. Suppose St = {s1, s2, . . . , sd}. Note that we use

superscripts to denote the ordering of elements in St.

4.5 Megh: Learn to Migrate As-you-go 165

Thus, at each time-step t, we update the value functions of the only reachable

states in St. Let V = (V (s))Ts∈St and Ψ be a d× d matrix such that

Ψi,j = ϕπ(st)[j] ∀j = 1, . . . , d

where, si is the state reachable from st using action π(st). Let θ be a |S|-dimension

column vector such that Ψθ = V . If Ψ is invertible, θ = Ψ−1V and Theorem 8 holds.

We claim that Ψ is invertible and its inverse is the matrix Ω such that,

Ωi,j = (−1)|si|−|sj |Ψi,j.

In order to establish this construction, let us consider the i, jth element of the matrix

obtained by multiplying Ψ and Ω. If si ∼ sj means state sj is reachable from state si

through one of the d migration actions, then

(ΩΨ)i,j =
∑

1≤k≤|St|

(−1)|si|−|sk|Ψi,kΨk,j

=
∑

sj∼sk∼si

(−1)|si|−|sk|.

Therefore (ΩΨ)i,j = 1 if and only if i = j. Thus, Ψ is invertible and there exists a

unique projection for given basis vectors.

Still the expectation of the cost-to-go function is not computable due to lack of prior

knowledge of workload dynamics and how it affects the VM configurations and their

transitions. In order to capture this notion, we create a stochastic matrix T ∈ Rd×d. T

accumulates the possibility of using an action to move to another configuration from

the present one depending on the nature of workload and the changes caused by them.

In this work, we begin with T0 =
1
δ
Id, where δ is a large positive number and Id is an

identity matrix of order d. Here, we have considered δ as d. It implies that initially,

there is no bias and the system can migrate any of the VMs to any of the PMs equally

probably. As the system extracts information of the workload and VM configurations

166 Learning with Unknown Transitions: Live Migration of Virtual Machines

Algorithm 18 Megh
1: function Megh(S, A, γ, ϵ, Temp0)
2: Initialise δ ← d,B0 ← 1

δ
Id×d, ϕ0 ← 0d,

3: θ0 ← 0d, π(s0)← 0d, z0 ← 0d, C0 ← 0
4: while t ≥ 1 do
5: at ← argmaxa∈A πt(st)
6: Take action at.
7: Observe state st+1.
8: Ct+1 ← Calculate cost using Equation (4.6).
9: Bt+1 = T−1

t+1 update using Equation (4.10).
10: zt+1 ← zt + ϕatCt+1

11: θt+1 ← Bt+1zt+1

12: π(st+1)← PolicyCalculator(ϕat , θt+1)
13: end while
14: end function

at each time step t, it decides an action at according to the policy πt. Using this

information, we update the operator T as

Tt+1 = Tt + ϕat

[
ϕat − γϕπt(st+1)

]T
. (4.10)

ϕπt(st+1) represents the probable action at time t + 1, if the policy πt is followed at

the next time instance. Thus, Equation (4.10) captures the effect of present state and

action and its influence in future action with a discount γ.

In Megh, we plug in these two schemes of polynomial size projection space X

and incremental update of the operator T to Least-Square Policy Iteration algo-

rithm [Lagoudakis and Parr, 2003b]. Megh first tries to find out an estimation of

cost-to-go function by least-square estimation in the actor format and then to update

the policy such that it maximises the estimate in the critic format. The pseudo-code

of Megh is depicted in Algorithm 18.

Theorem 9. If for a Markovian policy π ∈ Π, there exists a real-valued projection

vector θ ∈ Rd and the basis vectors {ϕjk}N,M
j=0,k=0 such that Vπ(s) = θTϕπ(s) for any

configuration s, Algorithm 18 will converge to an optimal policy π∗. π∗ is the fixed

point in Π with respect to the Bellman operator defined by Equation (4.12).

4.5 Megh: Learn to Migrate As-you-go 167

Proof. Let us denote the set of all possible value functions V π obtained using policy

π ∈ Π as V . Without loss of generality, we can assume V : S → R be a set of bounded,

real-valued functions. Then V is a Banach space with the sup-norm ∥V ∥ = ∥V ∥∞ =

sup |V (s)| for any V ∈ V . Now, we narrow down our problem of Equation (4.8) by

including the smaller reachable state space. If st ∈ St−1 i.e, st is reachable from st−1

through one of feasible migrations,

argmin
π∈Π

Ef

[
∞∑
t=1

γt−1C(st−1, st)

]
(4.11)

In this narrower space, Algorithm 18 is analogous to LSPI over the reduced search

space X. For this new problem given by Equation (4.11), Algorithm 18 converges to a

unique cost-to-go function, say Ṽ ∈ V . We need to show that the cost-to-go function

estimated by Algorithm 18 is the optimal one i.e, V ∗ = Ṽ .

Let us define the process of updating policy as a modified Bellman operator

T : V → V . Using Equation (4.9), we define T as

T V (s) = min
s′∈Ss

Ef [C(s, s′) + γV (s′)] . (4.12)

For a given state s ∈ S, let

a∗s(V) = argmin
s′∈Ss

(C(s, s′) + γV (s′)) .

If s∗(v) is the state obtained by following optimal policy π∗ from value function v and

state s, and T V (s) ≥ T U(s) for V, U ∈ V , then

0 ≤ T V (s)− T U(s) = E [C(s, s∗(V)) + γV (s∗(V))]− E [C(s, s∗(U)) + γU(s∗(U))]

≤ E [C(s, s∗(U)) + γV (s∗(U))]− E [C(s, s∗(U)) + γu(s∗(U))]

= γE [V (s∗(U))− U(s∗(U))]

≤ γE [∥V − U∥]

168 Learning with Unknown Transitions: Live Migration of Virtual Machines

= γ∥V − U∥.

This result states that if T V (s) ≥ T U(s), then T V (s)−T U(s) ≤ γ|V (s)−U(s)|.

If we assume that T V (s) ≤ T U(s), the same reasoning produces T V (s) − T U(s) ≥

−γ|V (s) − U(s)|. Thus we can conclude, |T V (s) − T U(s)| ≤ γ|V (s) − U(s)| for all

configuration s ∈ S. From the definition of our norm, we can write

sup
s∈S
|T V (s)− T U(s)| = ∥T V − T U∥

≤ γ∥V − U∥.

This means for 0 ≤ γ < 1, T V (s) is a contraction mapping. Following [Lagoudakis

and Parr, 2003b;Proposition 3.10.2], there exists a unique V ∗ such that T V ∗ = V ∗.

Thus, for an arbitrary initial value function V 0 ∈ V , the sequence V t generated by

V t+1 = T V t converges to V ∗. By the property of convergence of LSPI [Lagoudakis

and Parr, 2003b], V ∗ = Ṽ . As the cost function C is a positive and monotonically

increasing function, the optimal cost-to-go function V ∗ also satisfies T V ∗ = V ∗. Hence,

V ∗ = Ṽ , and the property of convergence of LSPI is preserved in Algorithm 1.

Algorithm 19
1: function PolicyCalculator(ϕat , θt+1)
2: Tempt+1 ← Temptexp(−ϵ)
3: for all i = 1, . . . , d do
4: Q(st+1, ai)← ϕT

ai
θt+1

5: end for
6: MIN_Q← minaQ(st+1)
7: for all i = 1, . . . , d do
8: π(st+1)i ← exp

[
−Q(st+1,ai)+MIN_Q

Tempt+1

]
9: end for

10: end function

Instead of greedily choosing the action with maximum V πt(st+1), we have used

Boltzmann exploration as the on-policy algorithm. The pseudocode is illustrated in

Algorithm 19. This technique compares the goodness of an action with respect to the

4.5 Megh: Learn to Migrate As-you-go 169

others and allows the algorithm explore more. We refer to the discussion in Section 2.2

for detailed discussion. Here, we have started with an initial temperature value Temp0

and decay it consequently with a factor exp(−ϵ). Initially, the large Temp means rather

than choosing the maximum greedily it is trying to explore more. As Temp decreases

with time, PolicyCalculator becomes the greedy selection of the maximum.

Managing the Complexity Bottleneck

Algorithm 18 has space complexity of O(d2) and time complexity of O(d3). Though

the algorithm is computationally cheaper and faster than the actual combinatorially

explosive problem scenario, still it can be slow enough for a real-time system operating

over a large number of VMs and PMs. The space complexity bottleneck is storing the

d × d matrix B. The time complexity bottleneck is computing the inverse of the

operator T to update B at each time-step, as shown in Line 9 in Algorithm 18. If we

use the Gauss-Jordan elimination process [Atkinson, 2008] provided by linear algebra

packages [Anderson et al., 1999], inversion of T costs time complexity of O(d3). In

order to compute the inverse incrementally at every step, we use Sherman-Morrison

Formula [Sherman and Morrison, 1949] on Equation (4.10) given by,

Bt+1 = Bt −
Btϕat

[
ϕat − γϕπt(st+1)

]T
Bt

1 +
[
ϕat − γϕπt(st+1)

]T
Btϕat

. (4.13)

Thus, the time complexity of every step is reduced to O(d2).

We reduce the complexity further by leveraging the sparsity of the basis vectors

ϕai ’s. Since all the zero entries are redundant in the calculation of product, we store

only the non-zero entries of the matrix B and vector ϕai as a triplet (row number,

column number, value). This reduces the initial storing size to O(d). Because during

initialisation we start with a diagonal matrix of order d, and d basis vectors each with

single non-zero entry. The storing size increases at each step as per the number of

migrations happened during the interval. Thus the multiplication in Equation (4.13)

turns into choosing the non-zero terms in Bt according to the 1 entries in ϕai ’s involved

170 Learning with Unknown Transitions: Live Migration of Virtual Machines

Table 4.1: Power Consumption of servers in Watts for different level of workload [Hup-
pler et al., 2012; SPECpower Committee, 2014]

Server Type 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
HP ProLiant G4 86 89.4 92.6 96 99.5 102 106 108 112 114 117
HP ProLiant G5 93.7 97 101 105 110 116 121 125 129 133 135

in the calculation and then adding or subtracting them. It reduces the time complexity

of Line 9 in Algorithm 18 to O(#m), where #m is the number of migrations per step.

The aforementioned use of online update and inversion technique, and also leveraging

the sparsity of the basis vector reduces both the space and time complexity of Megh

substantially. These techniques provide Megh the speed-up to be a real-time system

while keeping its structure and learn-as-you-go strategy intact.

4.6 Performance Evaluation

4.6.1 Experimental Setup

We perform experiments using the CloudSim toolkit [Calheiros et al., 2011] as the sim-

ulation platform. CloudSim uses CPU utilisation as the key metric to characterise the

workloads. We follow this characterisation throughout our experiments. In the power

model, we use the standard price of the local power providers, 0.18675, USD/kWh to

calculate the energy consumption cost. We assume that the user has to pay 1.2 USD

per hour for using a VM instance. Though it is a bit costlier than reality, it does not

harm the analysis. Following the model mentioned in Section 4.3.3, we also assume

that Cloud providers would pay back 16.7% and 33.3% of user’s money depending on

whether the performance degradation is less than or greater than 0.10%. We consider

β = 70% as the overloading threshold of the PMs and α = 30% for the minimum CPU

usage threshold by VMs during migration. The experiments are conducted on a server

with two AMD Opteron(TM) Processor 6272 CPUs. Each CPU has eight cores, 128

GB memory and clock rate of 2.1GHz. Each core has two threads.

4.6 Performance Evaluation 171

MMT algorithms are tested using the code embedded with the CloudSim toolkit,

whereas Megh and MadVM are implemented and embedded in the CloudSim frame-

work using Java. For both of them, the value of γ is set to 0.5. γ = 0.5 imposes

50:50 importance of both new and old information. Temp0 and ϵ are set to 3 and 0.01

respectively for the experiments in Section 4.6.3 and 4.6.4.We explicate such choice of

parameters in Section 4.6.5. At each time-step, we allow a maximum 2% of VMs to

be migrated by Megh.

4.6.2 Dataset and Workload

PlanetLab Dataset

CloudSim contains workloads extracted from the CoMoN project which was a monitor-

ing infrastructure for PlanetLab [Park and Pai, 2006]. Each of the workloads consists

of CPU utilisation data extracted at a regular interval of 5 minutes for a span of 7

days. Figure 4.1(a) shows the statistical nature of the workload and depicts inherent

uncertainty in its dynamics. The workloads are working on a set of 800 heterogeneous

physical machines (PMs). Half of these PMs are HP ProLiant ML110 G4 servers and

the other half are HP ProLiant ML110 G5 servers. The power consumption character-

istics of these two servers is obtained from SPECbenchmark and is shown in Table 4.1.

Though they follow different energy consumption models, each of them has a dual-core

processor with 4GB RAM and are provided with 1 Gbps network bandwidth. There

are a total of 1052 applications are running on this system. Each of the applications

are allocated on a VM with 1 vcpu, 0.5-2.5GB RAM, 0.5-2.5 MIPS and 100 Mbps

bandwidth.

Google Cluster Dataset

The Google Cluster trace represents dynamic tasks running on Google’s Hadoop

MapReduce clusters with 12,500 heterogeneous machines [Li et al., 2017]. The trace

contains continuous information of 29 days with event records and sampled resource

172 Learning with Unknown Transitions: Live Migration of Virtual Machines

Table 4.2: Performance Evaluation for PlanetLab

Algorithms THR-MMT IQR-MMT MAD-MMT LR-MMT LRR-MMT Megh

Total cost (USD) 1347 1504 1367 1392 1392 1155
#VM migrations 325299 444624 331304 324079 324079 2309

#Active hosts 666 684 682 692 692 203
Execution time (ms) 2016 3077 2226 1924 2080 1426

usage at an interval of 5 minutes. We select 500 machines as physical machines and

the tasks scheduled on those machines as virtual machine workloads. We create 2000

virtual machines with each running an individual task to completion and switching to

another. Unlike PlanetLab where all of the workloads are together varying intensely,

the Google Cluster trace has tasks with varying durations, starting times, and obfus-

cated resource usages as shown in Figure 4.1(b).

PlanetLab is a huge geo-distributed computing platform consisting of hundreds

of sites and more than one thousand nodes [Park and Pai, 2006]. It is hosted by

organisations across the world. Users can access the computing resources by deploy-

ing applications to a subset of the nodes in the form of VMs. The trace is collected

from PlanetLab to track the CPU usage of each VM’s workload. The result repre-

sents the typical workload running in an enterprise Cloud environment. While the

PlanetLab trace is mainly related to academic and other organisational computation

tasks, the Google Cluster trace records the events in Google’s Hadoop MapReduce

clusters. Google’s trace shows the characteristics of workloads running in the publicly

available Cloud systems [Li et al., 2017]. Evaluating Megh with the traces from both

the community and the industry validates its universality and robustness.

4.6.3 Comparative Performance Analysis

Megh vs MMT algorithms

Table 4.2 depicts the performance of Megh and the MMT algorithms on a week-long

trace of PlanetLab. Table 4.3 summarises the performance of the aforementioned

algorithms for the Google Cluster dataset. Total cost of operation of the data center

(in USD) obtained by adding the power consumption cost and SLA violation cost,

4.6 Performance Evaluation 173

Table 4.3: Performance Evaluation for Google Cluster

Algortihm THR-MMT IQR-MMT MAD-MMT LR-MMT LRR-MMT Megh

Total cost (USD) 706 708 708 710 710 688
#VM migrations 299352 262185 266706 233172 233172 3104

#Active host 82 72 73 59 59 194
Execution time (ms) 2887 4030 4000 3889 3923 1945

the number of VM migrations, average number of active hosts and execution time (in

milliseconds) of each iteration of the algorithms are used as the performance measures

of the algorithms. As THR-MMT performs the best among the MMT algorithms, we

show a comparison of Megh with THR-MMT in Figures 4.2 and 4.3.

We observe from Tables 4.2 and 4.3 after 7 days of operation Megh reduces the

expenditure by 14.25% for PlanetLab and 2.5% for Google Cluster with respect to that

of THR-MMT. Figures 4.2(a) and 4.3(a) show the per-step operation cost for Megh

not only converges faster than the contending algorithms but also has less variance

for both PlanetLab and Google. Here, the per-step operation cost includes both the

energy consumption cost and the SLA violation cost in the 5 minutes interval between

two observations. Due to the learn-as-you-go policy, Megh takes around 100 time-

steps before reaching the almost stable cost per-step. We do not observe such a fast

convergence for THR-MMT. Being a greedy heuristics, THR-MMT still faces high

variance and instability even after initial convergence. These observations validate

robustness and stability of Megh for optimal resource management for a diverse set of

workloads with respect to other heuristics.

In order to measure the performance of the system and its QoS, we use the number

of VM migration as another metric. In our experiments, we consider that during the

course of migration the CPU capacity allocated to a VM on the destination node is

same as that of the present host. This means that each migration may cause some

SLA violation. Therefore, it is crucial to minimise the number of VM migrations. The

total number of VM migrations for THR-MMT is almost 140 times and 97 times more

than that of Megh for PlanetLab and Google respectively. Figures 4.2(b) and 4.3(b)

report the evolution of the cumulative number of VM migrations over the span of 7

174 Learning with Unknown Transitions: Live Migration of Virtual Machines

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

Time (in 5 minutes)

Pe
r−

st
ep

 C
os

t (
in

 U
SD

)

THR−MMT

Megh

(a) Per-step cost (in USD)

0 500 1000 1500 2000

10
2

10
3

10
4

10
5

Time (in 5 minutes)

#
V

M
 m

ig
ra

tio
n
s

THR−MMT

Megh

(b) Number of VM migrations

0 500 1000 1500 2000
0

50

100

150

200

250

Time (in 5 minutes)

#
A

ct
iv

e
 h

o
st

s

THR−MMT

Megh

(c) Number of active hosts

0 500 1000 1500 2000
500

1000

1500

2000

2500

3000

3500

4000

Time (in 5 minutes)

E
xe

cu
tio

n
 O

ve
rh

e
a
d
 (

in
 m

ill
is

e
co

n
d
s)

THR−MMT

Megh

(d) Execution time

Figure 4.2: Performance of Megh and THR-MMT algorithms for PlanetLab dataset

days. As the total number of VM migrations up to an instance for Megh is much less

than that of the THR-MMT, it shows that at any instance Megh performs significantly

better.

Decreasing the number of active hosts also decreases the power consumption. Thus,

the number of active hosts is also used as a performance metric for resource manage-

ment algorithms. Though reducing the number of active hosts is the approach taken

by VM consolidation algorithms, it may prove not to be a perfect metric. Because

keeping a larger number of hosts at very low utilisation level may cause less power

consumption than keeping a few hosts at very high utilisation level. We observe this

dilemma from Figures 4.2(c) and 4.3(c). For PlanetLab, Megh keeps fewer hosts ac-

tive than other MMT algorithms, whereas for Google it keeps more active VMs while

incurring the least per-step cost for both datasets. While the results establish Megh’s

effectiveness to solve the live migration decisions with less expenditure and better QoS,

Megh has to fulfil another criterion to be a real-time system: a small execution time.

From Figures 4.2(d) and 4.3(d), we observe Megh is running faster than that of the

4.6 Performance Evaluation 175

0 200 400 600 800 1000 1200 1400 1600 1800 2000

10
−0.1

10
0

Pe
r−

st
ep

 C
os

t (
in

 U
SD

)

Time (in 5 minutes)

THR−MMT

Megh

(a) Per-step cost (in USD)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

10
2

10
3

10
4

10
5

10
6

Time (in 5 minutes)

#V
M

 m
ig

ra
tio

ns

THR−MMT

Megh

(b) Number of VM migrations

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

50

100

150

200

250

Time (in 5 minutes)

#A
ct

iv
e

ho
st

s

Megh

THR−MMT

(c) Number of active hosts

0 200 400 600 800 1000 1200 1400 1600 1800 2000

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

Time (in 5 minutes)

E
xe

cu
tio

n
O

ve
rh

ea
d

 (
in

 m
ill

is
ec

on
ds

)

THR−MMT

Megh

(d) Execution time

Figure 4.3: Performance of Megh and THR-MMT algorithms for Google Cluster
dataset.

heuristic based online algorithms. As shown in Tables 4.2 and 4.3, Megh speeds up

the decision making by 1.41 and 1.48 times with respect to THR-MMT for PlanetLab

and Google respectively. Since migration time of a VM is in the order of a few sec-

onds, speed up of Megh with respect to the state-of-the-art can help the system to

make decisions and to execute them with significantly less overhead or downtime to

the process of migration. This, in turn, improves the QoS of the system too. This

empirically proves the efficiency of Megh not only as an effective learning algorithm

but also as an eligible real-time resource management system in Clouds.

Megh vs MadVM

MadVM fails to scale-up for the complete PlanetLab or Google Cluster in our exper-

imental facilities. Thus, in order to compare the performance of Megh with MadVM,

we have chosen two random sets of 150 workloads running on 100 PMs for 3 days

from PlanetLab and Google Cluster traces. In the beginning, all these workloads are

176 Learning with Unknown Transitions: Live Migration of Virtual Machines

0 100 200 300 400 500 600 700 800

0.07

0.071

0.072

0.073

0.074

0.075

0.076

0.077

0.078

0.079

0.08

Time (in 5 minutes)

Pe
r−

st
ep

 C
os

t (
in

 U
SD

)

MadVM

Megh

(a) Per-step cost (in USD)

0 100 200 300 400 500 600 700 800
0

500

1000

1500

2000

2500

Time (in 5 minutes)

#V
M

 m
ig

ra
tio

ns

MadVM

Megh

(b) Number of VM migrations

0 100 200 300 400 500 600 700 800
0

10

20

30

40

50

60

70

80

90

100

Time (in 5 minutes)

#A
ct

iv
e

ho
st

s

MadVM

Megh

(c) Number of active hosts

0 100 200 300 400 500 600 700 800
10

0

10
1

10
2

10
3

10
4

Time (in 5 minutes)

E
xe

cu
tio

n
O

ve
rh

ea
d

(in
 m

ill
is

ec
on

ds
)

MadVM

Megh

(d) Execution time

Figure 4.4: Performance of Megh and MadVM for a dataset of 100 PMs and 150 VMs
extracted from PlanetLab trace.

allocated uniformly at random to each of the PMs, such that there is no initial bias

for the learning and the robustness of both the algorithms can be tested. The 50:50

ratio of two type of servers is still maintained. From Figures 4.4(a) and 4.5(a), we

observe that Megh incurs less cost (4.3% and 8.8%) than MadVM at every time step.

Figures 4.4(b) and 4.5(b) show Megh causes significantly less number (5.5 and 6.1

times) of migrations than MadVM. Figures 4.4(c) and 4.5(c) depict at every time step

MadVM (average ∼58 and 34) keeps more hosts active than Megh (average ∼21 and

20). But the main factor where MadVM stumbles is the execution time. MadVM

takes on an average 4143ms and 4057ms to execute a single iteration for a system of

100 PMs and 150 VMs, which is almost the same as the migration time of a VM of

0.5 GB RAM in the PlanetLab set-up. As the reinforcement learning algorithms face

the curse of dimensionality and have a huge transition matrix for bookkeeping at each

time step, it makes reinforcement learning algorithms slower for a real-time system.

Though authors of MadVM tries to handle such scenario, Figures 4.4(d) and 4.5(d)

4.6 Performance Evaluation 177

0 100 200 300 400 500 600 700 800

0.067

0.068

0.069

0.07

0.071

0.072

0.073

0.074

0.075

0.076

0.077

Time (in 5 minutes)

Pe
r−

st
ep

 C
os

t (
in

 U
SD

)

MadVM

Megh

(a) Per-step cost (in USD)

0 100 200 300 400 500 600 700 800
0

500

1000

1500

2000

2500

Time (in 5 minutes)

#V
M

 m
ig

ra
tio

ns

MadVM

Megh

(b) Number of VM migrations

0 100 200 300 400 500 600 700 800
0

10

20

30

40

50

60

70

80

Time (in 5 minutes)

#A
ct

iv
e

ho
st

s

MadVM

Megh

(c) Number of active hosts

0 100 200 300 400 500 600 700 800
10

0

10
1

10
2

10
3

10
4

Time (in 5 minutes)

E
xe

cu
tio

n
O

ve
rh

ea
d

(in
 m

ill
is

ec
on

ds
)

MadVM

Megh

(d) Execution time

Figure 4.5: Performance of Megh and MadVM for a dataset of 100 PMs and 150 VMs
extracted from Google Cluster trace.

depict its inability to scale in real-time for large data centers. Since Megh leverages

the sparsity-based projection technique (Theorem 8), along with the specialised data

structure (Section 4.5), it takes the same migration decisions in approximately 7ms

and 8ms respectively for PlanetLab and Google datasets. The experiments validate

that though Megh uses the reinforcement learning framework for learning the work-

load dynamics and making migration decisions, it is significantly more efficient and

faster than the latest state-of-art reinforcement learning algorithm for dynamic VM

management.

4.6.4 Scalability Analysis

Scalability is an important issue that an algorithm has to achieve in order to perform

for a large-scale Cloud data center. We show a comparative analysis of scalability of

Megh and THR-MMT in Figures 4.6(a) and 4.6(b). In order to conduct such exper-

iments, we randomly choose m and n number of PMs and VMs from the PlanetLab

178 Learning with Unknown Transitions: Live Migration of Virtual Machines

100 200 300 400 500 600 700 800
0

100

200

300

400

500

600

700

800

#PM

E
xe

cu
tio

n
O

ve
rh

ea
d

(in
 m

ill
is

ec
on

ds
)

(a) THR-MMT

100 200 300 400 500 600 700 800
0

100

200

300

400

500

600

700

800

PM

E
xe

cu
tio

n
O

ve
rh

ea
d

(in
 m

ill
is

ec
on

ds
)

(b) Megh

Figure 4.6: Scalability analysis of THR-MMT (left) and Megh (right).

data. Here, both m and n take values in {100, 200, 300, 400, 500, 600, 700, 800}. For

each value of m and n, we conduct 25 experiments with 25 randomly chosen set of

PMs and VMs. We observe from Figures 4.6(a) and 4.6(b) as the number of PMs

and VMs increase, the execution time per-step increases for both THR-MMT and

Megh. With the increase of number of PMs and VMs, the decision making algorithm

has to choose among larger set of actions and has to face an increased uncertainty

in workload dynamics. Thus, this increase in execution time is intuitive and natural.

For Megh the rise in execution time is much smaller than that of THR-MMT. This

significant difference in per-step execution time shows that Megh scales up better than

THR-MMT. This scalability establishes Megh more effective as a real-time decision

maker for large-scale Clouds.

As MadVM is not scalable after 100∼150 PMs, we cannot conduct such a compar-

ative study with it.

4.6.5 Parameter Sensitivity

Temp0 and ϵ are used as parameters to tune the exploration-exploitation trade-off of

Megh. We test and analyse Megh’s performance on different values of the parameters.

We vary Temp0 from 0.5 to 10 with a granularity of 0.5 while keeping ϵ = 0.001. We

run experiments on 30 distinct values of ϵ, which belong to the interval [10−3, 100]

and are at a logarithmic (base 10) distance of 0.1. In this case, Temp0 is fixed to 1.

4.6 Performance Evaluation 179

1 2 3 4 5 6 7 8 9 10

0.57

0.571

0.572

0.573

0.574

0.575

Temp
0

Pe
r−

st
ep

 C
os

t (
in

 U
SD

)

(a) Temp0-sensitivity

−3 −2 −1 0

0.57

0.571

0.572

0.573

0.574

0.575

log
10
ε

Pe
r−

st
ep

 C
os

t (
in

 U
SD

)

(b) ϵ-sensitivity

Figure 4.7: Sensitivity of per-step cost (in USD) on Temp0 and ϵ.

For each value of Temp0 and ϵ, Megh is tested 25 times on the PlanetLab dataset

described in Section 4.6.2.

Figures 4.7(a) and 4.7(b) show boxplots of per-step cost (in USD) of Megh for each

of the values of the parameter. These boxplots depict the median and 90 percentile

distribution of the per-step cost. We observe that the median cost decreases first as

the Temp0 increases but the cost rises as Temp0 becomes greater than 3. Though for ϵ

this change in per-step cost is a bit sporadic, we empirically observe that the variance

and the median both reach a local minimum at ϵ = 0.001.

Since use of Temp in Algorithm 19 allows Megh to explore more rather than direct

exploitation, increase in Temp0 would increase the initial exploration. We observe

till Temp0 = 3 this increase in exploration is decreasing the median cost. Because

increased exploration stops agent from getting stuck at local minima and take decisions

more globally. After that point, we see the adverse effect of too much exploration. As

Temp0 increases after 3, the algorithm cannot benefit enough from exploitation. Thus,

the curve instantiate the exploration-exploitation trade-off in case of Megh.

ϵ controls decay of Temp0 with time. As Temp0 decays, the exploratory nature

turns dormant and exploitative nature begins to dominate. Thus, increase in ϵ would

cause faster decay of Temp. Though we expect to observe similar nature as that of

the variation of Temp0, here we find out a bit of sporadic nature where it is hard to

detect a single tipping point for exploration-exploitation trade-off. Hence, we make

our choice empirically from observation.

180 Learning with Unknown Transitions: Live Migration of Virtual Machines

4.7 Conclusion

This work addresses the problem of energy– and performance–efficient resource man-

agement during live migration of VMs in a Cloud data center. Uncertain dynamics

and diversity of workloads as well as the heterogeneous Cloud hardware demand for a

generic algorithm to solve the efficient VM migration problem under uncertainty. Re-

inforcement learning provides a general framework to learn as-you-go to take decisions

under uncertainty. Thus, we propose a reinforcement learning algorithm, Megh, that

works irrespective of application and hardware heterogeneity while learning the uncer-

tain dynamics. State-of-the-art reinforcement learning algorithms encounter curse of

dimensionality and unavailability of a model for workload’s uncertainty. These issues

make such algorithms not scalable in real-time and asks for extensive training respec-

tively. Megh dissolves both of the issues in real-time. In order to overcome the curse

of dimensionality, Megh projects the combinatorially explosive state-action space to a

polynomial dimensional space with sparse basis. Megh updates the transition operator

incrementally without using any prior knowledge of workload dynamics. Through this

update, Megh learns the uncertainty and dynamics of workload as-it-goes. We lever-

age a data structure based on the sparsity of the basis for fast and scalable real-time

updates and learning. Megh incurs the smallest cost and the least execution overhead

with respect to its contenders both on PlanetLab and Google Cluster workloads. This

validates Megh’s claim as a cost-effective, time-efficient and robust algorithm. The

comparative scalability analysis of Megh and THR-MMT demonstrates that Megh has

better scalability than the competing algorithm. We explicate our choices of parame-

ters controlling the exploration-exploitation trade-off through a sensitivity analysis of

Megh.

We are currently investigating the opportunity to take advantage of additional

knowledge about the workload, such as periodicity, and also to leverage knowledge of

the network topology like fat-trees [Leiserson, 1985]. Finally, following previous works

on energy efficient live migration of Clouds, we have considered only CPU utilisation

data. We are aware of important of bandwidth as a resource and works [Lago et al.,

4.7 Conclusion 181

2017; Yu et al., 2017] accounting available bandwidth and network traffic as principal

decision variables for VM migration. We are confident that network and memory shar-

ing can be seamlessly accommodated without modifying our solution algorithmically.

We are studying the necessary extensions of the cost model to such settings in order

to apply Megh.

Part II

An Information Geometric Approach

to Learning with Incomplete

Information

Chapter 5

BelMan: An Information Geometric

Approach to Multi-armed Bandits

Exploration is in our nature. We began as wanderers, and we are wanderers still.

— Carl Sagan, Cosmos, 1980.

In this chapter, we propose a generic Bayesian information-geometric approach to the

exploration–exploitation trade-off in stochastic multi-armed bandit problems. The

learning problem is set in the statistical manifold of joint distributions representing

the uncertainty on beliefs and rewards of the arms, which we refer to as belief-reward

distributions. At each time step, the belief-reward distributions of the arms are sum-

marised by their barycentre In this manifold. We refer to this barycentre as the

pseudobelief-reward. We implement the approach as an algorithm that we call Bel-

Man. BelMan alternates between the projection of the pseudobelief-reward distribu-

tion onto the belief-reward distributions to choose the arm to play, and the projection

of the resulting belief-reward distributions onto the pseudobelief-reward distribution.

Additionally, BelMan introduces a mechanism that infuses an exploitative bias by

gradually concentrating on higher rewards. We refer to this as the focal distribution.

Incorporation of these information geometric constructions makes BelMan uniformly

applicable to exploration–exploitation, pure exploration and two-phase reinforcement

186 BelMan: An Information Geometric Approach to Multi-armed Bandits

learning. We instantiate BelMan to the classes of Bernoulli and exponential bandits,

respectively. Comparative performance evaluation with state-of-the-art algorithms

shows that BelMan is not only competitive but also outperforms other approaches in

challenging setups such as those involving many arms and continuous rewards.

5.1 Introduction

The Multi-armed bandit problem [Robbins, 1952] is a sequential decision-making prob-

lem [DeGroot, 2005] in which a gambler plays a set of arms to obtain a sequence of

rewards. In the stochastic bandit problem [Bubeck et al., 2012], the rewards are yielded

from corresponding reward distributions on arms. These reward distributions belong

to the same family of distributions but differ in the parameters. These parameters are

unknown to the gambler. In the classical setting, the gambler devises a policy, choos-

ing a sequence of arm draws, that maximises the expected cumulative reward [Robbins,

1952]. In an equivalent formulation, the gambler devises a policy that minimises the

expected cumulative regret [Lai and Robbins, 1985], that is the expected cumulative

deficit of reward caused by the gambler not always playing the optimal arm. In order

to achieve this goal, the gambler must learn at the same time the parameters of the

reward distributions of arms. Thus, solving the stochastic bandit problem consists in

devising strategies that combine both the accumulation of information to reduce the

uncertainty of decision making, exploration, and the accumulation of rewards, exploita-

tion [Macready and Wolpert, 1998]. Hereby, we refer to this stochastic bandit problem

as the exploration–exploitation bandit problem to highlight the trade-off. If a policy

relies on independent phases of exploration and exploitation, it necessarily yields a

suboptimal regret bound [Garivier et al., 2016a]. The gambler has to adaptively bal-

ance and intertwine exploration and exploitation [Auer et al., 2002]. In a variant of the

stochastic bandit problem, called the pure exploration bandit problem [Bubeck et al.,

2009], the goal of the gambler is solely to accumulate information about the arms. In

another variant of the stochastic bandit problem, the gambler interacts with the ban-

5.1 Introduction 187

dit in two consecutive phases of pure exploration and exploration-exploitation. Putta

and Tulabandhula proposed an MDP variant of this problem and named it the two-

phase reinforcement learning problem [Putta and Tulabandhula, 2017a]. Following

this nomenclature, we refer to the bandit variant of two-phase reinforcement learning

as the two-phase bandit problem.

Although frequentist algorithms with optimism in the face of uncertainty such

as UCB [Auer et al., 2002] and KL-UCB [Garivier and Cappé, 2011] work consid-

erably well for the exploration–exploitation bandit problem, their frequentist nature

prevents effective assimilation of a priori knowledge about the reward distributions of

the arms [Kawale et al., 2015]. Beside this, the Bayesian formulation of uncertainty

as the probability distributions allows us to construct a space of uncertainties, and to

investigate further the geometrical properties of the space. Bayesian algorithms for the

exploration–exploitation problem, such as Thompson sampling [Thompson, 1933] and

Bayes-UCB [Kaufmann et al., 2012a], leverage a prior distribution that summarises

a priori knowledge. However, as argued in [Kaufmann and Kalyanakrishnan, 2013],

there is a need for Bayesian algorithms that also cater for pure exploration. Neither

Thompson sampling nor Bayes-UCB are able to do so.

Our contribution. We propose a unified Bayesian approach to address the exploration-

exploitation, pure exploration, and two-phase bandit problems. We address these prob-

lems from the perspective of information representation, accumulation, and balanced

induction of bias. Following Bayesian algorithms [Thompson, 1933], we maintain

a parametrised belief distribution for each arm representing the uncertainty on the

parameter of its reward distribution. Extending this representation, we use a joint

distribution to express the uncertainty on both the belief and the reward distributions

of each arm. We refer to these joint distributions as the belief-reward distributions of

the arms. We set the learning problem in the statistical manifold [Amari and Nagaoka,

2007] of the belief-reward distributions, which we call the belief-reward manifold. The

188 BelMan: An Information Geometric Approach to Multi-armed Bandits

belief-reward manifold provides a representation for controlling pure exploration and

exploration–exploitation, and to design a unifying algorithmic framework.

As we argue in Chapter 2 and in the preceding discussion, we find out that learning

through exploration is a fundamental component of the three variants of the bandit

problem. Once the distributions are learnt completely, rest of the problem turns into

an optimisation problem. Due to this inherent requirement of exploration in bandit

problems, we begin with the construction facilitating exploration. Exploration re-

quires a collective representation of the accumulated knowledge about the arm. From

an information-geometric point of view [Barbaresco, 2013; Agueh and Carlier, 2011],

the barycentre of the belief-reward distributions in the belief-reward manifolds serves

as a succinct summary. We refer to this barycentre as the pseudobelief-reward. We

prove that the pseudobelief-reward is a unique representation in the manifold. Though

pseudobelief-reward facilitates the accumulation of knowledge, it is essential for the

exploration–exploitation bandit problem to also incorporate a mechanism that grad-

ually concentrates on higher rewards [Macready and Wolpert, 1998]. We introduce

a distribution that induces such an increasing exploitative bias. We refer to this

distribution as the focal distribution. We incorporate it into the definition of the

pseudobelief-reward distribution to construct the pseudobelief-focal-reward distribu-

tion. This pushes the summarised representation towards the arms having higher

expected rewards. We implement the focal distribution using an exponential function

of the form exp(x/τ(n)), where x is the reward, and a parameter τ(n) dependent on

time n and is referred to as exposure. Exposure controls the exploration–exploitation

trade-off.

In Section 5.4, we apply these information geometric constructions to develop the

BelMan algorithm. BelMan alternates information (I-) and reverse information (rI-)

projections [Csiszár, 1984] between belief-reward distributions of the arms and the

pseudobelief-focal-reward distribution. I-projection of the pseudobelief-focal-reward

onto belief-rewards selects an arm. As it is played and a reward is collected, BelMan

updates the belief-reward distribution of the corresponding arm by rI-projection of

5.2 Revisiting the Multi-armed Bandit Literature 189

the updated belief-reward distributions onto the pseudobelief-focal-reward. We prove

the law of convergence of the pseudobelief-focal-reward distribution for BelMan, and

that BelMan asymptotically converges to the choice of the optimal arm under some

assumptions. BelMan can be tuned, using the exposure, to support in continuum from

pure exploration to exploration–exploitation and two-phase bandit problems [Basu

et al., 2018c].

We instantiate BelMan for distributions of the exponential family [Brown, 1986].

These distributions lead to analytical forms that allow to derive well-defined and

unique I- and rI-projections as well as to devise an effective and fast computation.

In Section 5.5, we empirically evaluate the performance of BelMan on different sets

of arms and parameters for Bernoulli and exponential distributions, thus showing its

applicability to both discrete and continuous rewards. We experimentally and com-

paratively evaluate BelMan with state-of-the-art algorithms: UCB [Auer et al., 2002],

KL-UCB, KL-UCB-Exp [Garivier and Cappé, 2011], Bayes-UCB [Kaufmann et al.,

2012a], Thompson Sampling [Thompson, 1933], and Gittins Index [Gittins, 1979], in

these different settings. Results demonstrate that BelMan is not only competitive

but also outperforms existing algorithms for challenging setups such as those involv-

ing many arms and continuous rewards. For the two-phase bandit problem, results

show that BelMan spontaneously adapts with the explored information, and in turn,

escalate efficiency.

5.2 Revisiting the Multi-armed Bandit Literature

Though we have described the exploration–exploitation bandit problem, and pure ex-

ploration bandit problems in Section 2.1 of Chapter 2, we revisit the existing literature

of the bandit problems briefly to contextualise the algorithm.

Exploration–exploitation bandit problem. In the exploration–exploitation ban-

dits, the agent searches for a policy that maximises the cumulative reward S(A, T) for

a given time horizzon T ∈ R. As defined in Equation 2.1, cumulative reward is the

190 BelMan: An Information Geometric Approach to Multi-armed Bandits

expected sum of rewards accumulated by the agent A till time T . A policy1 is asymp-

totically consistent [Robbins, 1952] if it asymptotically tends to choose the arm with

maximum expected reward µ∗ ∈ R, i.e.,

lim
T→∞

S(A, T)
T

= µ∗. (5.1)

The cumulative regret R(A, T) [Lai and Robbins, 1985] is the expected deficit of re-

ward that the gambler faces as she plays the present sequence of arms instead of the

optimal arm a∗. Following Equation 2.1, we express the cumulative regret for a K-arm

stochastic bandit as

R(A, T) ≜ µ∗ × T −
K∑
a=1

[µa × E[na(T)]] ,

where µa ∈ R is the expected rewards of arm a, and na(T) is the number of times an

arm a is played till time T . [Lai and Robbins, 1985] proved that for all asymptotically

consistent algorithms satisfying R(A, T) = o(T c) for a c ∈ [0, 1), the cumulative

regret increases in Θ(log T) i.e. logarithmically with time T . Such algorithms are

called asymptotically efficient. We refer to the discussion in Section 2.1.1 for further

discussion of the optimality of bandit algorithm and regret analysis.

Based on the Lai-Robbins bound, [Auer et al., 2002] extensively studied the up-

per confidence bound (UCB) family of algorithms. These algorithms operate on the

philosophy of optimism in face of uncertainty. They compute the upper confidence

bounds of each of the arm’s distributions in a frequentist way and choose the one with

the maximum upper confidence bound optimistically expecting that one to be the arm

with maximum expected reward. Later on, UCB family of algorithms was analysed

and improved to propose algorithms such as KL-UCB [Garivier and Cappé, 2011] and

DMED [Honda and Takemura, 2011].

1Here, the terms agent and policy are often used interchangeably as they stand synonymously in
the context of decision making in bandits.

5.2 Revisiting the Multi-armed Bandit Literature 191

Frequentist approaches implicitly assume a ‘true’ parametrization θtruea ∈ R for each

of the K reward distributions fa(X). 2 In contrast, Bayesians model the uncertainty on

the parameters using another probability distribution B (θ1, . . . , θk) [DeGroot, 2005;

Scott, 2010]. B is called the belief distribution. Bayesian algorithms begin with a

prior belief distribution B0 (θ1, . . . , θk) over the parameters. They iteratively compute

a posterior distribution that minimises the Bayesian regret BR(A, T, B0) for the given

prior belief and time horizon T . 3 [Gittins, 1979] proposed an algorithm that computes

at each step a set of indices for the arms. This is called the Gittins index algorithm.

Gittins index is proven to be optimal for discounted Bayesian bandits with Bernoulli

rewards. Explicit computation of the indices is not always tractable and they do not

provide clear insights into what they look like and how they change as sampling pro-

ceeds [Nino-Mora, 2011]. Thus, researchers developed approximation algorithms [Lai,

1988] and sequential sampling schemes like Thompson sampling [Thompson, 1933] for

the Bayesian bandits. At any iteration, Thompson sampling samples k parameter

values from the belief distributions and chooses the arm that has maximum expected

reward for them. [Kaufmann et al., 2012a] also proposed a Bayesian analogue of the

UCB algorithm. Unlike the original, it uses belief distributions to keep track of arm

uncertainty and update them using Bayes’ theorem, computes UCBs for each arm

using the belief distributions, and chooses the arm accordingly.

Pure exploration bandit problem. In this variant of the bandit problem, the

agent aims to learn the reward distributions of the arms. In a parametric setup, it is

analogous to learning the parameters of the reward distributions upto a given accuracy.

In a non-parametric setup or even in the frequentist approaches, it is formulated as

learning the moments of the reward distributions such as expectations, and variances,

upto a given accuracy. Bubeck et al. formulated this notion as minimisation of the

simple regret rather than cumulative regret [Bubeck et al., 2009]. Simple regret at

2Here, X represents the random variable that corresponds to the reward, and a ∈ {1, . . . ,K}
indicates to an arm.

3TBayesian regret BR(A, T, B0) is defined by Equation 2.6 in Definition 4.

192 BelMan: An Information Geometric Approach to Multi-armed Bandits

time n is the expected difference between the maximum achievable reward XA∗ and

the sampled reward XAn . Bubeck et al. proved that, for Bernoulli bandits, if an

algorithm solving exploration–exploitation bandit achieves an upper bound on regret,

it cannot reduce the expected simple regret by more than a fixed lower bound. This

establishes the fundamental difference between exploration–exploitation bandits and

pure exploration bandits. Audibert and Bubeck identified the pure exploration prob-

lem as best arm identification problem. This approach led to the Successive Rejects

algorithm under fixed budget constraints [Audibert and Bubeck, 2010], and LUCB

family of algorithms [Kaufmann and Kalyanakrishnan, 2013]. Existing frequentist al-

gorithms [Audibert and Bubeck, 2010; Bubeck et al., 2013; Kaufmann and Kalyanakr-

ishnan, 2013] do not provide an intuitive framework to unify both the pure exploration

and the exploration–exploitation scenarios. Still these algorithms validate exploration

as the most fundamental component of the bandit problems, and the need of effective

learning through exploration for efficient decision making in bandits.

Two-phase reinforcement learning. Two-phase reinforcement learning problems

append the exploration–exploitation problem after the pure exploration problem. The

agent gets an initial phase of pure exploration for a given window. In this phase, the

agent collects more information about the underlying reward distributions. Follow-

ing this, the agent goes through the exploration–exploitation phase. In this phase, it

solves the exploration–exploitation problem and focuses on maximising the cumula-

tive reward. This setup is perceivable as an initial online model building or ‘training’

phase followed by an online problem solving or ‘testing’ phase. This problem setup

often emerges in applications [Faheem and Senellart, 2015], where the decision maker

explores for an initial phase to create a knowledge base and another phase to take

decisions by leveraging this pre-built knowledge base. In applications, this way of

beginning the exploration–exploitation is called a warm start. Thus, two-phase rein-

forcement learning builds a middle ground between commonly used model-free and

model-dependent approaches [Sutton and Barto, 1998] in MDPs.

5.3 Bandits: Problem Formulation 193

Formally, this knowledge-base is a prior distribution built from the agent’s experi-

ence. Since Bayesian methods naturally accommodate and leverage prior distributions,

Bayesian formulation provide the scope to approach this problem without any mod-

ification. Putta and Tulabandhula approached this problem by amalgamating two

sampling techniques, Posterior Sampling for Pure Exploration (PSPE), and Posterior

Sampling for Reinforcement Learning (PSRL) [Osband et al., 2013], for episodic fixed

horizon MDPs [Dann and Brunskill, 2015]. PSPE uses Bayesian update to create a

posterior distribution for the reward distribution of a policy. Then, PSPE samples

from the distribution in order to evaluate the policies. These two steps are performed

iteratively for the initial pure exploration phase. PSRL [Osband et al., 2013] is an ex-

tension of Thompson sampling for episodic MDPs. Unlike Thompson sampling, they

also use Markov chain Monte Carlo method for creating the posteriors corresponding

to each of the policies. Though the amalgamation of these two methods for the two

phase problems in episodic MDPs perform reasonably, they lack a reasonable unified

structure attacking the problem and a natural cause to pipeline them.

We use this formulation of two-phase reinforcement learning problems to test the

power of unification of the proposed framework, and its stability of transition from the

pure exploration bandits to the exploration–exploitation bandits. The variant of the

two-phase reinforcement learning for bandits is investigated in Section 5.5. We call it

two-phase bandit problem for further reference.

5.3 Bandits: Problem Formulation

Though we have formulated the finite-arm stochastic bandit problem in Section 2.1.1,

we illustrate the formulation, the notations, and the assumptions required for further

discussion.

We consider a finite number, K > 1, of independent arms. An arm a corresponds

to a reward distribution fa (X). We assume that the reward distributions belong to

the same parametric family of probability distributions, such as Bernoulli, Gaussian,

194 BelMan: An Information Geometric Approach to Multi-armed Bandits

and so on. Thus, each distribution fa(X) is equivalent to the distribution fθa(X) with

parameter θa ∈ Θ.4 For example, for Bernoulli bandits, the reward distribution of

arm a is fθa(X) ≜ θa
X (1− θa)

(1−X) where the reward X is either 0 or 1. We assume

that the parametric family of reward distributions is known to the algorithm but the

‘true’ parametrisation is unknown. For example, the algorithm knows that the reward

distributions belong to Bernoulli family but not the true values of the parameters

[θtruea]a∈{1,...,K}. Following the bandit literature [Lai and Robbins, 1985], we assume

the expectations of the reward distributions µa(θa) ≜
∫
Xfθa(X) are well-defined and

finite for all the K arms. We also assume that there exists an optimal arm a∗ with

µ∗ = maxa µa. Thus, the optimal policy OPT is playing the arm a∗ from the beginning

to the time T .

The agent sequentially chooses an arm At ∈ {1, . . . , K} at each time step t ∈ [T]

that generates a sequence of rewards [Xt]
T
t=1. Drawing an arm is termed as an ac-

tion and the set of all actions i.e, A = {1, 2, . . . , K} is called the action space. The

algorithm computes a policy that sequentially draws a set of arms depending on her

previous actions, observations and intended goal. The algorithm does not know the

‘true’ parameters of the arms {θtruea }Ka=1 a priori. Thus, the algorithm try to esti-

mate the parameters in order to take more informed decisions. The uncertainty

over the estimated parameters {θa}Ka=1 is represented using a probability distribu-

tion B(θ1, . . . , θK). Following the Bayesian terminology, call B(θ1, . . . , θk) the belief

distribution. In the Bayesian approach, the algorithm starts with a prior belief dis-

tribution B0(θ1, . . . , θk) [Jaynes, 1968]. The actions taken and rewards obtained by

time t create the history of the bandit process, Ht ≜ [(A1, X1), . . . , (At−1, Xt−1)]. This

history Ht is used to sequentially update the belief distribution over the parame-

ters as Bt(θ1, . . . , θK) ≜ P(θ1, . . . , θK | Ht, B0). We define the space consisting of

all such distributions over the estimated parameters {θj}kj=1 as the belief space B ≜
{B(θ1, . . . , θK)}.

4Θ ⊂ Rd is the space of parameters. The parameters can be scalar, or a d-dimensional real-valued
vector.

5.3 Bandits: Problem Formulation 195

Following the bandit literature, we assume the arms to be independent. Thus,

the belief distribution over the parameters is decomposed as the product of belief

distributions over each of the parameters.

Assumption 1 (Independence of Arms). At any time t ∈ [T], the parameters {θa}Ka=1

are drawn independently from K belief distributions {bat (.)}Ka=1, such that

Bt(θ1, . . . , θK) =
K∏
a=1

bat (θa) ≜
K∏
a=1

P(θa | Ht). (5.2)

Though Assumption 1 is followed throughout this paper, it is not essential to

develop the framework BelMan relies on. However, it is assumed to make calculations

easier. We assume the algorithm to perform Bayesian update of belief distributions.

Assumption 2 (Bayesian Evolution). When conditioned over {θa}Ka=1 and the choice

of arm At, the sequence of rewards [X1, . . . , Xt] is jointly independent. Thus, the

Bayesian update at time t is given by

bat+1(θAt) ∝ fθAt (Xt)b
At
t (θAt) (5.3)

if the arm At is drawn and a reward Xt is obtained. For all other arms, the belief

remains unchanged at time t.

Furthermore, the reward distributions and the belief distributions are assumed to

be smooth with respect to the corresponding parameters. Mathematically, the reward

distribution of arm a i.e. fθa(X) : R→ [0, 1] is smoothly differentiable and a bijection

with respect to the parameter θa ∈ Θ. Similarly, the belief distribution of arm a

i.e. bηa(θa) : Θ → [0, 1] is smoothly differentiable and a bijection with respect to

the parameter ηa ∈ Rd′ . ηa can be a real-valued scalar or vector depending on the

belief distribution. These assumptions provide us a glitch-free condition to develop

the information geometric methodology in the following section.

196 BelMan: An Information Geometric Approach to Multi-armed Bandits

5.4 Methodology

In this section, we formulate the bandit problem in terms of belief-reward distributions

and define the belief-reward manifold. Following this, we propose an alternating infor-

mation projection scheme, BelMan, on the belief-reward manifold. In this context, we

construct pseudobelief-reward and focal distributions. Finally, we instantiate BelMan

for the exponential family of reward distributions.

5.4.1 A Primer on Information Geometry

Before delving into the construction of belief-reward manifolds, we provide a brief

overview of manifold and statistical manifold.

Manifold

A manifold [Lang, 2006] is a space which is locally Euclidean. We get a neighbourhood

NP around every point P in a manifold that is topologically equivalent to the open

unit ball in an Euclidean space, Rd. d is called the dimension of the manifold. Thus,

a manifold gives us a structure to locally transform the tools of Euclidean space, like

distance, calculus etc, to a general space and vice versa. In order to accomplish this,

we associate a d-dimensional vector, θP , of real-valued parameters to each point P

of the space. Parameters associated with each point are called the local co-ordinates

of the manifold. Equivalently, they can be thought of as a collection of d-mappings

from each point P of a neighbourhood NP to the Euclidean space Rd. In order to

use the mathematical tools of Euclidean spaces consistently, the manifold is divided

into a collection of neighbourhoods. Each of the neighbourhoods has local co-ordinate

mappings which are continuous and have continuous inverse mappings. Thus, the

manifold would be topologically compact and it would be possible to move from one

neighbourhood to the other continuously. Each of these neighbourhoods are called

chart and the collection of charts is called an atlas. If each of such co-ordinate maps

and their inverses are differentiable, we call the manifold smooth.

5.4 Methodology 197

Statistical Manifold

A statistical manifold [Amari and Nagaoka, 2007] is a smooth manifoldM where each

point represents a probability distribution. The statistical structure of these manifolds

provide them with a Riemannian metric G, called Fisher information metric, and also

a pair of torsion-free connections ∇ and ∇∗ [Lauritzen, 1987]. The metric and the

connections together define the notion of distance and movements on the statistical

manifold. This structure allows us to introduce tools of Riemannian geometry and to

leverage them for statistical operations. A stochastic process evolves to provide a set

of probability distributions in the statistical manifold that follow a certain dynamics.

If we use a parametric family of distributions with d-parameters to represent them,

we call this set of distributions a statistical or parametric model. Thus, a statistical

model is formally defined as a subspace of the statistical manifold consisting of the

points emerged from an underlying process and represented by a d-dimensional local

co-ordinates. In order to maintain consistency and avoid singularity in calculation, we

assume that the manifolds of our interest are defined over a well-defined support. We

formalise this assumption as follows,

Assumption 3 (Restriction to support set). The statistical manifoldM is a collection

of probability distributions P defined on a fixed support set Supp(P) ≜ {e : P (e) > 0}

and Supp(P) ̸= ∅.

Following this, we define the support of the statistical manifoldM as Supp(M) ≜
∪P∈M{Supp(P) | Supp(P) ̸= ∅}. Further mathematical formulations and properties

of manifolds and statistical manifolds are described in the appendix.

KL-divergence on the Manifold

Kullback-Liebler divergence (or KL-divergence) [Kullback, 1997] is a pre-metric mea-

sure of dissimilarity between two probability distributions.

198 BelMan: An Information Geometric Approach to Multi-armed Bandits

Definition 6 (KL-Divergence). If there exist two probability measures P and Q de-

fined over a support set Supp(P), and P is absolutely continuous with respect to Q 5,

we define the KL-divergence between them as

DKL (P∥Q) ≜
∫
Supp(P)

log
dP

dQ
dP = EP

[
log

dP

dQ

]
.

dP
dQ

is the Radon-Nikodym derivative of P with respect to Q [Durrett, 2010].

KL-divergence is the pre-metric between two distributions P and Q in a probability

space because

i. KL-divergence is non-negative. DKL (P∥Q) ≥ 0 for all P and Q. The equality

holds if P (e) = Q(e) for all e ∈ Supp(P) = Supp(Q).

ii. KL-divergence is not symmetric. DKL (P∥Q) ̸= DKL (Q∥P) for all P ̸= Q.

Since DKL (P∥Q) represents the expected information lost if P is encoded using Q, it

is also called relative entropy. Depending on the applications, P acts as the represen-

tative of ‘true’ underlying distribution obtained from observations or data or natural

law, and Q represents the model or approximation of P . For two probability density

functions P (e) and Q(e) defined over the same support set E, the KL-divergence can

be rewritten as

DKL (P∥Q) =

∫
e∈E

P (e) log
P (e)

Q(e)
de = H(P,Q)− h(P). (5.4)

Here, h(P) ≜ −
∫
e∈E P (e) logP (e)de is entropy of P and H(P,Q) ≜ −

∫
e∈E P (e) logQ(e)de

is the cross-entropy between P and Q. Thus, KL-divergence is representable as the

difference between cross-entropy of P and Q, and its self-entropy. Since entropy is the

measure of uncertainty of a distribution, KL-divergence acts as the difference between

the uncertainty of the distribution itself and as much uncertainty can be captured us-

ing the model Q. From an information-theoretic perspective, KL-divergence emerges
5P is absolutely continuous with respect to Q if Q(e) ̸= 0 for any e in the support set of P .

5.4 Methodology 199

as the natural divergence function on the statistical manifold when we analyse the dy-

namics of the entropy function on the manifold. Except that, any general α-divergence

function [Lauritzen, 1987] on the statistical manifold is a convex combination of ±1-

divergences. Mathematically, for α ∈ (−1,+1),

D(α)(P∥Q) ≜ 1 + α

2
D(+1)(P∥Q) +

1− α

2
D(−1)(P∥Q)

=
1 + α

2
DKL (Q∥P) +

1− α

2
DKL (P∥Q) .

(5.5)

From a manifold perspective, the divergence function for the ±1-connections and a

convex mixture of DKL divergences form the general notion of movement on a statistical

manifold [Eguchi, 1992; Matumoto, 1993].

Exponential Family

Use of KL-divergence as a divergence measure on the statistical manifolds and also

the issue of representation of a random variable using sufficient statistics provoked the

study of the exponential family of distributions. Interesting properties of exponential

family distributions, such as existence of finite representation of sufficient statistics,

convenient mathematical form, and existence of moments, provided them a central

stage in the field of mathematical statistics [Darmois, 1935; Koopman, 1936].

The exponential family [Brown, 1986] is a class of probability distributions which

is defined by a set of natural parameters ω(θ) and a sufficient statistics T (X) of the

random variable X as follows:

fθ(X) ≜ g(X) exp (⟨ω(θ), T (x)⟩ − A(θ)) .

Here, g(X) is the base measure on reward X and A(θ) is called the log-partition

function. The exponential family includes the majority of the distributions found

in the bandit literature such as Bernoulli, beta, Gaussian, Poisson, exponential, and

chi-squared. For T (X) = X, the log-partition function is logarithm of the Laplace

transform of the base measure.

200 BelMan: An Information Geometric Approach to Multi-armed Bandits

Example 3. Bernoulli distribution with probability of success θ ∈ (0, 1) is defined as

fθ(X) ≜ Ber(θ) = θX (1− θ)(1−X)

= exp

(
X log

(
θ

1− θ

)
+ log(1− θ)

)

for X ∈ {0, 1}. Here, the base measure g(x) is 1. The sufficient statistics is T (X) = X.

The natural parameter is ω(θ) = log
(

θ
1−θ

)
. The log-partition function is A(θ) =

− log(1− θ) = log(1 + exp(ω)).

We choose the exponential family to instantiate our framework not only because of

its wide range and applicability but also due to its well behaving Bayesian and infor-

mation geometric properties. From a sampling and uncertainty representation point

of view, the exponential family is useful because of its finite representation of sufficient

statistics. Specifically, sufficient statistics of exponential family can represent any ar-

bitrary number of independent identically distributed samples using a finite number

of variables [Koopman, 1936]. This keeps the uncertainty representation tractable for

exponential family distributions.

From a Bayesian point of view, the useful property of the exponential family

is the existence of conjugate distributions which also belong to this family [Brown,

1986]. Two parametric distributions fθ(x) and bη(θ) are conjugate if the poste-

rior distribution P(θ|x) formed by multiplying them has the same form as bη(θ).

Mathematically, the conjugate distribution of the distribution of Equation 5.4.1 is

given by bη(θ) ≜ P(θ|η, v) = f(η, v) exp(⟨η,θ⟩ − vA(θ)) = f(η, v)g(θ)v exp(⟨η,θ⟩).

Here, η is the parameter of the conjugate prior and v > 0 corresponds to the ef-

fective number of observations that the prior contributes. Thus, if the reward dis-

tribution belongs to the exponential family, the belief distribution is represented as:

bη(θ) ≜ h(θ) exp (⟨η, T (θ)⟩ − A(η)) with the natural parameters η ∈ Rd′ .

From information geometric point of view, exponential family distributions are flat

with respect to KL-divergence [Amari and Nagaoka, 2007]. Thus, both information

and reverse information projections [Csiszár, 1984] that we would use in BelMan are

5.4 Methodology 201

well-defined and unique. Thus, at each iteration, we obtain an optimal and unambigu-

ous computation of the decision variables of BelMan. [Amari and Nagaoka, 2007] also

stated that the necessary and sufficient condition for a parametric probability distribu-

tion to have an efficient estimator is that the distribution belongs to the exponential

family and has an expectation parametrisation. Thus, working with exponential fam-

ily distributions implicitly supports the well-defined nature and possibility of getting

an efficient estimation.

5.4.2 Belief-reward Manifold

As we have described the components of information geometry that we are going to

use, now we construct the statistical manifold structure for the stochastic bandits.

There are two layers of uncertainty involved in this present formulation of bandits.

The first layer involves the reward which is unknown due to the stochastic behaviour

of the reward generation of each arm. Thus, reward is modelled as a random variable

X, and for each of the arms, a reward distribution fθa(X) is assumed to represent

the corresponding uncertainty. This layer of uncertainty is inherent to the stochas-

tic bandit problem. This lead us to work with the expected value of accumulated

reward than the random variable itself. In Section 2.1, we discuss this reasoning in

the context of existing bandit literature. The second layer of uncertainty involves the

parameters of the reward distributions. Since the reward distributions of the arms are

not completely known, the algorithm tries to estimate the reward distributions, and in

turn, the parameters to gain more information about the available choices. Thus, the

parameters of the reward distributions θa’s operate also as a set of random variables.

The corresponding uncertainty arises due to the lack of information about them, and

the policy that the algorithm computes to play the arms. This uncertainty is captured

by a set of belief distributions bηa(θa) over each of the parameters of the arms. These

two random variables and their corresponding distributions are estimated and lever-

aged to represent the uncertainty throughout a bandit process. Hence, amalgamating

202 BelMan: An Information Geometric Approach to Multi-armed Bandits

both of them into a single mathematical structure is the first step to represent the

uncertainty of learning and reward generation in a bandit process.

We propose to use the joint distributions P(X, θ) on reward X and parameter θ in

order to represent the uncertainties of partial information about the reward distribu-

tions along with the stochastic nature of reward. We call P(X, θ)’s the belief-reward

distributions.

Definition 7 (Belief-Reward Distribution). The joint distribution Pa
t (X, θa) on reward

X and parameter θa for the arm a at time t is defined as the belief-reward distribution.

Pa
t (X, θa) ≜

bat (θa)fθa(X)∫
X∈R

∫
θa∈Θ

bat (θa)fθa(X)dθadX
=

1

Z
bjn(θa)fθa(X). (5.6)

Here, Z ≜
∫

X∈R

∫
θa∈Θ

bat (θa)fθa(X)dθadX is the corresponding normalisation factor.

If f·(X) is a smooth function of θa for all a, the space of all reward distributions

constructs a smooth statistical manifold [Amari and Nagaoka, 2007], R. We call R

the reward manifold. If belief B over the reward distribution parameters is a smooth

function of its parameters, the belief space B constructs another statistical manifold.

We call B the belief manifold of the multi-armed bandit process. Assumption 1 implies

that the belief manifold B is a product of K statistical manifolds Ba ≜ {ba(θa)} =

{bηa(θa)}. Here, Ba is the statistical manifold of belief distributions for arm a. If

the parametrisation ηa of the belief distributions is smooth and bijective, Ba’s can be

represented by a single manifold Bθ.

Lemma 5 (Belief-Reward Manifold). The set of belief-reward distributions P(X, θa)

for all a constructs a manifold BθR, such that BθR = Bθ ×R. We refer to it as the

belief-reward manifold.

The Bayesian belief update after each iteration is a movement on the belief mani-

fold from a point bjn to another point bjn+1 with maximum information gain from the

obtained reward. Such movement from prior to posterior belief-reward distribution

maximises the gain in KL-divergence [Kullback, 1997] after incorporating the new

5.4 Methodology 203

reward. Thus, the belief-reward distributions of the played arms evolve to create a

set of trajectories on the belief-reward manifold. The goal of pure exploration is to

control such trajectories collectively such that after a long enough time each of the

belief-rewards accumulate enough information to resemble the ‘true’ reward distribu-

tions well enough. The goal of exploration–exploitation is to gain enough information

about the ‘true’ reward distributions while increasing the cumulative reward in the

path, i.e, by inducing a bias towards playing the arms with higher expected rewards.

From a manifold perspective, a convex mixture of DKL divergences form the general

notion of movement on the belief-reward manifold. Thus, KL-divergence between two

belief-reward distributions is an effective and natural quantifier of movement, and

also of information accumulation during Bayesian update. Hence, for updating the

beliefs in an optimal manner, and to decrease the uncertainty, we have to represent

the observations using a knowledge-base, and to minimise the KL-divergence between

the knowledge-base and other distributions respectively. If P are the candidate belief-

reward distributions of the arms formed by accumulation of actions and rewards, and

Q is the set of their summarised representation inducing exploration–exploitation, the

alternating minimisation scheme looks for the most succinct representation Q of the

knowledge and the exploitation bias while choosing such arms whose belief-reward

distributions resemble their true reward distributions as much as possible.

5.4.3 Pseudobelief: Summarising the Explored Knowledge

As we argue that exploration is the fundamental phenomenon in all the variants of

bandit problems, we hereby leverage the belief-reward manifold structure to develop

pseudobelief-reward distribution to facilitate exploration and learning.

In order to control the exploration, the algorithm has to represent a summary of

the collective knowledge on the belief-reward distributions of the arms. Since belief-

reward distribution of each arm is a point on the belief-reward manifold, geometrically

their barycenter on the belief-reward manifold represents a valid summary of the un-

certainty over all the arms [Agueh and Carlier, 2011]. Since the belief-reward manifold

204 BelMan: An Information Geometric Approach to Multi-armed Bandits

is a statistical manifold, we obtain from information geometry that this barycenter is

the point on the manifold that minimises the sum of KL-divergences from the belief-

rewards of all the arms [Barbaresco, 2013; Amari and Nagaoka, 2007]. We refer to

this minimising belief-reward distribution as the pseudobelief-reward distribution of

all the arms.

Definition 8 (Pseudobelief-Reward Distribution). A pseudobelief-reward distribution

P̄t(X, θ) is a point in the belief-reward manifold that minimises the sum of KL-

divergences from the belief-reward distributions Pa
t (X, θa) of all the arms.

P̄t(X, θ) ≜ argmin
P∈BθR

K∑
a=1

DKL (Pa
t (X, θa)∥P(X, θ)) . (5.7)

In Theorem 10, we prove existence and uniqueness of the pseudobelief-reward for

given belief-reward distributions. This proves the pseudobelief-reward to be an unam-

biguous representative of collective knowledge. We also prove in Corollary 2 that the

pseudobelief-reward distribution P̄t is the projection of the average belief-reward dis-

tribution P̂t(x, θ) =
∑

a Pa
t (X, θa) on the belief-reward manifold. This result validates

the claim of pseudobelief-reward as the summary of the belief-rewards of all the arms.

Properties of Pseudobelief–reward: Existence, Uniqueness and Consistency

In order to establish pseudobelief–reward as a valid knowledge-base for all the arms, we

have to prove that it exists uniquely and its parameters can be consistently estimated.

We prove these propertied in Theorem 10, Corollary 2, and Theorem 11. The proofs

require two assumptions. Firstly, the belief–reward manifold can be covered by a

single chart. Let us express the belief-reward manifold as a triad of the space and

the connections (BθR,∇,∇∗). If η and η′ are two coordinate mappings of the belief-

reward manifolds that yields the ∇- and ∇∗-affine coordinates, then they cover the

whole space i.e. Domain(η) = Domain(η′) = BθR. This implies that every belief–

reward distribution in the belief-reward manifold is a bijective function of parameters.

Secondly, there exist unique ∇-geodesics between any two points of the belief–reward

5.4 Methodology 205

manifold. This implies that there exists a unique ∇-geodesic (and dually ∇∗-geodesic)

connecting any two points P and Q in the belief-reward manifold, and all of it lies

in BθR. Thus, for any two coordinate mappings, η(BθR) and η′(BθR) are convex

subsets of an Euclidean space Rd′ . This implies that the belief-reward manifold is ∇-

convex, and a convex divergence function between any two belief–reward distributions

is uniquely exist. Instead of having such generic requirements, we represent our proofs

in form of the exponential family distributions due to ease of presentation and our

limited interest.

In Theorem 10, we prove that the pseudobelief-reward distribution at time t is

described by the expectation coordinate which is the average of expectation coordi-

nates of the belief-reward distributions of the arms at that time. Let us denote the

expectation parameter of each of the belief-reward distributions of the arms arms at

time t by µa
t , and the expectation parameter for the pseudobelief-reward at time t by

µ̂t.

Theorem 10. For a given set of belief-reward distributions {Pa
t }Ka=1 defined on the

same support set, having a finite expectation, and belonging to the exponential family

of distributions, P̄t is uniquely defined such that the expectation parameter satisfies

µ̂t =
1
K

∑K
a=1 µ

a
t (θ).

Proof. For belief–reward distributions Pa
t =

1
Zat

fθ(X)bηat (θ) and P = 1
Z
fθ(X)bη(θ), the

KL-divergence is defined as

DKL (Pa
t ∥P) =

∫
θ

∫
X

Pa
t (X, θ) log

Pa
t (X, θ)

P(X, θ)
dXdθ

=

∫
θ

∫
X

fθ(X)baηat (θ) log
baηat (θ)

bη(θ)
dXdθ

=

∫
θ

baηat (θ) log
baηat (θ)

bη(θ)

[∫
X

fθ(X)dX

]
dθ

=

∫
θ

baηat (θ) log
baηat (θ)

bη(θ)
dθ

= Ebat
[⟨ηat , ω(θ)⟩ −Ψ(ηat)− ⟨η, ω(θ)⟩+Ψ(η)]

= ⟨ηat − η, µa
t ⟩ −Ψ(ηat) + Ψ(η).

206 BelMan: An Information Geometric Approach to Multi-armed Bandits

Thus, the objective function that P̄ minimises is given by

F (P) ≜ 1

K

K∑
a=1

DKL (Pa
t ∥P) =

1

K

K∑
a=1

⟨ηat − η, µa
t ⟩ −

1

K

K∑
a=1

Ψ(ηat) + Ψ(η). (5.8)

Since the exponential family distributions are dually flat [Amari and Nagaoka, 2007],

we get a unique expectation parametrisation µa
t of the belief distributions for a given

natural parametrisation ηat . The expectation parameter is defined as µa
t ≜ Ebat

[ω(θ)] =

∇ηΨ(ηat). µa
t dually expresses a natural parametrisation. Mathematically, ηat =

∇µat
(⟨ηat , µa

t ⟩ − Ψ(ηat)) = ∇µat
Φ(µa

t). Ψ(ηat) and Φ(µa
t) are log-normalisers under two

parametrisations, and are convex conjugate to each other. If we define µ̂t ≜ 1
K

∑K
a=1 µ

a
t ,

we get a unique natural parameter η̂t as the dual of µ̂t. This allows us to rewrite Equa-

tion 5.8 as

F (P) = [⟨η̂t − η, µ̂t⟩ −Ψ(η̂t) + Ψ(η)] +
1

K

K∑
a=1

[⟨ηat , µa
t ⟩ −Ψ(ηat)− ⟨η̂t, µ̂t⟩+Ψ(η̂t)]

= DKL (Pµ̂t∥P) +
1

K

K∑
a=1

Φ(µa
t)− Φ(µ̂t)

≥ 1

K

K∑
a=1

Φ(µa
t)− Φ(µ̂t).

Since DKL (Pµ̂t∥P) = 0 for P = Pµ̂t , F (P) reaches unique minimum F (Pµ̂t) for the

belief–reward distribution with expectation parameter µ̂t ≜ 1
K

∑K
a=1 µ

a
t . Thus, for a

given set of belief–reward distributions the pseudobelief–reward distribution P̄t(X, θ) ≜
Pµ̂t(X, θ) is a unique distribution in belief–reward manifold.

Hereby, we establish as a unique summariser of all the belief–reward distributions.

Using this uniqueness proof, we show that the pseudobelief–reward distribution P̄ is

projection of the average belief–reward distribution P̂ ≜ 1
K

∑K
a=1 Pa on the belief–

reward manifold.

5.4 Methodology 207

Corollary 2. The pseudobelief-reward distribution P̄t(X, θ) is the unique point on the

belief-reward manifold that has minimum KL-divergence from the distribution P̂t(X, θ) ≜
1
K

∑K
a=1 Pa

t (X, θ).

Proof. KL-divergence from P̂t(X, θ) to a belief–reward distribution P(X, θ) is

DKL

(
P̂t∥P

)
= DKL

(
P̂t∥P̄t

)
+ ⟨η̂t − η, µ̂t⟩ −Ψ(η̂t) + Ψ(η)

= DKL

(
P̂t∥P̄t

)
+DKL

(
P̄t∥P

)
.

Here, P̄t is the pseudobelief distribution with η̂t and µ̂t as defined in Theorem 10. Since

P̂t is a mixture of belief–reward distributions, it does not belong to the belief–reward

manifold. Thus, P̂t ̸= P̄t and DKL

(
P̂t∥P̄t

)
> 0. Hence, DKL

(
P̂t∥P

)
attends unique

minimum for P = P̄t.

5.4.4 Focal Distribution: Inducing Exploitative Bias

Creating a succinct pseudobelief-reward is essential for both pure exploration and

exploration–exploitation but not sufficient for maximising the cumulative reward in

case of exploration–exploitation. If a reward distribution having such increasing bias

towards higher rewards is amalgamated with the pseudobelief-reward, the resulting

belief-reward distribution provides a representation in the belief-reward manifold to

balance the exploration–exploitation. Such a reward distribution is called the fo-

cal distribution. The product of the pseudobelief-reward and the focal distribution

jointly represents the summary of explored knowledge and exploitation bias using

a single belief-reward distribution. We refer to this as the pseudobelief-focal-reward

distribution-reward distribution In this paper, we use exp
(

X
τ(t)

)
with a time depen-

dent and controllable parameter τ(t) as the reward distribution inducing increasing

exploitation bias.

Definition 9 (Focal Distribution). A focal distribution is a reward distribution of the

form Lt(X) ∝ exp
(

X
τ(t)

)
, where τ(t) is a decreasing function of t ≥ 1. We term τ(t)

the exposure of the focal distribution.

208 BelMan: An Information Geometric Approach to Multi-armed Bandits

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

Reward x

L
(x

)
∝

 e
x
p

[x
/τ

n
]

τ
n
 = 0.25

τ
n
 = 0.33

τ
n
 = 0.5

τ
n
 = 1

Figure 5.1: Evolution of the focal distribution over X ∈ [0, 1] for τ(t) = 1, 0.5, 0.33
and 0.25.

The focal distribution gradually concentrates on higher rewards as the exposure

τ(n) decreases with time. We see this feature in Figure 5.1. Thus, it constrains using

KL-divergence to choose distributions with higher rewards and induces the exploitive

bias. Following the upper bounds of regret obtained in [Garivier and Cappé, 2011], we

set the focal distribution to τ(t) ≜ [log(t) +C × log(log(t))]−1 where C is a constant6

in the exploration–exploitation bandit problem. As the exposure τ(t) decreases with

t, the focal distribution gets more concentrated on higher reward values. For the pure

exploration bandits, we set the exposure τ(t) =∞ to remove any bias towards higher

reward values i.e, exploitation.

Pseudobelief-focal-reward distribution

We amalgamate the pseudobelief-reward and the focal distribution to jointly represent

the summary of explored knowledge and exploitation bias using a single belief-reward

distribution. Thus, the product distribution of the pseudobelief-reward distribution

and the focal distribution constructs the pseudobelief-focal-reward distribution.

Q̄t(X, θ) ≜ 1

Z̄t

P̄(X, θ) exp

(
X

τ(t)

)
6We choose the value C = 15 in the experimental evaluation.

5.4 Methodology 209

Algorithm 20 BelMan
1: Input: Time horizon T , Number of arms K, Prior belief B0.
2: for t = 1 to T do
3: /∗ I-projection ∗/
4: Draw arm at such that

At = argmin
a∈{1,...,K}

DKL

(
Pa
t−1(X, θ)∥Q̄t−1(X, θ)

)
. (5.9)

5: /∗ Accumulation of observables ∗/
6: Sample a reward Xt out of fθAt .
7: Update the belief-reward distribution of At to PAt

t (X, θ) using Bayes’ theorem.
8: /∗ Reverse I-projection ∗/
9: Update the pseudobelief-reward distribution to

Q̄t(X, θ) = argmin
Q̄∈BθR

K∑
a=1

DKL

(
Pa
t (X, θ)∥Q̄(X, θ)

)
. (5.10)

10: end for

Here, Z̄t =
∫
X∈R

∫
θ∈Θ P̄(X, θ) exp

(
X
τ(t)

)
dθ dX is the normalisation factor. We use

the pseudobelief-focal-reward distribution as the representative of explored knowledge

and exploitation bias in our algorithm. Following Equation (5.7), we compute the

pseudobelief-focal-reward distribution as

Q̄t(X, θ) ≜ argmin
Q̄

K∑
a=1

DKL

(
Pa
t (X, θ)∥Q̄(X, θ)

)
.

Now, we incorporate this in our framework of Algorithm 20 to alternatively minimise

the KL-divergence between belief-reward distributions over parameters of the arms

and the pseudobelief-reward distribution.

5.4.5 BelMan: An Alternating Projection Scheme

A bandit algorithm performs three operations in each step– chooses an arm, samples

from the reward distribution of the chosen arm and incorporate the sampled reward

to update the knowledge-base. BelMan (Algorithm 20) performs the first and the last

210 BelMan: An Information Geometric Approach to Multi-armed Bandits

operations by alternately minimising the KL-divergence DKL(.∥.) [Kullback, 1997] be-

tween the belief-reward distributions of the arms and the pseudobelief-focal-reward

distribution-reward distribution. BelMan chooses to play the arm whose belief-reward

incurs minimum KL-divergence with respect to the pseudobelief-focal-reward distri-

bution. Following that, BelMan uses the reward collected from the played arm to

do Bayesian update of the belief-reward and to update the pseudobelief-focal-reward

distribution-reward distribution to the point minimising the sum of KL-divergences

from the belief-rewards of all the arms. [Csiszár, 1984] geometrically formulated such

minimisation of KL-divergence with respect to a participating distribution as a pro-

jection to the set of the other distributions. For a given t, the belief-reward distribu-

tions of all the arms Pa
t (X, θ) form a set P ⊂ BθR and the pseudobelief-focal-reward

distribution-reward distributions Q̄t(X, θ) constitute another set Q ⊂ BθR.

The algorithm is initially provided (Line 1) with a prior belief distribution B0(θ) ≜∏K
a=1 bηa(θa). This allows the initial construction of the belief-reward distributions of

the arms and also the pseudobelief-focal-reward distribution. After this step, the

algorithm has to choose an arm that maximises information or reward gain and then

to incorporate this observation to create a better representation of knowledge and

exploitation bias. BelMan does this by alternating information projection between

the belief-rewards of the arms and the pseudobelief-focal-reward in the belief-reward

manifold. Both I- and rI-projections are valid and well-defined if the KL-divergence

between any two distributions in P and Q is defined and finite.

Assumption 4 (Absence of Singularities). If the distribution families P and Q are

defined over the sets Supp(P) ≜ {e : P (e) > 0, ∀P ∈ P} and Supp(Q) ≜ {e : Q(e) >

0, ∀Q ∈ Q} respectively, none of the supports are empty and Supp(P) ⊆ Supp(Q).

Definition 10 (I-Projection). The information projection (or I-projection) of a dis-

tribution Q̄ ∈ Q onto a non-empty, closed, convex set P of probability distributions,

Pj’s, defined on a fixed support set is defined by the probability distribution P∗ ∈ P

that has minimum KL-divergence to Q: P∗ ≜ argminPa∈P DKL(Pa∥Q̄).

5.4 Methodology 211

BelMan decides which arm to pull by an I-projection of the pseudobelief-focal-

reward distribution onto the beliefs-rewards of each of the arms (Lines 3–4). This

operation amounts to computing

At ≜ argmin
a

DKL

(
Pa
t−1(X, θ)∥Q̄t−1(X, θ)

)
= argmax

a

(
EPat−1(X,θ)

[
X

τ(t)

]
−DKL

(
bat−1(θ)∥bη̄t−1(θ)

))
.

The first term symbolises the expected reward of arm a. Maximising this term alone is

analogous to greedily exploiting the present information about the arms. The second

term quantifies the amount of uncertainty that can be decreased if arm a is chosen on

the basis of the present pseudobelief. The exposure τ(t) of the focal distribution keeps

a weighted balance between exploration and exploitation. Decreasing τ(t) decreases

the exploration with time which is quite an intended property of an exploration–

exploitation algorithm.

Since DKL

(
Pa
t−1∥Q̄t−1

)
= H(Pa

t−1, Q̄t−1)−h(Pa
t−1), we observe that the I-projection

PAt
t−1 is the distribution in P that maximises the entropy h(Pa

t−1), while minimising the

cross entropy H(Pa
t−1, Q̄t−1). Thus, as per the discussion in Section 5.4.1, PAt

t−1 is the

distribution in P that is most similar to Q̄t−1. This also implies that the I-projection

PAt
t−1 captures at least the first moment of the fixed distribution Q̄t−1.

In the last part (Lines 8–9), the updated beliefs are used to obtain the pseudobelief-

focal-reward distribution using rI-projection. Following Theorem 10, rI-projection

would lead to a unique pseudobelief-focal-reward distribution for a given set of belief-

rewards and exposure τ(t). Here, BelMan is inducing the exploitative bias. It keeps

the pseudobelief-focal-reward distribution away from the ‘actual’ barycentre of the

belief-reward distributions and pushes it towards the arms with higher expected re-

ward. Increasing exploitative bias eventually merges the pseudobelief-focal-reward

distribution to the distribution of the arm having the highest expected reward.

212 BelMan: An Information Geometric Approach to Multi-armed Bandits

Following that (Line 5–7), the agent plays the chosen arm at and samples a reward

Xt. This observation is incorporated in the belief of the arm using Bayes’ rule of

Equation (5.3).

Definition 11 (rI-Projection). The reverse information projection (or rI-projection)

of a distribution Pa ∈ P onto Q, which is also a non-empty, closed, convex set of

probability distributions on a fixed support set, is defined by the distribution Q̄∗ ∈ Q

that has minimum KL-divergence from Pa: Q̄∗ ≜ argminQ̄∈Q DKL(Pa∥Q̄).

The rI-projection finds the distribution Q̄∗ from a space of candidate distributions

Q that encodes maximum information of the distribution Pa. If the set of candidate

distributions is engendered by a statistical model, the rI-projection of the empirical

distribution formed from samples to the model is equivalent to finding the maximum

likelihood estimate. Since rI-projection aims to maximise the complete likelihood rather

than finding a distribution with similar entropy, Q̄∗ also captures higher moments of

the fixed distribution Pa. Thus, it is computationally more demanding but more

informative than I-projection.

Due to the underlying minimisation operation, if we begin from P0 ∈ P and Q̄0 ∈

Q and alternately perform I-projection and reverse I-projection, it will lead to two

distributions Pbest and Q̄best for which the KL-divergence between sets P and Q is

minimum [Csiszár, 1984].

Law of Convergence for the Pseudobelief-reward Distribution

We are simultaneously approximating the belief–reward parameters as well as the

pseudobelief–reward parameters. If we look into the belief update step (Equation 5.3),

we observe that the belief distribution of each arm baηat (θ) is updated by incorporating

independent and identically distributed (i.i.d.) samples obtained from the reward

distribution of arm a. Let us assume that BelMan has played total T times and any

arm a for na
T times. BelMan performs naïve Bayesian updates with i.i.d. samples Xt

such that at time t

bat+1(θAt) ∝ fθAt (Xt)b
At
t (θAt).

5.4 Methodology 213

The belief distributions of all the other arms which are not played at time t remain

unchanged. This leads the belief distributions to follow central limit theorem [Dur-

rett, 2010]. This implies that if µ̃a
naT

is the estimate of the expectation parameters of

the belief distribution of arm a constructed from the sampled rewards {Xa
t }

naT
t=1, then

the scaled difference between the estimated expectation parameters and true values of

the expectation parameters
√
na
T (µ̃

a
naT
− µtrue

a) converges in distribution to a centered

normal random vector in N (0, Cova). Here, N (0, Cova) denotes a normal distribution

with zero mean and covariance matrix Cova. In Theorem 11, we show that the esti-

mator of the mean parameters of pseudobelief is also consistent with these estimators

and satisfies central limit theorem.

Theorem 11 (Central Limit Theorem). If ˜̄µT ≜ 1
K

∑K
a=1 µ̃

a
naT

is estimator of the ex-

pectation parameters of the pseudobelief distribution at time T , the scaled error in esti-

mation of the expectation parameter of the pseudobelief-reward distribution,
√
T (˜̄µT −

µ̄true), converges in distribution to a normal random vector sampled from a normal

distribution N (0, ¯Cov) with zero mean and covariance matrix ¯Cov. Additionally, the

covariance matrix of the limiting distribution of estimation error of pseudobelief-reward

distribution ¯Cov is a linear combination of that of the covariance matrices correspond-

ing to the arms i.e.
∑K

a=1 λaCova with weights λa ∈ R+. The weight λas are such that

they asymptotically tend to T
K2naT

as T →∞.

Proof. The characteristic function for
√
T (˜̄µT − µ̄true) is

Φ√
T (˜̄µT−µ̄)(z) = E

[
exp(ι⟨z,

√
T (˜̄µT − µ̄true)⟩)

]
= E

[
exp(ι⟨z,

√
T

K

K∑
a=1

(µ̃a
naT
− µtrue

a)⟩)

]

=
K∏
a=1

E

[
exp(ι⟨z,

√
T

K
(µ̃a

naT
− µtrue

a)⟩)

]

=
K∏
a=1

E

[
exp(ι⟨

√
T

K
√
na
T

z,
√
na
T (µ̃

a
naT
− µtrue

a)⟩)

]

214 BelMan: An Information Geometric Approach to Multi-armed Bandits

=
K∏
a=1

Φ√
naT (µ̃

a
na
T
−µtruea)

(√
T

K
√
na
T

z

)

Since each of the
√
na
T (µ̃

a
naT
− µtrue

a) converges in distribution to a random vector that

follows the normal distribution N (0,Σj) with zero means and the covariance matrix

limT→∞
∑K

a=1

(√
T

K
√

naT

)2

Cova =
∑K

a=1 λaCova ≜ ¯Cov.

Theorem 11 shows that the parameters of pseudobelief can be constantly estimated

and their estimation would depend on the accuracy of the estimators of individual

arms with a weight on the number of draws on the corresponding arms. Thus, the

uncertainty in the estimation of the parameter is more influenced by the arm that

is least drawn and less influenced by the arm most drawn. In order to decrease the

uncertainty corresponding to pseudobelief, we have to draw the arms less explored.

Asymptotic Consistency of BelMan

As we have already proved the mathematical constructions corresponding to BelMan

exist and are statistically consistent, we now prove that BelMan leverages this struc-

ture to find out the optimal arm and to play it asymptotically. We show that if the

belief-reward functions are bounded from both above and below, and the exposure

function grows fast enough to satisfy 1
τ(T)

= Ω

(
max|log PaT |√

V (P1
T)

)
,7 BelMan converges to

choose the optimal arm for bandit with finite expected rewards and finite arms. We

describe this result of asymptotic consistency of BelMan in Theorem 12.

Theorem 12 (Asymptotic Consistency). If all the arms have finite expected rewards

|µa| < ±∞ and finite variances V (Pa
T) < ∞, there exists at least an optimal arm

with expected reward µ∗ ≜ maxa µ(θa), |log Pa
t (X, θ)| ≤ Ct with high probability for

+∞ > Ct ≥ 0, and the exposure satisfies
1

τ(t)
≥
√
2 log 2 Ct√

V (P1
t)

with high probability

1 for all t ∈ [T], then with high probability

lim
T→∞

S(T)

T
= lim

T→∞

1

T
E

[
T∑
t=1

(XAt)

]
= µ∗. (5.11)

7
√
V (P1

T) is variance of the belief-reward distribution at time of the optimal arm at time T .

5.4 Methodology 215

Proof. Without loss of generality, let us consider that there exists at least one optimal

arm and it is identified as the arm a = 1. At the I-projection step, we choose the

arm that has minimum KL-divergence DKL

(
Pa
t (X, θ)∥Q̄(X, θ)

)
from the pseudobelief–

focal distribution. Thus, we have to prove that for large t, DKL

(
P1
t (X, θ)∥Q̄(X, θ)

)
−

DKL

(
Pa
t (X, θ)∥Q̄(X, θ)

)
is non-positive for any a ̸= 1. We begin as follows,

DKL

(
P1
t (X, θ)∥Q̄(X, θ)

)
−DKL

(
Pa
t (X, θ)∥Q̄(X, θ)

)
=

∫
X

∫
θ

P1
t (X, θ) logP1

t (X, θ) dθ dX−
∫
X

∫
θ

Pa
t (X, θ) logPa

t (X, θ) dθ dX︸ ︷︷ ︸
T1

+

∫
X

∫
θ

[
Pa
t (X, θ)− P1

t (X, θ)
]
log Q̄(X, θ) dθ dX︸ ︷︷ ︸

T2

The first term T1 is the difference in entropy in two of the arms.

T1 =

∫
X

∫
θ

P1
t (X, θ) logP1

t (X, θ) dθ dX−
∫
X

∫
θ

Pa
t (X, θ) logPa

t (X, θ) dθ dX

=

∫
X

∫
θ

[
Pa
t (X, θ)− P1

t (X, θ)
]
logP1

t (X, θ) dθ dX − DKL

(
Pa
t (X, θ)∥P1

t (X, θ)
)

≤
(a)

∫
X

∫
θ

[
Pa
t (X, θ)− P1

t (X, θ)
]
logP1

t (X, θ) dθ dX

≤
(b)

∫
X

∫
θ

∣∣[Pa
t (X, θ)− P1

t (X, θ)
]
logP1

t (X, θ)
∣∣ dθ dX

≤
(c)

sup
X,θ

∣∣logP1
t (X, θ)

∣∣ ∫
X

∫
θ

∣∣Pa
t (X, θ)− P1

t (X, θ)
∣∣ dθ dX

≤
(d)
Ct

√
log 2

2
DKL (Pa

t (X, θ)∥P1
t (X, θ))

The inequality (a) is due to the non-negativity of KL-divergence. Inequality (b) is

derived from the monotonicity of integrals. This means that if f ≤ g for all w ∈

W then
∫
w∈W f(w) dw ≤

∫
w∈W g(w) dw. Boundedness of the logarithmic density

function of the pseudobelief-reward as stated in the assumption results to inequality

(c). Inequality (d) is obtained from Pinsker’s inequality [Cover and Thomas, 2012].

216 BelMan: An Information Geometric Approach to Multi-armed Bandits

Similarly, we get for the second term T2:

T2 =

∫
X

∫
θ

[
Pa
t (X, θ)− P1

t (X, θ)
]
log Q̄(X, θ) dθ dX)

=

∫
X

∫
θ

[
Pa
t (X, θ)− P1

t (X, θ)
]
log

(∏
a

Pa
t (X, θ)λ

a
t

)
dθ dX

− 1

τ(t)
EP1

t (X,θ)−Pat (X,θ) [X] + log Z̄t × EP1
t (X,θ)−Pat (X,θ) [1]

≤
(e)

Ct

√
log 2

2

√
DKL (Pa

t (X, θ)∥P1
t (X, θ))− ∆a

t

τ(t)
.

Here, ∆a
t ≜ µ1

t − µa
t , which means the difference between the expected reward of

the optimal arm and the suboptimal arm a. Inequality (e) is obtained by applying

AM-GM inequality, inequalities (a), (b), (c), and (d) in sequence. Thus,

T1+T2 ≤ Ct

√
2 log 2

√
DKL (Pa

t (X, θ)∥P1
t (X, θ))− ∆a

τ(t)
.

The RHS is non-positive if

1

τ(t)
≥ Ct

√
2 log 2

√
DKL (Pa

t (X, θ)∥P1
t (X, θ))

∆a
t

.

Now, we get from the transportation lemma in [Boucheron et al., 2013;Section 4.10],

we get
√

DKL(Pat (X,θ)∥P1
t (X,θ))

∆at
≥ 1√

V (P1
t)

. Thus, the RHS transforms to Ct
√
2 log 2√

V (P1
t)

. Hence

for any exposure function that satisfies the growth rate 1
τ(t)

= Ω

(
max|log Pat |√

V (P1
t)

)
, BelMan

would asymptotically choose the optimal arm. This proves that BelMan is asymptoti-

cally consistent for finite-arm stochastic bandit problems.

This lower bound on 1
τ(T)

being inversely proportional to ∆a indicates that we have

to induce higher exploitative bias to reach higher rewards if the difference between the

optimal and the suboptimal arm is minute. It is intuitive as the algorithm would need

more samples to distinguish between the optimal and the suboptimal similar to it.

5.4 Methodology 217

We intuitively validate this claim. We can show the KL-divergence between belief-

reward of arm j and the pseudobelief-focal-reward is DKL

(
Pa
t (X, θ)∥Q̄(X, θ)

)
= (1−

λa)h(b
a
t)− 1

τ(t)
µa
t , where λa’s are computed as per Theorem 11. As t→∞, the entropy

of belief on each arm reduces to a constant dependent on its internal entropy. Thus,

when 1
τ(t)

exceeds the entropy term for a large t, BelMan greedily chooses the arm

with highest expected reward. Hence, BelMan is asymptotically consistent.

5.4.6 BelMan for Exponential Family Distributions

BelMan is applicable to any belief-reward distribution for which KL-divergence is

computable and is finite. Additionally, if we assume the reward distributions to be

in the exponential family of distributions, the belief distributions, being conjugate to

the reward distributions, also belong to the exponential family [Brown, 1986]. This

makes the belief-reward distributions flat with respect to KL-divergence. Thus, both

I-and rI-projections in BelMan are well-defined and unique for exponential family

reward distributions. Furthermore, if we identify the belief-reward distributions with

expectation parameters, we obtain the pseudobelief as an affine sum of them. This

allows us to compute pseudobelief-reward distribution directly instead of computing

its dependence on each belief-reward separately. The exponential family includes

the majority of the distributions found in the bandit literature such as Bernoulli,

beta, Gaussian, Poisson, exponential, and χ2. We choose the exponential family to

instantiate our framework not only because of its wide range and applicability but

also due to the aforementioned Bayesian and information geometric properties.

If the reward distribution belongs to the exponential family, it can be represented

as

fθ(X) ≜ g(X) exp (⟨ω(θ), T (X)⟩ − A(θ)) .

Here, g(X) is the base measure on reward X and A(θ) is called the log-partition

function. Since the conjugate distribution of a distribution in exponential family also

belongs to the exponential family [Brown, 1986], the belief distribution also belongs

218 BelMan: An Information Geometric Approach to Multi-armed Bandits

to the exponential family, and is represented as the conjugate of reward distribution.

Thus, we express the belief distribution as

bη(θ) ≜ g(θ) exp (⟨η, T (θ)⟩ − A(η)) . (5.12)

Here, η is the natural parameters, T (θ) the sufficient statistics, g(θ) is the base measure

and A(η) is the log-partition function. Thus, the posterior distribution P(θ|X = x)

formed by multiplying the belief and reward distributions has the same exponential

form as bη(θ).

Since exponential family distributions are flat with respect to KL-divergence [Amari

and Nagaoka, 2007], both I-and rI-projections in BelMan are well-defined and unique.

Thus, at each iteration, we obtain an optimal and unambiguous choice of the arm and

pseudobelief respectively. Thus, working with exponential family distributions implic-

itly supports the well-defined nature and possibility of getting an efficient estimation.

Theorem 10 and 11 validate these properties for BelMan.

Bernoulli Bandits

In case of Bernoulli bandits, we assume that drawing an arm returns the rewards 1

and 0 with probability θ and 1 − θ respectively. Thus, the reward distribution of

an arm a is fθa(X) ≜ Ber(X; θa). Following the Bayesian approach, we choose the

conjugate beta prior to begin with. Thus, we keep the prior belief over each arm as a

beta distribution with shape parameters {αa}Ka=1 and {βa}Ka=1. After t-iterations the

prior over the probability of success of the ath arm is

bat (θa) ≜ Beta(θa;α
a
t , β

a
t) =

1

B(αa
t , β

a
t)
θα

a
t−1

a (1− θa)
βat −1,

for αa
t , β

a
t ∈ N and θa ∈ (0, 1). Here, αa

t and βa
t are the number of successes and

failures, respectively, for the arm a till iteration t.

We begin with both αa
0 and βa

0 to be 1 for all arms. This amounts to the uniform

distribution over 0 and 1. This initialization allows us to choose all the arms with

5.4 Methodology 219

equal probability and without any initial bias. We update this belief eventually as we

further draw the arms and compute it using BelMan. Under this setting of beta prior

and Bernoulli reward, we compute the targeted KL-divergence of BelMan as

K∑
a=1

DKL

(
Pa
t (X, θ)∥Q̄t−1(X, θ)

)
=

K∑
a=1

[− 1

τ(t)

αa
t

na
t

− log (B (αa
t , β

a
t)) + (αa

t − ᾱt−1)Ψ(αa
t) + (βa

t − β̄t−1)Ψ(βa
t)

− (na
t − n̄t−1)Ψ(na

t)] +K log

(
ᾱt−1 exp(

1
τ(t)

) + β̄t−1

n̄t−1

)
+K log

(
B
(
ᾱt−1, β̄t−1

))
.

Here, na
t = αa

t + βa
t is the total number of times an arm a is played till time t,

n̄ = ᾱ + β̄ and Ψ is the digamma function [Bernardo, 1976] defined as the derivative

of the logarithm of gamma function, i.e. d
da

(log Γ(a)).

In Line 4 of Algorithm 20, we first perform the I-projection to decide which arm At

to draw to minimize the KL-divergence. Following this, we update the pseudobelief

using I-projection in Line 9 of Algorithm 20. In order to perform this update, we find

out such ᾱ and β̄ that minimize the objective and update the pseudobelief accordingly.

The presence of pseudobelief offers BelMan a chance to explore the less successful arms

to minimize the entropy, while the Focal distribution creates the scope of exploiting

the present information of the best arm.

Exponential Bandits

The exponential distribution is another member of the exponential family. For a given

positive rate parameter θa ∈ R+, the reward distribution of arm a of exponential

bandit is fθa(X) ≜ θa exp(−θaX) for reward X ∈ [0,∞). Following the structure

of Sections 5.4.6 and the previous Bernoulli case, we obtain the gamma distribution,

another member of the exponential family, as the conjugate prior. After time t, the

belief distribution corresponding to ath arm is expressed as

bat (θa) ≜ Gamma (θa;α
a
t , β

a
t) =

(βa
t)

αat

Γ(αa
t)

θa
αat−1 exp(−θaβa

t),

220 BelMan: An Information Geometric Approach to Multi-armed Bandits

for both shape and rate parameters αa
t , β

a
t > 0. Here, αa

t and βa
t are, respectively, the

number of times the arm a is played and sum of the rewards obtained by playing the

arm till iteration t. As we update using Equation (5.3), we get gamma distributions

with parameters αa
t+1 = αa

t +1, and βa
t+1 = βa

t +Xt if the arm a is played and a reward

Xt is obtained. Under this specific setting of gamma prior and exponential reward, we

compute the targeted KL-divergence of BelMan as

K∑
a=1

DKL

(
Pa
t (X, θ)∥Q̄(X, θ)

)
=

K∑
a=1

[− 1

τ(t)

αa
t

βa
t

− log (Γ (αa
t)) + (αa

t − ᾱt−1)Ψ(αa
t)−

αa
t

βa
t

(βa
t − β̄t−1)

+ ᾱt−1 log β
a
t] +K log Z̄t +K log (Γ (ᾱt−1))−Kᾱt−1 log β̄t−1.

We incorporate this analytical form in Algorithm 20 and update it as mentioned in

the Bernoulli case.

5.5 Empirical Performance Analysis

In this section, we experimentally verify BelMan’s performance for exploration-exploitation

bandits, and two-phase bandits respectively. We also comparatively analyse its per-

formance with respect to the state-of-the-art algorithms, and empirically prove it to

achieve logarithmic regret bound. We use the pymaBandits library [Cappé et al., 2012]

for implementation of all the algorithms except ours, and run it on MATLAB 2014a.

5.5.1 Exploration–exploitation Bandit

We evaluate the performance of BelMan for two exponential family distributions –

Bernoulli and exponential. They stand for discrete and continuous rewards respec-

tively. We plot the evolution of the mean and the 75 percentile of cumulative regret

and number of suboptimal draws. For each instance, we run experiments for 25 runs

each consisting of 1000 iterations.

5.5 Empirical Performance Analysis 221

0 500 1000
0

5

10

15

20

25

30

C
u

m
u

la
ti
v
e

 r
e

g
re

t

BelMan

0 500 1000
0

50

100

150

S
u

b
o

p
ti
m

a
l
d

ra
w

s

0 500 1000
0

5

10

15

20

25

30
BayesUCB

0 500 1000
0

50

100

150
0 500 1000

0

5

10

15

20

25

30
Thompson

0 500 1000
0

50

100

150
0 500 1000

0

5

10

15

20

25

30
UCB

0 500 1000
0

50

100

150

Iterations

0 500 1000
0

5

10

15

20

25

30
KLUCB

0 500 1000
0

50

100

150

0 500 1000
0

5

10

15

20

25

30
Gittins

0 500 1000
0

50

100

150
0 500 1000

0

5

10

15

20

25

30
Random

0 500 1000
0

50

100

150

Figure 5.2: Evolution of cumulative regret (top), and number of suboptimal draws
(bottom) for 500 iterations for 2-arm Bernoulli bandit with means {0.8, 0.9}. The
dark black line shows the average. The grey area shows 75 percentile.

We also experimented on another 2-arm bandit scenario with means 0.45 and

0.55. Figures 5.5 depicts the evolution of cumulative regret and suboptimal draws for

BelMan and the other competing algorithms. Similar to Figure 5.5, we observe the

cumulative regret of BelMan grows at first linearly and then it transits to a state of

slow growth. Except showing this ideal behaviour, BelMan performs competitively

with the contending algorithms. This shows its efficiency as a candidate solution to

the exploration–exploitation bandit.

Figure 5.6 shows performance for 10-arm Bernoulli bandit. For this setup, BelMan

outperforms other algorithms. We also observe though the number of arms increases

from Figure 5.5 to Figure 5.6 that performance of all algorithms is comparatively

better in the first case. This is explainable from the fact that hardness of minimising

cumulative regret increases as the number of arms increases. Beside that, as more arms

with identical or almost identical distributions appear, the algorithm requires more

exploration to separate them and to determine which one is optimal. The difference

in performance between Figure 5.5 and 5.2 indicates this.

222 BelMan: An Information Geometric Approach to Multi-armed Bandits

0 500 1000
0

10

20

30

40

50

60

70

80

90

100

C
u
m

u
la

ti
v
e

 r
e
g

re
t

BelMan

0 500 1000
0

100

200

300

400

500

600

700

800

900

1000

S
u
b

o
p

ti
m

a
l
d

ra
w

s

0 500 1000
0

10

20

30

40

50

60

70

80

90

100
BayesUCB

0 500 1000
0

100

200

300

400

500

600

700

800

900

1000

0 500 1000
0

10

20

30

40

50

60

70

80

90

100
Thompson

0 500 1000
0

100

200

300

400

500

600

700

800

900

1000

0 500 1000
0

10

20

30

40

50

60

70

80

90

100
UCB

0 500 1000
0

100

200

300

400

500

600

700

800

900

1000

Iterations

0 500 1000
0

10

20

30

40

50

60

70

80

90

100
KLUCB

0 500 1000
0

100

200

300

400

500

600

700

800

900

1000

0 500 1000
0

10

20

30

40

50

60

70

80

90

100
Gittins

0 500 1000
0

100

200

300

400

500

600

700

800

900

1000

0 500 1000
0

10

20

30

40

50

60

70

80

90

100
Random

0 500 1000
0

100

200

300

400

500

600

700

800

900

1000

Figure 5.3: Evolution of cumulative regret (top), and number of suboptimal draws
(bottom) for 1000 iterations for 20-arm Bernoulli bandit.

We finally tested BelMan on an exponential bandit consisting of 5-arms with ex-

pected rewards {0.2, 0.25, 0.33, 0.5, 1.0}. We compare performance of BelMan with

state-of-the-art frequentist method tailored for exponential distribution of rewards,

called KL-UCBExp [Garivier and Cappé, 2011]. We also compare it with Thomp-

son sampling, UCBtuned and uniform sampling method (Random). The results are

shown in Figure 5.7 and 5.8. Since the formulation is oblivious to boundedness of

the distribution, we choose to validate also on unbounded rewards. In Figure 5.7, it

outperforms all the other algorithms. In Figure 5.8, though KL-UCBexp performs the

best, performance of BelMan is still competitive with it.

These results validate BelMan’s claim as a generic solution to a wide range of

bandit problems. We compare the performance of BelMan with frequentist methods

like UCB [Auer et al., 2002] and KL-UCB [Garivier and Cappé, 2011], and Bayesian

methods like Thompson sampling [Thompson, 1933] and Bayes-UCB [Kaufmann et al.,

2012a]. For Bernoulli bandits, we also compare with Gittins index [Gittins, 1979] which

is the optimal algorithm for Markovian finite arm independent bandits with discounted

5.5 Empirical Performance Analysis 223

0 500 1000
0

10

20

30

40

50

60

70

time

C
u

m
u

la
ti

v
e

 r
e

g
re

t

BelMan

0 500 1000
0

50

100

150

200

250

300

350

400

450

500

S
u

b
o

p
ti

m
a

l d
ra

w
s

BelMan

0 500 1000
0

10

20

30

40

50

60

70

time

Thompson

0 500 1000
0

50

100

150

200

250

300

350

400

450

500

Thompson

0 500 1000
0

10

20

30

40

50

60

70

time

UCBtuned

0 500 1000
0

50

100

150

200

250

300

350

400

450

500

e

UCBtuned

0 500 1000
0

10

20

30

40

50

60

70

time

KLUCB

0 500 1000
0

50

100

150

200

250

300

350

400

450

500

KLUCB

0 500 1000
0

10

20

30

40

50

60

70

time

KLUCBexp

0 500 1000
0

50

100

150

200

250

300

350

400

450

500

KLUCBexp

0 500 1000
0

10

20

30

40

50

60

70

time

Random

0 500 1000
0

50

100

150

200

250

300

350

400

450

500

Random

Iterations

Figure 5.4: Evolution of cumulative regret (top), and number of suboptimal draws
(bottom) for 1000 iterations for 5-arm bounded exponential bandit with parameters
{1, 2, 3, 4, 5}.

0 500 1000
0

5

10

15

20

25

30

35

40

45

50

time

C
u

m
u

la
ti
v
e

 r
e
g

re
t

BelMan

0 500 1000
0

50

100

150

200

250

time

S
u
b

o
p

ti
m

a
l
d

ra
w

s

BelMan

0 500 1000
0

5

10

15

20

25

30

35

40

45

50

time

BayesUCB

0 500 1000
0

50

100

150

200

250

time

BayesUCB

0 500 1000
0

5

10

15

20

25

30

35

40

45

50

time

Thompson

0 500 1000
0

50

100

150

200

250

time

Thompson

0 500 1000
0

5

10

15

20

25

30

35

40

45

50

time

UCB

0 500 1000
0

50

100

150

200

250

time

UCB

0 500 1000
0

5

10

15

20

25

30

35

40

45

50

time

KLUCB

0 500 1000
0

50

100

150

200

250

time

KLUCB

0 500 1000
0

5

10

15

20

25

30

35

40

45

50

time

Random

0 500 1000
0

50

100

150

200

250

time

Random

Figure 5.5: Evolution of cumulative regret (top), and number of suboptimal draws
(bottom) for 500 iterations for 2-arm Bernoulli bandit with means 0.45 and 0.55. The
dark line shows the average over 25 runs. The grey area shows 75 percentile.

224 BelMan: An Information Geometric Approach to Multi-armed Bandits

rewards. Though we are not interested in the discounted case, but the algorithm is

indeed transferable to the finite horizon setting with slight manipulation. Though it

is often computationally intractable, we use it as the optimal baseline for Bernoulli

bandits. We also plot performance of the uniform sampling method (Random), as a

naïve baseline.

For the 2-arm Bernoulli bandit of Figure 5.2, left (θ1 = 0.8, θ2 = 0.9), we observe

that at the very beginning the cumulative regret of BelMan grows linearly and then

transitions to a state of slow growth. This initial linear growth of suboptimal draws

followed by a logarithmic growth is an intended property of any optimal bandit algo-

rithm as can be seen in the performance of competing algorithms and also pointed out

by [Garivier et al., 2016b]: an initial phase dominated by exploration and a second

phase dominated by exploitation. The phase change indicates the ability of the algo-

rithm to reduce uncertainty after a certain number of iterations and to find a trade-off

between exploration and exploitation. BelMan performs comparatively well with re-

spect to the contending algorithms, achieving the phase of exploitation faster than

others, with significantly less variance. Figure 5.3 depicts similar features of BelMan

for 20-arm Bernoulli bandits (with means 0.25, 0.22, 0.2, 0.17, 0.17, 0.2, 0.13, 0.13, 0.1,

0.07, 0.07, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.01, 0.01, and 0.01). Since more arms ask

for more exploration and more suboptimal draws, all algorithms show higher regret

values. On all experiments performed, BelMan outperforms the competing approaches.

We also simulated BelMan on exponential bandits: 5 arms with expected rewards

{0.2, 0.25, 0.33, 0.5, 1.0}. Figure 5.4 shows that BelMan performs more efficiently than

state-of-the-art methods for exponential reward distributions- Thompson sampling,

UCBtuned [Auer et al., 2002], KL-UCB, and KL-UCB-exp, a method tailored for

exponential distribution of rewards [Garivier and Cappé, 2011]. This demonstrates

BelMan’s broad applicability and efficient performance in complex scenarios.

We have also run the experiments 50 times with horizon 50 000 for the 20 arm

Bernoulli bandit to verify the asymptotic behaviour of BelMan. Figure 5.9 shows that

BelMan’s regret gradually becomes linear with respect to the logarithmic axis. Fig-

5.5 Empirical Performance Analysis 225

0 500 1000
0

10

20

30

40

50

60

70

time

C
u
m

u
la

ti
v
e

 r
e
g

re
t

BelMan

0 500 1000
0

100

200

300

400

500

600

700

800

900

1000

time

S
u
b

o
p

ti
m

a
l
d

ra
w

s

BelMan

0 500 1000
0

10

20

30

40

50

60

70

time

BayesUCB

0 500 1000
0

100

200

300

400

500

600

700

800

900

1000

time

BayesUCB

0 500 1000
0

10

20

30

40

50

60

70

time

Thompson

0 500 1000
0

100

200

300

400

500

600

700

800

900

1000

time

Thompson

0 500 1000
0

10

20

30

40

50

60

70

time

UCB

0 500 1000
0

100

200

300

400

500

600

700

800

900

1000

time

UCB

0 500 1000
0

10

20

30

40

50

60

70

time

KLUCB

0 500 1000
0

100

200

300

400

500

600

700

800

900

1000

time

KLUCB

0 500 1000
0

10

20

30

40

50

60

70

time

Random

0 500 1000
0

100

200

300

400

500

600

700

800

900

1000

time

Random

Figure 5.6: Evolution of cumulative regret (top), and number of subopti-
mal draws (bottom) for 500 iterations for 10-arm Bernoulli bandit with means
{0.1, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.01, 0.01, 0.01}. The dark black line shows the
average. The grey area shows 75 percentile.

0 200 400 600 800 1000
0

10

20

30

40

50

60

time

BelManExp

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

time

S
u

b
o

p
ti
m

a
l
d
ra

w
s

BelManExp

0 200 400 600 800 1000
0

10

20

30

40

50

60

time

Thompson

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

time

Thompson

0 200 400 600 800 1000
0

10

20

30

40

50

60

time

UCBtuned

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

time

UCBtuned

0 200 400 600 800 1000
0

10

20

30

40

50

60

time

KLUCBexp

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

time

KLUCBexp

0 200 400 600 800 1000
0

10

20

30

40

50

60

time

Random

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

time

Random

Figure 5.7: Evolution of cumulative regret (top), and number of suboptimal draws
(bottom) for 1000 iterations for 5-arm unbounded exponential bandit with parameters
{0.2, 0.25, 0.33, 0.5, 1.0}.

226 BelMan: An Information Geometric Approach to Multi-armed Bandits

0 200 400 600 800 1000
0

500

1000

1500

2000

2500

time

C
u
m

u
la

ti
v
e

 r
e

g
re

t

BelMan

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000

time

S
u

b
o

p
ti
m

a
l
d

ra
w

s

BelMan

0 200 400 600 800 1000
0

500

1000

1500

2000

2500

time

Thompson

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000

time

Thompson

0 200 400 600 800 1000
0

500

1000

1500

2000

2500

time

UCBtuned

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000

time

UCBtuned

0 200 400 600 800 1000
0

500

1000

1500

2000

2500

time

KLUCBexp

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000

time

KLUCBexp

0 200 400 600 800 1000
0

500

1000

1500

2000

2500

time

Random

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000

time

Random

Figure 5.8: Evolution of cumulative regret (top), and number of suboptimal draws
(bottom) for 1000 iterations for 5-arm unbounded exponential bandit with parameters
{1, 2, 3, 4, 5}.

ure 5.9 empirically validates BelMan to achieve logarithmic regret like the competitors

which are theoretically proven to reach logarithmic regret.

5.5.2 Two-phase Bandit

In this experiment, we simulate a two-phase setup, as in [Putta and Tulabandhula,

2017b]: the agent first does pure exploration for a fixed number of iterations, then

move to exploration–exploitation. This is possible since BelMan supports both modes

and can transparently switch. The setting is that of the 20-arm Bernoulli bandit. The

two-phase algorithm is exactly BelMan (Algorithm 20) with τ(n) = ∞ for an initial

phase of length TEXP followed by the decreasing function of n as indicated previously.

Thus, BelMan gives us a single algorithm for three setups of bandit problems – pure

exploration, exploration–exploitation, and two-phase learning. We only have to choose

a different τ(n) depending on the problem addressed. This supports BelMan’s claim

as a generalised, unified framework for bandit problems.

5.6 Conclusion 227

10
1

10
2

10
3

10
4

0

100

200

300

400

500

600

700

800

900

1000

Iterations

C
u
m

u
la

ti
v
e
 r

e
g
re

t

BelMan

Thompson

UCB

BayesUCB

Random

Figure 5.9: Evolution of (mean) regret for
exploration–exploitation 20-arm Bernoulli
bandits with horizon=50,000.

0 100 200 300 400 500 600 700 800 900 1000
−10

0

10

20

30

40

50

60

70

Iterations

C
u
m

u
la

ti
v
e
 r

e
g
re

t

Pure exploration time = 333

Pure exploration time = 250

Pure exploration time = 200

Pure exploration time = 100

Figure 5.10: Evolution of (mean) cumula-
tive regret for two-phase 20-arm Bernoulli
bandits.

We observe a sharp phase transition in Figure 5.10. While the pure exploration

version acts in the designated window length, it explores almost uniformly to gain

more information about the reward distributions. We know for such pure exploration

the cumulative regret grows linearly with iterations. Following this, the growth of

cumulative regret decreases and becomes sublinear. If we also compare it with the

initial growth in cumulative regret and suboptimal draws of BelMan in Figure 5.3,

we observe that the regret for the exploration–exploitation phase is less than that of

regular BelMan exploration–exploitation. Also, with increase in the window length

the phase transition becomes sharper as the growth in regret becomes very small.

In brief, there are three major lessons of this experiment. First, Bayesian methods

provide an inherent advantage in leveraging a priori knowledge (here, from the first

phase). Second, a pure exploration phase helps in improving the performance during

the exploration–exploitation phase. Third, we can leverage the exposure to control

the exploration–exploitation trade-off.

5.6 Conclusion

BelMan implements a generic Bayesian information geometric approach for stochastic

multi-armed bandit problems. It operates in a statistical manifold of joint distribu-

tions of beliefs and rewards. Their barycentre, the pseudobelief-reward, forms the

basis of the exploration component of the algorithm. The algorithm is further ex-

228 BelMan: An Information Geometric Approach to Multi-armed Bandits

tended by composing the pseudobelief-reward distribution with a reward distribution

that gradually concentrates on higher rewards by means of a time-dependent func-

tion, the exposure. In short, BelMan addresses the issue of the adaptive balance of

explorationexploitation from the perspective of information representation, accumula-

tion, and balanced induction of bias. Consequently, BelMan can be uniformly tuned

to support pure exploration, exploration–exploitation, and two-phase reinforcement

learning problems. We prove the law of convergence of the pseudobelief-focal-reward

distribution for BelMan. BelMan is asymptotically consistent. The proof of con-

sistency indicates that a growth of exposure transforms the exploration–exploitation

trade-off into pure exploitation after accumulating sufficiently enough samples. Bel-

Man, when instantiated to rewards modelled by any distribution of the exponential

family, conveniently leads to analytical forms that allow to derive a well-defined and

unique projection as well as to devise an effective and fast computation. We empiri-

cally evaluate the performance of BelMan for Bernoulli and exponential distributions.

The results of the experiments validate that BelMan asymptotically achieves logarith-

mic regret. The results show that, for the two-phase reinforcement learning problem,

BelMan not only spontaneously adapts with but also leverages explored information to

escalate efficiency. The comparative results show that BelMan is not only competitive

but also outperforms existing algorithms for challenging setups such as those involving

many arms and continuous rewards.

We are investigating the analytical asymptotic efficiency and stability of BelMan.

We are also investigating how BelMan can be extended to other settings such as

dependent arms, non-parametric distributions and continuous arms.

Chapter 6

QBelMan: An Information Geometric

Approach to Queueing Bandits

Experiment escorts us last-

his pungent company

will not allow an Axiom

an Opportunity.

— Emily Dickinson, Experiment escorts us last, 1770.

We introduce the information-geometric approach to multi-armed bandits in this chap-

ter. This formulation allows us to develop an algorithm, BelMan [Basu et al., 2018c],

for finite-arm stochastic multi-armed bandit problems. As we have developed the

theory and the algorithm design technique, we want to instantiate it in a real-life

application, and to investigate its efficiency and effectiveness for the corresponding

problem.

In this chapter, we instantiate BelMan for the problem of scheduling jobs in a

multiple-server multiple-queue system with known arrival rates and unknown service

230 QBelMan: An Information Geometric Approach to Queueing Bandits

rates. The goal of the agent is to choose such a server for the given system such

that the total queue length, i.e. the number of jobs waiting in the queue, will be as

low as possible. We formulate this problem as a finite-arm stochastic bandit problem

that aims to minimise the cumulative queue length. This problem is referred as the

queueing bandit [Krishnasamy et al., 2016]. The unknown service rates introduce the

exploration-exploitation problem. Thus, the queueing bandit problem differs from the

standard optimisation problem discussed in the queueing theory literature.

We instantiate BelMan for queueing bandits with Bernoulli service rates and ex-

ponential service rates respectively. Experimental results instantiate that BelMan is

performing more efficiently than the state-of-the-art algorithms in both of these vari-

ants of queueing bandit that we have investigated.

6.1 Introduction

We formulate the allocation problem in a multiple-server multiple-queue system with

known arrival rate and unknown service rates as a finite-arm stochastic multi-armed

bandit problem (Section 2.1). The queue-server pair and the allocation algorithms

are analogous to the arms and the agent in the bandit problem respectively. This

formulation of queueing is relevant for modelling a vast range of service systems, such

as supply and demand in online platforms (e.g., Uber, Airbnb, etc.), order flow in

financial markets (e.g., limit order books), packet flow in communication networks,

and supply chains. In these systems, queueing is an essential part of the model and

also the queue parameters are dynamic and unknown.

In classical queueing theory literature, both the arrival rates and the service rates

are assumed to be accurately known and it leads to an analytical solution for queue

performance. For the aforementioned systems, due to the lack of such knowledge of

accurate parameters, the proposed multi-armed bandit formulation provides a model-

free framework to explore the queue parameters and to exploit them on-the-go. We

formulate this problem of queueing bandits in Section 6.3.

6.2 A Primer on Queueing and Bandits 231

In order to resolve the exploration-exploitation trade-off in the bandit formulation,

we adapt our information geometric algorithm, BelMan [Basu et al., 2018c], for multi-

armed bandits. This approach not only solves the proposed formulation but also caters

for an information geometric analysis of allocation in a queueing system. BelMan

represents the uncertainty related to the queue parameter as a belief distribution and

the aggregated knowledge about the queue as a belief-reward distribution. BelMan

uses an I-projection [Csiszár, 1984] to project the belief-rewards of all the arms on their

KL-divergence barycentre, referred to as the pseudobelief-reward [Basu et al., 2018c].

The pseudo belief-reward acts as the summarised knowledge-base of all the arms and

evokes the server to explore the arms with most uncertain belief-reward distribution

in the reverse I-projection step [Basu et al., 2018c]. An incremental exploitative bias

is infused by means of a reward distribution that evolves and concentrates on higher

rewards. The rate of the concentration of this bias, called exposure, allows us to

control the exploration-exploitation trade-off.

In Section 6.5, we comparatively evaluate our approach with the state-of-the-art

bandit algorithms, such as Thompson sampling, Q-ThS, and Q-UCB. Experiments

validate the similitude of the behaviour of our approach with the proved bounds on

queue regret. Experiments instantiate that BelMan performs more efficiently and

effectively than the competing algorithms for both the cases of Bernoulli service rates,

and exponential service rates. Specifically, under the conditions where Thompson

sampling, and QThS are unable to achieve optimal queue regret bounds, BelMan

stays stable and outperforms the state-of-the-art algorithm.

6.2 A Primer on Queueing and Bandits

This paper belongs to the junction of two fields of research- queueing theory and multi-

armed bandits. In this section, we review and summarise the research literature in

queueing theory and the previous endeavours to apply bandits to queues. This allows

232 QBelMan: An Information Geometric Approach to Queueing Bandits

us to contextualise our contribution in the existing literature. We refer to Section 2.1

for detailed literature on bandits.

6.2.1 Queueing Theory

The queueing theory literature [Cox and Smith, 1961] discusses about the statistical

problem of arrival of customers and serving them. The general metric that most queue-

ing mechanism minimise is the queue length or the average waiting time in the array.

Researchers [Cohen and Boxma, 1985] studied queuing theory from kaleidoscopic ap-

proaches such as a branch of mathematics studying variants of birth-death process to

a field of operations research to calculate the performance measures. Kendall proposed

a notation a/b/c : d/e/f to represent all these variants unambiguously. Here a denotes

inter-arrival time distribution, b is the service time distribution, and c represents the

number of servers. d denotes the maximum number of jobs that can be occupied in the

system (waiting and in service) with an infinite number of waiting positions for default.

e indicates the queueing discipline (First Come First Serve, Last Come First Serve,

Round Robin etc.) with First Come First Serve (FCFS) as default, and f stands for

the population size from which customers rush to the system with infinity as default.

In most of the cases, the processes of arrival and service are memoryless i.e, Marko-

vian, and the corresponding time distributions are Poisson and exponential [Shortle

et al., 2018]. This is represented by M/M/K. Though queueing theory proposes the

optimal steady-state solution and detailed analysis of the transient phase, the litera-

ture assumes complete prior knowledge of the arrival and service rates. This is not

always true for real-life applications. Though there are works on transient queues for

which the arrival and service rate change through a pre-defined stochastic process,

the pre-requisite knowledge of the stochastic process narrows down its scope. This

scenario engenders a need of bandit algorithms in queueing literature that would learn

the arrival and service rates on-the-go as well as minimise the queue length or waiting

time in the queue efficiently.

6.3 Queueing Bandit: Problem Formulation 233

6.2.2 Multi-armed Bandits in Queueing

Following the Gittins index formalism, [Niño-Mora, 2006, 2007; Buyukkoc, 1985;

Van Mieghem, 1995; Jacko, 2010] have applied multi-armed bandits for the queueing

and scheduling systems. These queueing studies focus on infinite-horizon costs, i.e.,

statistically steady-state behaviour, where the focus typically is on conditions for opti-

mality of index policies. Further, the models do not typically consider user-dependent

server statistics and provides little insight to the learning procedure.

We focus here on algorithms and analysis to optimize finite time regret. [Krish-

nasamy et al., 2016] proposed a finite-time analysis of queueing systems with known

arrival rate and unknown service rates. They also leverage this analysis to design a

variant of Thompson sampling, Q-ThS, which satisfies the asymptotic optimality con-

dition. Still, their analysis is limited to the Bernoulli servers only i.e, the servers may

or may not serve a customer with a certain probability. This is unrealistic because

the systems have service rates in form of generalised distributions like exponential dis-

tributions. Our proposed algorithm, QBelMan, does not only achieve the asymptotic

optimality for Bernoulli bandits but also shows similar performance for general service

distributions. It also additionally provides an information theoretic insight of learning

the queueing parameters and improving the performance accordingly that eventually

makes it almost as optimal as the optimal queueing algorithm with full information.

6.3 Queueing Bandit: Problem Formulation

We consider a discrete-time queueing system with N queues and K servers. The

queues are indexed by n ∈ {1, . . . , N} and the servers are indexed by k ∈ {1, . . . , K}.

Arrivals to the queue and service offered by the servers are assumed to be independent

and identically distributed across time. The mean arrival rates are denoted by λ =

[λ1, . . . , λN], where λn ∈ R+. The mean service rates are referred as µ ∈ [µnk]N×K ,

where µnk is the service rate of server k for queue n. At a time, a server can serve

the jobs coming from a queue only. We assume the queue to be stable which means

234 QBelMan: An Information Geometric Approach to Queueing Bandits

the maximum arrival rates of queues is bounded by maximum service rate of servers

λn < max
k∈[K]

µnk for all queues n ∈ [N].

Now, the problem is to choose such pairs of queues and servers at each time t ∈ [T]

such that the number of jobs waiting in queues is as low as possible. The number of

jobs waiting in queues is called the queue length of the system. The agent, which is

the scheduling algorithm in this case, tries to minimise this queue length for a given

horizon T > 0. The arrival rates are known to the scheduling algorithm but the service

rates are unknown to it. This creates the need to learn about the service distributions,

and in turn, engenders the exploration-exploitation dilemma.

We assume that the first order Markov property holds for the scheduler. Hence,

the scheduling decision at time t is based on the observations available at time t−1. If

at = [(n1, k1), . . . , (nmin(N,K), kmin(N,K))] is the set of queue-server matchings chosen by

the scheduler at time t, the service provided by the chosen servers at time t is the set

of samples obtained from the queueing distributions corresponding servers and queues

in the matching. Thus, the reward obtained from the system at time t is the value

of the service provided Xat = S(t), and the queue-server pairs are the corresponding

arms. If the number of arrivals to the queues at time t is A(t), the queue length at

time t is defined as

Q(t) ≜ Q(t− 1) + A(t)− S(t),

where Q : [T] → R≥0, A : [T] → R≥0, and S : [T] → R≥0. Our goal is to investigate

how bandit algorithms or their variants can be used to minimise this queue length

over a finite horizon T . [Krishnasamy et al., 2016] proposed this formulation to study

the effect of queueing behaviour on bandit algorithms. They termed this problem

formulation as queueing bandit that we follow in this chapter.

Following the bandit literature, [Krishnasamy et al., 2016] proposed to use queue

regret as the performance measure of a queueing bandit algorithm. Queue regret is

defined as the difference in the queue length if a bandit algorithm is used instead of

an optimal matching algorithm with full information about the arrival and service

rates. The optimal matching includes queue-server pairs such that each queue with a

6.3 Queueing Bandit: Problem Formulation 235

A

S1

SK

. . .

µ1

µK

λ

Arrival
process

Queue

Server
process

Figure 6.1: A queuing system (A/S/K) with arrival rate λ and service rates µ1, . . . , µK .

corresponding server such that the service rate of the corresponding server is maximum

for that queue. In order to assure the existence of an optimal matching, we assume that

there exists a unique optimal server k∗
n for each queue n such that µnk∗n = maxk µnk, and

for any two queue n and n′, the optimal servers are not the same i.e. k∗
n ̸= k∗

n′ . Thus,

the optimal algorithm OPT knows all the arrival and service rates, and allocates the

queue to servers with the best service rate. We define the queue length corresponding

to this algorithm as the optimal queue length QOPT(t). Hence, we define the queue

regret of a queueing bandit algorithm A as

Ψ(t) ≜ E
[
Q(t)−QOPT(t)

]
. (6.1)

In order to keep the bandit structure, we assume that both the queue length Q(t) of

algorithmA and that of the optimal algorithm QOPT(t) starts with the same stationary

state distribution ν(λ,µ). This initial state distribution ν(λ,µ) is the steady state

distribution of the system induced by the optimal policy. Under these assumptions,

the goal of the algorithm A is to minimise the queue regret Ψ(T) for a given time

horizon T .

We illustrate such a queueing system with single queue and K servers in Figure 6.1.

It is a A/S/K queueing system with arrival process A, arrival rate λ, service process

S, and service rates µ1, . . . , µK respectively. In case of single queues, the queueing

bandit become simpler and almost synonymous to the finite-arm stochastic bandit

236 QBelMan: An Information Geometric Approach to Queueing Bandits

problem. Here, we assume existence of the optimal server with maximum service rate

µ∗ = maxk µk. The optimal algorithm allocates the jobs coming from the queue to

the optimal server. The scheduler schedules the jobs to different server that causes

different service times, and in turn, estimation of service rates of them. The goal is

to minimise the corresponding queue regret, or alternatively, to minimise the queue

length. We assume the system to be stable which means λ < µ∗. We define the

difference between the maximum service rate and the arrival rate as the load of the

system ϵ ≜ µ∗ − λ > 0. We show theoretical results on a single-queue system because

as per queueing theory a single queue system is more efficient than a multiple queue

system for job allocation [Shortle et al., 2018]. Additionally, for multiple queue system,

we can show the queue regret of the system to be the sum of the queue regrets of

each queue. Since the optimal servers are different for different queues and operate

independently, optimising the queue regret of the system is equivalent to optimising

the queue regrets of individual queues. Thus, it suffices to analyse the single queues for

practical application purposes, Though for the sake of generality, we will investigate

both of the single queue and multiple queue systems in the experiments.

6.3.1 M/B/K Queueing Bandit

In the M/B/K queueing bandit, we assume the arrival process to be Markovian, and

the service process to be Bernoulli. For simplicity, we present the calculations and the

model for a single queue system. Tha arrival process being Markovian means that the

stochastic process describing the number of arrivals A (t) has increments independent

of time. This makes the distribution of A(t) to be a Poisson distribution [Durrett,

2010] with mean arrival rate λ. We denote the Bernoulli distribution of the service

time of server k to be Bk(µk). Bk(µk) implies that the server processes a job with

probability µk ∈ (0, 1) and refuses to serve it with probability 1 − µk. As mentioned

earlier, at each time a job in the queue can be served by at most one server. The

problem is to determine which server will serve a specific job with minimum possible

failure.

6.3 Queueing Bandit: Problem Formulation 237

Let at be the server that is being scheduled at time t, and S (n) be the service offered

by the server at, i.e., S (n) = Xat ∈ {0, 1}. The queue length Q (t)) is interpreted as

the number of jobs that the (t− 1)-th departure leaves behind. If A (t) is the number

of customers that join the queue between time t and t+ 1, then

Q (t+ 1) =

Q (t)−Xat + A (t) if Q (t) > 0

A(t) if Q (t) = 0

This implies that if the server k is chosen, the distribution of queue length will be

sampled from the distribution

P (Q(t+ 1) ≤ A(t)) = (1− λ

µk

)

1 + λ

µk(1− µk)

A(t)∑
i=1

λ(1− µk)

µk(1− λ)

i−1

 .

Thus, each time the queue k is chosen the queue length increases by an amount sampled

from this distribution, and the scheduling algorithm has to allocate one of them to a

server. The goal is to perform the scheduling in such a way that the queue regret will

be minimised.

6.3.2 M/M/K Queueing Bandit

Though the M/B/K queue provides a well-behaved scenario to analyse the theoretical

properties, it is not practical in majority of real-life applications. A Bernoulli service

process implies that either a job is served or not with a certain probability, which is

not the case in real-life; rather, servers serve each job with a certain delay. Thus, the

processing time of the jobs can be delayed but they are not going to remain unserviced.

This brings us to investigation of a more realistic and widely used M/M/K model

of queues. In the M/M/K model, both the arrival and service processes are Markovian.

This means that service delay of one job does not depend on the service delay of the

previous job. Thus, we obtain the service time to form an exponential distribution

with mean service rate µk for server k. This implies that the average delay in service

238 QBelMan: An Information Geometric Approach to Queueing Bandits

for each job is µk for server k. Thus, we similarly define the growth in queue as

Q (t+ 1) =

Q (t)−Xat + A (t) if Q (t) > 0

A(t) if Q (t) = 0

where Xat is sampled from an exponential distribution with parameter µat . This

implies that if the server k is chosen, the distribution of queue length will be sampled

from the distribution

P (Q(t+ 1) ≤ A(t)) = (1− λ

µk

)

1 + A(t)∑
i=1

(
λ

µk

)i

 .

Thus, each time the queue k is chosen the queue length increases by an amount sampled

from this distribution, and the scheduling algorithm has to allocate some of them to

a server. The goal is to perform the scheduling in such a way that the queue regret

will be minimised.

6.4 Methodology

In this section, we provide brief description of the state-of-the-art Q-ThS and Q-UCB

algorithms. Following that, we discuss our algorithm QBelMan. We conclude this

section by providing theoretical performance bounds of BelMan.

6.4.1 Q-ThS and Q-UCB: The state-of-the-art Algorithms

Q-UCB and Q-Thompson sampling (Q-ThS) [Krishnasamy et al., 2016] are variants of

the classical bandit algorithms UCB [Auer et al., 2002] and Thompson sampling [Thomp-

son, 1933] proposed for the queuing bandits with Markovian arrival process and un-

known Bernoulli service process. They facilitate an initial exploration window followed

by the UCB or Thompson sampling algorithm for exploration–exploitation trade-off.

In the initial exploration window, the servers are chosen uniformly randomly. This

6.4 Methodology 239

facilitates gain in information about the service rates of the servers. This window is

assigned to be 3K log2 T
T

for a given horizon T and number of servers K. Following

this, the standard versions of UCB and Thompson sampling are used respectively for

Q-UCB and Q-ThS. [Krishnasamy et al., 2016] also proved that the queue regret from

Q-ThS is upper bounded by O(log3 t) and lower bounded by Ω(log t
log log t

) for the early

stage when the queue regret is growing. They also proved that for the late stage where

the queue regret decays, the queue regret of Q-ThS is upper bounded by O(log
3 t
t

) and

lower bounded by Ω(1
t
). This transition from early stage to late stage depends on

the load of the queueing system ϵ. The smaller is ϵ, the longer it takes the algorithm

to converge to the decay in queue length for the late stage. The limitation of their

algorithms is the setting of Bernoulli service distribution. Since M/B/K queueing

system is hardly available in real-life applications, and Q-UCB and Q-ThS are fine

tuned for M/B/K system but not for M/M/K systems.

6.4.2 QBelMan: BelMan for Queueing Bandits

Following the same algorithm design technique, we extend BelMan to QBelMan for the

online scheduling in the queueing systems. Here, each server is treated as an arm and

the corresponding distribution of queue length as the reward distribution. QBelMan

differs from BelMan by an initial phase of exploration analogous to the modification

to Q-ThS from Thompson sampling, and to Q-UCB from UCB.

Similar to BelMan, QBelMan maintains belief distributions over the service rates of

the service distributions of the servers. QBelMan constructs the belief-reward manifold

using the joint distribution over the service rate and the service delay. It begins with

an initial prior distribution, or initial belief distribution, over the unknown service

parameters of the servers. QBelMan performs an initial phase of exploration to gain

more information and to update the belief distributions. Following that, QBelMan

performs the I-projection and reverse-I projections alternatively in order to select the

server to send the job to, and to update the pseudobelief-focal-reward distribution

240 QBelMan: An Information Geometric Approach to Queueing Bandits

Algorithm 21 QBelMan
1: Input: Time horizon T , Number of arms K, Prior on parameters B0.
2: for t = 1 to T do
3: if rand(0, 1) ≤ 3K log2 T

T
then

4: Play an arm at uniformly randomly.
5: else
6: /∗ I-projection ∗/
7: Draw arm at such that

at = argmin
k

DKL

(
Pk
t−1(S, θ)∥Q̄t−1(S, θ)

)
. (6.2)

8: /∗ Accumulation of observables ∗/
9: Sample a service time S(t) out of fµat .

10: Update the belief-reward distribution of at to Pat
t+1(S, θ) using Bayes’ theo-

rem.
11: /∗ Reverse I-projection ∗/
12: Update the pseudobelief-reward distribution to

Q̄t(S, θ) = argmin
Q̄∈BθR

K∑
k=1

DKL

(
Pk
t (S, θ)∥Q̄(S, θ)

)
. (6.3)

13: end if
14: end for

over the service delay and the service rate. The pseudocode of QBelMan is elaborated

in Algorithm 21.

Though the initial window of exploration accumulates more information, it also

grows the queue regret initially but following that QBelMan comes back to the original

BelMan. This design technique ensures initial information gain as well as retaining

the asymptotic consistency of BelMan

6.5 Experimental Analysis

In this section, we experimentally verify BelMan’s performance for exploration-exploitation

bandits, and two-phase bandits respectively. We also comparatively analyse its perfor-

mance with respect to the state-of-the-art algorithms QUCB, QThS, and, Thompson

sampling. We empirically verify it to achieve logarithmic regret bound. We use Python

6.5 Experimental Analysis 241

0 2000 4000 6000 8000 10000
Time

5

0

5

10

15

20

Qu
eu

e
re

gr
et

Queue1

(a) Q-ThS

0 2000 4000 6000 8000 10000
Time

5

0

5

10

15

20

Qu
eu

e
re

gr
et

Queue1

(b) Q-UCB

0 2000 4000 6000 8000 10000
Time

5

0

5

10

15

20

Qu
eu

e
re

gr
et

Queue1

(c) Thompson sampling

0 2000 4000 6000 8000 10000
Time

5

0

5

10

15

20
Qu

eu
e

re
gr

et
Queue1

(d) QBelMan

0 2000 4000 6000 8000 10000
Time

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Qu
eu

e
re

gr
et

Queue1

(e) Random exploration

0 2000 4000 6000 8000 10000
Time

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Qu
eu

e
re

gr
et

Queue1

(f) BelMan

Figure 6.2: Queue regret for 1 queue and 5 server setting with Poisson arrival and
Bernoulli service distribution. The dark line in the middle shows the mean queue
regret whereas the shaded area shows 33 percentiles of queue regret below and above
it.

242 QBelMan: An Information Geometric Approach to Queueing Bandits

2.7 to develop a library 1 for solving queueing bandit problems using the aforemen-

tioned algorithms, BelMan, QBelMan, and random exploration for both the Bernoulli

and exponential service distributions. We simulate the algorithms for each bandit

algorithms for 10,000 iterations and 100 runs

Single queue M/B/5 bandit. We run the experiments for single queue and 5

servers setting with Poisson arrivals and Bernoulli service distributions. We set the

arrival rate to be λ = 0.35. We set the service rates to be [0.5, 0.33, 0.33, 0.33, 0.25].

This makes the first server with service rate 0.5 to be the optimal choice. Since the

load ϵ = 0.5− 0.35 = 0.15 > 0, the queueing system is stable. We illustrate the result

of 100 simulations for 10000 time steps in Figure 6.2. The dark line in the middle

shows the mean queue regret whereas the shaded area shows 33 percentiles of queue

regret below and above it.

We comparatively evaluate the performance of Q-ThS, Q-UCB, Thompson Sam-

pling, Q-BelMan, Random exploration, and BelMan respectively. Figure 6.2 illustrates

the results. Figure 6.2 validates the shape of the queue regret to satisfy the theoretical

bounds for the asymptotically optimal algorithms except random exploration. Ran-

dom exploration does not satisfy the pattern as it leads to linear number of choice

of suboptimal servers. Figure 6.2 shows that QBelMan performs efficiently than the

competing algorithms with a significant decrease in queue regret. Interestingly, though

the maximum queueing regret for Thompson sampling is less the other algorithms, it

does not converge. Thompson sampling shows critically variance and higher regret

than Q-UCB, BelMan, and Q-BelMan in the later stage.

Three queue M/B/5 bandit. Though we illustrate the results for single queue

system, we extend the experiments to a queueing system with three queues and five

servers. We perform the experiments with arrival rates 0.35 for each one of them. We

1The git repository: https://github.com/Debabrota-Basu/QBelMan

https://github.com/Debabrota-Basu/QBelMan

6.5 Experimental Analysis 243

0 2000 4000 6000 8000 10000
Time

0

25

50

75

100

125

150

175

200

Qu
eu

e
re

gr
et

Queue1
Queue2
Queue3

(a) Q-ThS

0 2000 4000 6000 8000 10000
Time

0

25

50

75

100

125

150

175

200

Qu
eu

e
re

gr
et

Queue1
Queue2
Queue3

(b) Q-UCB

0 2000 4000 6000 8000 10000
Time

0

25

50

75

100

125

150

175

200

Qu
eu

e
re

gr
et

Queue1
Queue2
Queue3

(c) Thompson sampling

0 2000 4000 6000 8000 10000
Time

0

25

50

75

100

125

150

175

200

Qu
eu

e
re

gr
et

Queue1
Queue2
Queue3

(d) QBelMan

0 2000 4000 6000 8000 10000
Time

0

25

50

75

100

125

150

175

200

Qu
eu

e
re

gr
et

Queue1
Queue2
Queue3

(e) Random exploration

0 2000 4000 6000 8000 10000
Time

0

5

10

15

20

25

30

35

40

Qu
eu

e
re

gr
et

Queue1
Queue2
Queue3

(f) BelMan

Figure 6.3: Queue regret for 3 queue and 5 server setting with Poisson arrival and
Bernoulli service distribution.

244 QBelMan: An Information Geometric Approach to Queueing Bandits

assign the service rates to be a 5× 3 matrix

µ = [[0.5, 0.33, 0.33, 0.33, 0.25], [0.33, 0.5, 0.25, 0.33, 0.25], [0.25, 0.33, 0.5, 0.25, 0.25]].

This makes the optimal matching to be {(1, 1), (2, 2), (3, 3)}. Since the loads are

positive for every queue, the queueing system is stable.

We comparatively evaluate the performance of Q-ThS, Q-UCB, Thompson Sam-

pling, Q-BelMan, Random exploration, and BelMan respectively. Figure 6.3 shows

that QBelMan performs significantly better than the competing algorithms with less

queue regret and faster convergence rate. Additionally, we observe that as the service

rates of suboptimal arms to be explored decreases the queue regret blows up for both

Q-ThS, and Thompson sampling. This observation indicates that even the classical

bandit algorithms of Thompson sampling family may not be stable under queueing

setup.

Single queue M/M/5 bandit. We run the experiments for single queue and 5

servers setting with Poisson arrivals and Exponential service distributions. We set the

arrival rate to be λ = 0.5. We set the service rates to be [1, 0.9, 0.5, 0.5, 0.33]. This

makes the first server with service rate 1 to be the optimal choice. Since the load

ϵ = 1− 0.5 = 0.5 > 0, the queueing system is stable.

We comparatively evaluate the performance of Q-ThS, Thompson Sampling, Q-

BelMan, Random exploration, and BelMan respectively. We cannot apply Q-UCB in

this M/M setting because it is not generalisable to exponential service distributions.

We illustrate the results in Figure 6.4. In Figure 6.4, we observe the pattern to be

significantly different than that of the Bernoulli service distributions. The variance

of the queue regret is quite high for all of the algorithms. Still QBelMan incurs

less queue regret than other algorithms while random exploration incurs the highest

queue regret. This shows not only generality of QBelMan as a framework that acts

on eclectic service distribution families while perform efficiently with respect to the

state-of-the-art algorithms.

6.5 Experimental Analysis 245

0 2000 4000 6000 8000 10000
Time

6

4

2

0

Qu
eu

e
re

gr
et

Queue1

(a) Q-ThS

0 2000 4000 6000 8000 10000
Time

0

1

2

3

4

5

Qu
eu

e
re

gr
et

Queue1

(b) Thompson sampling

0 2000 4000 6000 8000 10000
Time

10

8

6

4

2

0

2

4

Qu
eu

e
re

gr
et

Queue1

(c) QBelMan

0 2000 4000 6000 8000 10000
Time

4

2

0

2

4

Qu
eu

e
re

gr
et

Queue1

(d) BelMan

0 2000 4000 6000 8000 10000
Time

2

1

0

1

2

3

4

5

Qu
eu

e
re

gr
et

Queue1

(e) Random exploration

Figure 6.4: Queue regret for 1 queue and 5 server setting with Poisson arrival and
exponential service distribution.

246 QBelMan: An Information Geometric Approach to Queueing Bandits

6.6 Conclusion

In this chapter, we formulate the job scheduling in a multiple-queue multiple-server

system with known arrival rates and unknown service rates as a finite-arm stochastic

bandit problem. The difference between the queueing bandit and the traditional ban-

dit setup is that the performance measure is queue regret that depends on the arrival

process, and queueing behaviour. Following the algorithm design technique of [Kr-

ishnasamy et al., 2016], we propose a variant of BelMan with an initial exploration

window to address the queueing bandit problem. As the existing literature is built

around the M/B/K systems, we investigate performance of BelMan both theoretically

and experimentally for this type of systems. BelMan not only achieves the same or-

der of growth in early stage and decay in late stage as the state-of-the-art algorithms

but also performs significantly better than all of them. In order to instantiate the

generality of BelMan, we evaluate it for M/M/K queues. The experiments show that

BelMan incurs less queue regret than the competing algorithms. This proves both

efficiency and generality of BelMan as an algorithmic framework for bandits.

There is still no available bounds on the pattern of change of queue regret with

time for M/M/K systems. We are investigating similar bounds for M/M/K queues.

Additionally, queues are traditionally studied as MDPs. Specifically, in their transient

state, multiple-queue multiple-server systems are scheduled as MDPs. We are explor-

ing queueing systems to extend this information geometric frameworks from bandits

to MDPs. A path towards this development that we are working on is discussed in

Chapter 7.

Chapter 7

The Closure

We shall not cease from exploration, and the end of all our exploring will be to arrive

where we started and know the place for the first time.

— Thomas Eliot, Little Gidding, 1942.

Every conclusion is a closure of an exploration–exploitation dilemma between con-

tinuing the research further and communicating it through a thesis. While facing the

same dilemma in our investigation to the problem of learning to make decisions with in-

complete information, we decide to draw a closure to this thesis in this chapter. Thus,

we begin this chapter with a brief concluding discussion of the findings in the preced-

ing chapters (Section 7.1). The conclusions are not the terminal states of the research

directions explored in this thesis. Rather the important things are the perspectives

developed through them and how they provide a direction to a unified perspective

to reinforcement learning. We discuss this briefly in Section 7.2. In Section 7.3, we

briefly mention the immediate future works that we are pursuing now.

7.1 Conclusions

In this thesis, we have discussed about the problem of learning to make decisions

with incomplete information from a reinforcement learning formalism. We principally

248 The Closure

deal with two problem settings- multi-armed bandits and Markov decision processes.

Theoretically, we address three scenarios: Markov decision processes without a known

reward function (Chapter 3), with an unknown transition function (Chapter 4), and

multi-armed bandits with an unknown reward function (Chapters 5 and 6). In order to

do so, we use the tools of online optimisation and functional approximation for the first

two problems (Chapters 3 and 4). For the last one, we generalise our notion of func-

tional approximation as that of estimating unknown distributions with an information

geometric framework (Chapters 5 and 6). We apply the developed methodologies to

address three real-life application problems, such as automated database tuning [Basu

et al., 2015a,b, 2016], energy and performance efficient live migration of virtual ma-

chines [Basu et al., 2017c,b], and online scheduling in queuing systems [Basu et al.,

2018a].

We begin this body of work with a primer on reinforcement learning in Chapter 2.

Specifically, Chapter 2 discusses the problem formulation and state-of-the-art algo-

rithms for multi-armed bandits and Markov decision processes. This chapter clarifies

and justifies the problem models and assumptions pursued in the following chapters.

Chapter 2 also posits the works of Chapters 3, 4, 5, and 6 in the corresponding state-

of-the-art from a methodological perspective.

Chapter 3 proposes and validates that we can solve a Markov decision process with

an unknown reward function by using a regularised function estimator with compat-

ible stability guarantees in parallel with an online reinforcement learning algorithm.

We instantiate these methodologies through two automated index tuning algorithms

without cost models, COREIL and rCOREIL [Basu et al., 2015a,b, 2016]. These algo-

rithms perform efficiently and effectively than the state-of-the-art algorithms for index

tuning with a fixed cost model.

Chapter 4 proposes and validates that we can solve a Markov decision process

with unknown transition function by projecting the observed transition function in a

well-designed feature space with convergence guarantees in parallel with an online re-

inforcement learning algorithm. The proposed algorithm, Megh [Basu et al., 2017c,b],

7.2 Perspectives 249

experimentally outperforms the state-of-the art live virtual machine migration algo-

rithms and even the reinforcement learning algorithms that assumes the correct model

for the transition function is known.

Chapter 5 investigates the multi-armed bandits where the reward distributions

are unknown, and have to be estimated by the agent. We use this scope to de-

velop a generic information geometric framework to address the issues of exploration–

exploitation trade-off [Basu et al., 2018d]. We leverage this to design an algorithm,

BelMan [Basu et al., 2018c], that uniformly addresses the classical stochastic ban-

dit problem, pure exploration bandit problem and two-phase reinforcement learning

problem. We theoretically prove that BelMan is asymptotically consistent, and ex-

perimentally validate its efficiency for bandits with continuous rewards and multiple

arms.

Chapter 6 instantiates the information geometric framework of BelMan for online

scheduling of jobs in a multiple-queue multiple-server system with unknown arrival

and service rates [Basu et al., 2018a]. We theoretically prove BelMan to be asymptot-

ically optimal algorithm and experimentally illustrate that it outperforms the state-

of-the-art algorithms for servers with Bernoulli distributions. These results validate

applicability in addition with generality of BelMan as a framework. We also extended

this methodology for queues with Markovian service process. The experimental results

prove BelMan’s applicability to real-life applications, while the state-of-the-art which

is designed to serve only the Bernoulli service distributions.

7.2 Perspectives

Here, we discuss the perspectives that we obtain through development of an infor-

mation geometric view towards the exploration–exploitation trade-off problem in re-

inforcement learning. This part proposes to construct the belief-reward manifold in

order to investigate the information accumulation, processing and learning of an agent

systematically and geometrically. We develop in this direction with the problem for-

250 The Closure

mulation of multi-armed bandits. Multi-armed bandits provide us the initial ground to

develop the theory without worrying about the planning components of MDP. The in-

vestigation of Chapters 5 and 6 builds a perspective towards exploration-0exploitation

in different variants of bandits. We also reach a potential extension of this method-

ology to MDPs. We present this extension conceptually in [Basu et al., 2018d]. We

elaborate the concept and the connection in this section.

7.2.1 An Information Geometric Approach to MDP

In Chapter 5, we present the information-geometric approach to multi-armed ban-

dits. As discussed in Section 2.1, the environment E in multi-armed bandits is con-

stituted by K reward distributions fθtrue1
(X), . . . , fθtrueK

(X) with unique parametrisa-

tions θtrue1 , . . . , θtrueK ∈ Rd. The parameters θtrue1 , . . . , θtrueK are not known to the agent

A. Thus, she begins with a set of distributions {b(θ1), . . . , b(θK)} representing the

uncertainty of the corresponding parameters. These distributions are called belief

distributions as they probabilistically represent the belief of the agent about the corre-

sponding parameter values. Since the true values of the parameters can be accurately

estimated only after accumulating infinite number of samples from each of them, the

agent always makes decisions on the basis of the belief distributions and not the true

environment. Thus, decision making with incomplete information is actually decision

making in a belief space which is sequentially updated by accumulating samples from

the environment. Since the agent interacts with the belief space to get more informa-

tion, learning the belief distributions corresponding to the arms play a central role in

exploration, and thus, in bandit algorithms.

Still the beliefs do not suffice to represent the uncertainty regarding the interaction

of the agent with the environment. Since reward generation from the arms itself is

stochastic in nature, we have to consider the reward distributions also to model the

uncertainty of interaction between the agent and the environment. This motivated

us to construct the joint space of belief and reward distributions, which is called the

belief-reward manifold. Belief-reward manifold provides us a framework to update the

7.2 Perspectives 251

Step 2
Update

belief-rewards
(Bayes’ rule)

Step 3
Update

pseudobelief-focal
(rI-projection)

Step 1
Action Selction
(I-projection)

Environment
fθtrue

1
(R), . . . , fθtrue

K
(R)

Belief-
rewards

{Pa
t (R, θ)}Ka=1

Belief-
rewards

{Pa
t (R, θ)}Ka=1

Pseudobelief-
focal

Q̄t(R, θ)

Action
At

Reward
RAt

Figure 7.1: The block diagram of BelMan algorithm for multi-armed bandits

estimation of belief distributions, to construct a collective summary of knowledge as

pseudobelief-reward, and to select the arm to play. In BelMan, we perform the update

through Bayes’ rule, and the later steps through alternating information projection.

The block diagram of BelMan is shown in Figure 7.1 as it puts all the aforementioned

components in a loop.

Figure 7.1 shows that the decision making block of BelMan interacts with all other

blocks that can be represented as interaction with the belief-reward manifold. It also

indicates the fact that better inference is needed to fulfil the goal of maximising the

cumulative reward. As we discussed earlier in Section 2.1, they should go interactively.

This is reflected in the objective function used for action selection in BelMan

At ≜ argmin
a

DKL

(
Pa
t−1(X, θ)∥Q̄t−1(X, θ)

)
= argmax

a

(
EPat−1(X,θ) [X]− τ(t) DKL

(
bat−1(θ)∥bη̄t−1(θ)

)) (7.1)

Equation (7.1) shows that the chosen action At does not maximise only the estimate of

reward at each step but a regularised estimate of reward. The regularisation function

includes the KL-divergence between the belief distribution of the arm a and the pseu-

dobelief representing the collective knowledge over the arms. The regularisation factor

is called the exposure, and is a decreasing time dependent function τ(t). Thus, the se-

quence of actions {At}Tt=1 does not maximise the cumulative reward
∑T

t=1 EPAt [X] but

a weighted sum of rewards and KL-divergences
∑T

t=1

[
EPAt [X]− τ(t)DKL

(
bAt(θ)∥bη̄t

)]
.

252 The Closure

This regularisation imposes an exploration bias to facilitate learning, and thus induces

the exploration–exploitation trade-off.

Now, we extend this framework of decision making with incomplete information,

and interaction between the agent and the belief of environment to the exploration–

exploitation dilemma in MDPs (Section 2.2.9). Specifically, let us consider that we

have an MDP M = ⟨S,A,P , R⟩. Thus, we model the environment E is a state-

action space S × A. The agent interacts with the state-action space and obtains

the observations from it. Since the exact model of interaction between states and

actions is not available to the agent, the agent tries to compute a randomised policy

π : S×A→ [0, 1] 1 depending on her belief about the occurrence of a state-action pair

(s, a). Thus, the randomised policy of the agent along with the transition function

P : S × A × S → [0, 1] induces a stationary distribution Bπ(s, a) over the state-

action space, and a stationary distribution νπ(s) over the state space. 2 A stationary

distribution over the state space is defined as νπ : S → [0, 1] such that it satisfies the

mass-balance equation [Puterman, 2009]

νπ(s
′) =

∑
s∈S

∑
a∈A

[P(s′ | s, a)× π(a | s)× νπ(s)] ∀ s′ ∈ S.

This implies that the distribution νπ is unique for a given policy π [Szepesvári, 2010].

It also implies that the probability of occurrence of a state while using the given policy

and the transition function is balanced and computable as a mass-balance equation.

The stationary distribution Bπ : S × A → [0, 1] over the state-action space S × A is

defined as

Bπ(s, a) ≜ νπ(s) π(s | a) ∀ (s, a) ∈ S × A.

1Alternatively, we can express the randomised policy as π : S → ∆A, where ∆A is the set of
probability distributions over the action space.

2Here, we assume the MDP to be unichain. [Puterman, 2009] shows that an MDP is unichain
under mild conditions, such as all stationary policies induce an irreducible and aperiodic Markov
chain over state-action space.

7.2 Perspectives 253

This formulation of Bπ allows us to define the average reward of a policy π as

V̄ (π) ≜
∑
s∈S

∑
a∈A

Bπ(s, a)R(s, a) = E(s,a)∼Bπ [R(s, a)], (7.2)

where R(s, a) ∈ R is the reward obtained by taking action a at state s. This shows

that Bπ is the distribution to be learned by the agent in order to control the average

reward per-step, and also to maximise the total reward obtained through the MDP.

Thus, in analogy with the bandits, we call Bπ the belief of the agent for a given

policy π. Equation (7.2) also shows that in order to maximise the average reward

per-step the random variable that we deal with is Bπ(s, a)R(s, a) 3. This is a random

variable defined as a product of belief and reward which is evaluated for each state-

action pair and a given policy. Hence, it motivates us to extend the belief-reward

manifold framework to MDPs. We construct the belief-reward manifold BR as the set

of all distributions over the product of belief and reward Bπ(s, a)R(s, a) for all policies

π ∈ Π 4. Thus, the objective of maximising average reward in an MDP is equivalent

to finding µ∗ ∈ BR which is argmaxµπ∈BR V̄ (π).

Since the reward function is often not controllable by the agent, thus it makes sense

to incorporate it in learning but not in optimisation. Thus, solving the MDP is often

equivalent to finding the optimal belief distribution B∗ ≜ Bπ∗ 5 over state-action space

such that B∗ = argmaxBπ∈B V̄ (π). This equation instantiates the need of learning and

optimisation in order to solve the MDP optimally. In order to do so and to balance

the corresponding exploration–exploitation, we extend the Equation (7.1) of BelMan

to MDPs such that at time t

Bt = argmax
B∈B

(
EB(s,a)[R(s, a)]− τ(t) D(B,Bt−1)

)
. (7.3)

3Here, the reward obtained from a state-action pair R(s, a) itself is a random variable.
4Π is the set of all feasible stationary policy inducing unichain MDP.
5We can define B∗ as the belief distribution constructed by optimal policy π∗ because each sta-

tionary policy induces a stationary belief distribution for a given MDP.

254 The Closure

where D is an information-geometric divergence measure on the belief manifold, such

as KL-divergence, Renyi divergence, Wassersetin distance, and so on, that incorporates

the belief that the agent wants to compute now, and the belief that the agent had in

last time step. The regularisation factor τ(t) can be a pre-defined constant or a time

dependent function.

This approach takes us to the literature of intrinsically motivated reinforcement

learning, and curiosity-driven reinforcement learning (Section 2.2.9). Here, the information-

theoretic divergence plays as the intrinsic motivation to explore the environment, or

curiosity to learn as they are called in literature. Specifically, we can visualise this ex-

tension of BelMan as a generalisation of information regularised MDPs (Section 2.2.9).

If we design the function D(B,Bt−1) to be the KL-divergence between the belief to

be computed and the belief of time t− 1 i.e. D(B,Bt−1) = DKL (B∥Bt−1), we obtain

the relative entropy policy search (REPS) algorithms [Peters et al., 2010; Neu et al.,

2017], and entropy guided mirror descent algorithms for policy search [Montgomery

and Levine, 2016]. [Schulman et al., 2015; Mnih et al., 2016] designed the function

D(B,Bt−1) to be the average 6 KL-divergence between the policy to be computed

and the policy of time t − 1 i.e. D(π, πt−1) = Eνπt
[DKL (π∥πt−1)]. If we plug it in

Equation (7.3), we obtain the policy selection rule as

πt = argmax
π∈Π

Es∼νπt
[Ea∼π [R(s, a)]− τ DKL (π(. | s)∥πt−1(. | s))]

=⇒ Bt = argmax
Bπ∈B

EBπ [R(s, a)]− τ EBπ

[
log

π(a | s)
πt−1(a | s)

]
.

These results link this information geometric approach to the state-of-the-art liter-

ature. Hence, it indicates generality of the information-geometric approach to the

MDP, and in general to the problem of decision making with incomplete information.

This discussion also shows the possible avenues of investigation that this approach

opens up, such as using different information geometric divergence function D, differ-

ent representations of the knowledge-base beside Bt−1, and time dependent trade-off

6The expectation is taken over all possible states.

7.3 Future Work 255

between exploration and exploitation using a time-dependent regularisation function

τ(t). We would like to explore these information-geometric avenues and to exploit

these perspectives in future research.

7.3 Future Work

As we have summarised our contributions and discussed the learned perspectives in

the preceding sections, now we discuss the research problems that we are interested to

pursue in follow-up work. We are pursuing presently two research works coming from

these two avenues discussed in this thesis. One is to solve the MDP problem with

unknown transition and reward functions using functional approximation methods.

The other is to solve finite-horizon MDP problems with incomplete information using

an extension of the information geometric approach proposed in BelMan.

In the first line of research using functional approximation techniques, we want

to improve and merge the algorithms developed in rCOREIL and Megh that deal

with MDPs with unknown reward and transition functions respectively. Such MDPs

with unknown transition and reward functions are frequently encountered in real-life

applications. We pick one such problem of optimising speed of ships under uncertain

weather [Avgouleas, 2008; Motte et al., 1988] in order to instantiate the effectiveness

and efficiency of the developed functional approximation methods. We propose in

[Basu et al., 2017a] an algorithm deploying calculus of variation to solve the speed

optimisation problem under full information about the weather and the ship. We are

now extending it for the unknown ship models and unpredictable weather variations.

We are also working on the fine tuning and further experimentation of the functional

approximation techniques for this problem [Basu et al., 2018b].

The other line of research is inspired by the perspectives achieved from the infor-

mation geometric works in bandits and the discussion in Section 7.2.1. We are now

studying the information-geometric approach to MDPs, and how it unifies different

approaches to solve exploration–exploitation problems in MDPs. This also indicates

256 The Closure

towards a general algorithm design technique for MDPs using information-geometric

divergences over the belief-reward manifold. We are now exploring different divergence

functions and time-dependent regularisation factors that can provide better MDP solv-

ing algorithms than the existing ones with which the framework shares links. We are

also working towards the proof of finite-time regret analysis of BelMan for multi-armed

bandits that we would extend to prove a regret bound on performance of MDPs.

These two research works describe our present endeavour towards solving the prob-

lems of learning to make decisions with incomplete information efficiently, effectively,

and in a more knowledgeable manner than where we began this thesis.

Bibliography

Agarwal, A., Foster, D. P., Hsu, D. J., Kakade, S. M., and Rakhlin, A. (2011). Stochastic
convex optimization with bandit feedback. In Advances in Neural Information Processing
Systems, pages 1035–1043.

Agrawal, S., Chaudhuri, S., and Narasayya, V. R. (2000). Automated selection of materialized
views and indexes in sql databases. In Proceedings of the 26th International Conference
on Very Large Data Bases (VLDB’00), pages 496–505.

Agrawal, S. and Goyal, N. (2012). Analysis of Thompson sampling for the multi-armed
bandit problem. In COLT, pages 39.1–39.26.

Agrawal, S., Narasayya, V., and Yang, B. (2004). Integrating vertical and horizontal partition-
ing into automated physical database design. In Proceedings of the 2004 ACM SIGMOD
International Conference on Management of Data (SIGMOD’04), pages 359–370.

Agueh, M. and Carlier, G. (2011). Barycenters in the wasserstein space. SIAM Journal on
Mathematical Analysis, 43(2):904–924.

Alagiannis, I., Idreos, S., and Ailamaki, A. (2014). H2o: A hands-free adaptive store. In
Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data
(SIGMOD’14).

Alsarhan, A., Itradat, A., Al-Dubai, A. Y., Zomaya, A. Y., and Min, G. (2018). Adaptive re-
source allocation and provisioning in multi-service cloud environments. IEEE Transactions
on Parallel and Distributed Systems, 29(1):31–42.

Amari, S.-I. and Nagaoka, H. (2007). Methods of information geometry, volume 191 of
Translations of mathematical monographs. American Mathematical Society.

Anderson, E., Bai, Z., Bischof, C., Blackford, S., Dongarra, J., Du Croz, J., Greenbaum, A.,
Hammarling, S., McKenney, A., and Sorensen, D. (1999). LAPACK Users’ guide, volume 9.
Siam.

Asadi, K. and Littman, M. L. (2016). An alternative softmax operator for reinforcement
learning. arXiv preprint arXiv:1612.05628.

Atkinson, K. E. (2008). An introduction to numerical analysis. John Wiley & Sons.

Audibert, J.-Y. and Bubeck, S. (2009). Minimax policies for adversarial and stochastic
bandits. In COLT, pages 217–226.

Audibert, J.-Y. and Bubeck, S. (2010). Best arm identification in multi-armed bandits. In
COLT, pages 41–53.

258 Bibliography

Audibert, J.-Y., Munos, R., and Szepesvári, C. (2009). Exploration-exploitation tradeoff
using variance estimates in multi-armed bandits. Theoretical Computer Science, 410(19).

Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-time analysis of the multiarmed
bandit problem. Machine learning, 47(2–3):235–256.

Auer, P. and Ortner, R. (2007). Logarithmic online regret bounds for undiscounted reinforce-
ment learning. In Advances in Neural Information Processing Systems, pages 49–56.

Avgouleas, K. (2008). Optimal ship routing. Thesis, Massachusetts Institute of Technology.

Baird, L. et al. (1995). Residual algorithms: Reinforcement learning with function approxi-
mation. In Proceedings of the twelfth international conference on machine learning, pages
30–37.

Baranes, A. and Oudeyer, P.-Y. (2009). Robust intrinsically motivated exploration and
active learning. In Development and Learning, 2009. ICDL 2009. IEEE 8th International
Conference on, pages 1–6. IEEE.

Barbaresco, F. (2013). Information geometry of covariance matrix: Cartan-siegel homoge-
neous bounded domains, mostow/berger fibration and frechet median. In Matrix Informa-
tion Geometry, pages 199–255. Springer.

Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt,
I., and Warfield, A. (2003). Xen and the art of virtualization. ACM SIGOPS Operating
Systems Review, 37(5):164–177.

Basu, D., Lin, Q., Chen, W., Vo, H. T., Yuan, Z., Senellart, P., and Bressan, S. (2015a). Cost-
model oblivious database tuning with reinforcement learning. In International Conference
on Database and Expert Systems Applications, pages 253–268. Springer.

Basu, D., Lin, Q., Chen, W., Vo, H. T., Yuan, Z., Senellart, P., and Bressan, S. (2016). Reg-
ularized cost-model oblivious database tuning with reinforcement learning. Transactions
on Large-Scale Data and Knowledge-Centered Systems, 28:96–132.

Basu, D., Lin, Q., Yuan, Z., Senellart, P., and Bressan, S. (2015b). Apprentissage par
renforcement pour optimiser les bases de donnéees indépendamment du modèle de coût.
In Proc. BDA, Porquerolles, France. Conference without formal proceedings.

Basu, D., Pedrielli, G., Chen, W., Ng, S. H., Lee, L. H., and Bressan, S. (2017a). Sequential
vessel speed optimization under dynamic weather conditions. In International Maritime-
Port Technology and Development Conference.

Basu, D., Pedrielli, G., Senellart, P., and Bressan, S. (2018a). Belman in queue: An informa-
tion geometric approach to queueing bandits with general distributions. Preprint.

Basu, D., Rahman, A., and Bressan, S. (2018b). Moq: A model oblivious learning algorithm
to sequentially optimize speed of a vessel under uncertain weather. Submitting to IEEE
Transactions on Intelligent Transportation Systems.

Basu, D., Senellart, P., and Bressan, S. (2018c). Belman: Bayesian bandits on the belief–
reward manifold. arXiv preprint arXiv:1805.01627.

Bibliography 259

Basu, D., Senellart, P., and Bressan, S. (2018d). An information geometric analysis of
explorationexploitation trade-off in reinforcement learning. Submitted to Workshop on
Exploration in RL, ICML.

Basu, D., Wang, X., Hong, Y., Chen, H., and Bressan, S. (2017b). Learn-as-you-go with
megh: Efficient live migration of virtual machines. Submitted to IEEE TPDS.

Basu, D., Wang, X., Hong, Y., Chen, H., and Bressan, S. (2017c). Learn-as-you-go with
megh: Efficient live migration of virtual machines. In Distributed Computing Systems
(ICDCS), 2017 IEEE 37th International Conference on, pages 2608–2609. IEEE.

Bather, J. A. (1983). The minimax risk for the two-armed bandit problem. In Herken-
rath, U., Kalin, D., and Vogel, W., editors, Mathematical Learning Models — Theory and
Algorithms, pages 1–11, New York, NY. Springer New York.

Belady, C. L. (2007). In the data center, power and cooling costs more than the it equipment
it supports.

Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T., Saxton, D., and Munos, R. (2016).
Unifying count-based exploration and intrinsic motivation. In Advances in Neural Infor-
mation Processing Systems, pages 1471–1479.

Bellemare, M. G., Dabney, W., and Munos, R. (2017). A distributional perspective on
reinforcement learning. arXiv preprint arXiv:1707.06887.

Bellman, R. (1956). A problem in the sequential design of experiments. Sankhyā: The Indian
Journal of Statistics (1933–1960), 16(3/4):221–229.

Bellman, R. (1957a). Dynamic Programming. Princeton University Press, Princeton, NJ,
USA, 1 edition.

Bellman, R. (1957b). A markovian decision process. Indiana University Mathematics Journal,
6:679–684.

Bellman, R. and Kalaba, R. E. (1965). Dynamic programming and modern control theory,
volume 81. Citeseer.

Beloglazov, A., Abawajy, J., and Buyya, R. (2012). Energy-aware resource allocation heuris-
tics for efficient management of data centers for cloud computing. Future Gener. Comput.
Syst., 28(5):755–768.

Beloglazov, A. and Buyya, R. (2012). Optimal online deterministic algorithms and adaptive
heuristics for energy and performance efficient dynamic consolidation of virtual machines
in cloud data centers. Concurr. Comput. : Pract. Exper., 24(13):1397–1420.

Benedikt, M., Bohannon, P., and Bruns, G. (2006). Data cleaning for decision support. In
Proceedings of the 1st International VLDB Workshop on Clean Databases (CleanDB’06).

Berlyne, D. E. (1966). Curiosity and exploration. Science, 153(3731):25–33.

Bernardo, J. M. (1976). Algorithm AS 103: Psi (digamma) function. Journal of the Royal
Statistical Society. Series C (Applied Statistics), 25(3):315–317.

Bertsekas, D. P. (1987). Dynamic Programming: Deterministic and Stochastic Models.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

260 Bibliography

Bertsekas, D. P. (2013). Abstract dynamic programming. Athena Scientific Belmont, MA.

Bertsekas, D. P. (2017). Regular policies in abstract dynamic programming. SIAM Journal
on Optimization, 27(3):1694–1727.

Bertsekas, D. P. and Shreve, S. (2004). Stochastic optimal control: the discrete-time case.
Athena Scientific.

Bhargava, B. (1999). Concurrency control in database systems. IEEE transactions on knowl-
edge and data engineering, 11(1):3–16.

Borodin, A. and El-Yaniv, R. (1998). Online Computation and Competitive Analysis. Cam-
bridge University Press.

Boucheron, S., Lugosi, G., and Massart, P. (2013). Concentration inequalities: A nonasymp-
totic theory of independence. Oxford university press.

Bradtke, S. J. and Barto, A. G. (1996). Linear least-squares algorithms for temporal difference
learning. Machine Learning, 22(1-3):33–57.

Brafman, R. I. and Tennenholtz, M. (2002). R-max: a general polynomial time algorithm for
near-optimal reinforcement learning. Journal of Machine Learning Research, 3(Oct):213–
231.

Brown, L. D. (1986). Fundamentals of Statistical Exponential Families: With Applications
in Statistical Decision Theory. Institute of Mathematical Statistics.

Bruno, N. and Chaudhuri, S. (2007a). An online approach to physical design tuning. In
Proceedings of the 23th IEEE International Conference on Data Engineering (ICDE’07),
pages 826–835.

Bruno, N. and Chaudhuri, S. (2007b). Online autoadmin: (physical design tuning). In
Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data
(SIGMOD’07), pages 1067–1069.

Bruno, N. and Chaudhuri, S. (2008). Constrained physical design tuning. Proceedings of the
VLDB Endowment, 1(1):4–15.

Bruno, N. and Chaudhuri, S. (2010). Interactive physical design tuning. In Proceedings of the
26th IEEE International Conference on Data Engineering (ICDE’10), pages 1161–1164.

Bruno, N. and Nehme, R. V. (2008). Configuration-parametric query optimization for physi-
cal design tuning. In Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data (SIGMOD’08), pages 941–952.

Bubeck, S., Cesa-Bianchi, N., et al. (2012). Regret analysis of stochastic and nonstochastic
multi-armed bandit problems. Foundations and Trends in Machine Learning, 5(1):1–122.

Bubeck, S., Munos, R., and Stoltz, G. (2009). Pure exploration in multi-armed bandits
problems. In ALT, pages 23–37. Springer.

Bubeck, S., Wang, T., and Viswanathan, N. (2013). Multiple identifications in multi-armed
bandits. In ICML, pages 258–265.

Bibliography 261

Burnetas, A. N. and Katehakis, M. N. (1997). Optimal adaptive policies for markov decision
processes. Mathematics of Operations Research, 22(1):222–255.

Bush, R. R. and Mosteller, F. (1953). A stochastic model with applications to learning. The
Annals of Mathematical Statistics, pages 559–585.

Buyukkoc, C. (1985). c mu rule revisited. Adv. Appl. Prob., 17(1):237–238.

Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C. A., and Buyya, R. (2011). Cloudsim:
a toolkit for modeling and simulation of cloud computing environments and evaluation of
resource provisioning algorithms. Software: Practice and Experience, 41(1):23–50.

Cappé, O., Garivier, A., and Kaufmann, É. (2012). pymaBandits. http://mloss.org/
software/view/415/.

Cassandra, A. R., Kaelbling, L. P., and Littman, M. L. (1994). Acting optimally in partially
observable stochastic domains. In AAAI, volume 94, pages 1023–1028.

Cesa-Bianchi, N., Gentile, C., Lugosi, G., and Neu, G. (2017). Boltzmann exploration done
right. In Advances in Neural Information Processing Systems, pages 6284–6293.

Chaudhuri, S. and Narasayya, V. (1998). Autoadmin: What-if index analysis utility. In
Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data
(SIGMOD’98), pages 367–378.

Chen, L., Gupta, A., and Li, J. (2016). Pure exploration of multi-armed bandit under matroid
constraints. In COLT, pages 647–669.

Chen, S., Lin, T., King, I., Lyu, M. R., and Chen, W. (2014). Combinatorial pure exploration
of multi-armed bandits. In NIPS, pages 379–387.

Chentanez, N., Barto, A. G., and Singh, S. P. (2005). Intrinsically motivated reinforcement
learning. In Advances in neural information processing systems, pages 1281–1288.

Clark, C., Fraser, K., Hand, S., Hansen, J. G., Jul, E., Limpach, C., Pratt, I., and Warfield,
A. (2005). Live migration of virtual machines. In Proceedings of the 2nd conference on
Symposium on Networked Systems Design & Implementation-Volume 2, pages 273–286.

Cohen, J. and Boxma, O. (1985). A survey of the evolution of queueing theory. Statistica
neerlandica, 39(2):143–158.

Cover, T. M. and Thomas, J. A. (2012). Elements of information theory. John Wiley &
Sons.

Cox, D. and Smith, W. (1961). Queues. Willey.

Csiszár, I. (1984). Sanov property, generalized I-projection and a conditional limit theorem.
The Annals of Probability, 12(3):768–793.

Csiszár, I. and Tusnády, G. (1984). Information geometry and alternating minimization
procedures. Statistics and decisions, Supplement issue No. 1:205–237.

Dabney, W., Rowland, M., Bellemare, M. G., and Munos, R. (2017). Distributional reinforce-
ment learning with quantile regression. arXiv preprint arXiv:1710.10044.

http://mloss.org/software/view/415/
http://mloss.org/software/view/415/

262 Bibliography

Dann, C. and Brunskill, E. (2015). Sample complexity of episodic fixed-horizon reinforcement
learning. In NIPS, pages 2818–2826.

Darmois, G. (1935). Sur les lois de probabilites a estimation exhaustive. C. R. Acad. Sci.
Paris, 200:1265–1266.

Das, S. and Kamenica, E. (2005). Two-sided bandits and the dating market. In International
Joint Conference on Artificial Intelligence (IJCAI), volume 5, pages 19–24.

DeGroot, M. H. (2005). Optimal statistical decisions, volume 82 of Wiley Classics Library.
John Wiley & Sons.

Dertouzos, M. L. and Mok, A. K. (1989). Multiprocessor online scheduling of hard-real-time
tasks. IEEE Transactions on software engineering, 15(12):1497–1506.

Difallah, D. E., Pavlo, A., Curino, C., and Cudre-Mauroux, P. (2013). Oltp-bench: An exten-
sible testbed for benchmarking relational databases. Proceedings of the VLDB Endowment,
7(4):277–288.

Durrett, R. (2010). Probability: theory and examples. Cambridge University Press.

Dvijotham, K. and Todorov, E. (2012). Linearly solvable optimal control. Reinforcement
learning and approximate dynamic programming for feedback control, 17:119–141.

Eguchi, S. (1992). Geometry of minimum contrast. Hiroshima Mathematical Journal,
22(3):631–647.

Faheem, M. and Senellart, P. (2015). Adaptive web crawling through structure-based link
classification. In Proc. ICADL, pages 39–51, Seoul, South Korea.

Farahnakian, F., Liljeberg, P., and Plosila, J. (2014). Energy-efficient virtual machines
consolidation in cloud data centers using reinforcement learning. In Parallel, Distributed
and Network-Based Processing (PDP), 2014 22nd Euromicro International Conference on,
pages 500–507.

Filippi, S., Cappé, O., and Garivier, A. (2010). Optimism in reinforcement learning and
kullback-leibler divergence. In Communication, Control, and Computing (Allerton), 2010
48th Annual Allerton Conference on, pages 115–122. IEEE.

Fox, R., Pakman, A., and Tishby, N. (2015). Taming the noise in reinforcement learning via
soft updates. arXiv preprint arXiv:1512.08562.

Gabillon, V., Ghavamzadeh, M., and Lazaric, A. (2012). Best arm identification: A unified
approach to fixed budget and fixed confidence. In NIPS, pages 3212–3220.

Galichet, N., Sebag, M., and Teytaud, O. (2013). Exploration vs exploitation vs safety: Risk-
aware multi-armed bandits. In Asian Conference on Machine Learning, pages 245–260.

Garivier, A. and Cappé, O. (2011). The KL-UCB algorithm for bounded stochastic bandits
and beyond. In COLT, pages 359–376.

Garivier, A., Lattimore, T., and Kaufmann, É. (2016a). On explore-then-commit strate-
gies. In Advances in Neural Information Processing Systems 29, pages 784–792. Curran
Associates, Inc.

Bibliography 263

Garivier, A., Ménard, P., and Stoltz, G. (2016b). Explore first, exploit next: The true shape
of regret in bandit problems. arXiv preprint arXiv:1602.07182.

Gelfand, I., Fomin, S., and Silverman, R. (2000). Calculus of Variations. Dover Books on
Mathematics. Dover Publications.

Gittins, J. C. (1979). Bandit processes and dynamic allocation indices. Journal of the Royal
Statistical Society. Series B (Methodological), 41(2):148–177.

Gopalan, A. and Mannor, S. (2015). Thompson sampling for learning parameterized markov
decision processes. In Conference on Learning Theory, pages 861–898.

Gordon, G. J. (1999). Approximate solutions to markov decision processes. Technical report,
Carnegie-Mellon Univeristry, Pittsburgh, PA.

Gouriten, G., Maniu, S., and Senellart, P. (2014). Scalable, generic, and adaptive systems
for focused crawling. In Proceedings of the 25th ACM Conference on Hypertext and Social
Media (HT’14), pages 35–45.

Grondman, I., Busoniu, L., Lopes, G., and Babuska, R. (2012a). A survey of actor-critic
reinforcement learning: Standard and natural policy gradients. Systems, Man, and Cyber-
netics, Part C: Applications and Reviews, IEEE Transactions on, 42(6):1291–1307.

Grondman, I., Busoniu, L., Lopes, G. A., and Babuska, R. (2012b). A survey of actor-critic
reinforcement learning: Standard and natural policy gradients. IEEE Transactions on
Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42(6):1291–1307.

Hager, W. (1989). Updating the inverse of a matrix. SIAM Review, 31(2):221–239.

Hammer, M. and Niamir, B. (1979). A heuristic approach to attribute partitioning. In
Proceedings of the 1979 ACM SIGMOD International Conference on Management of Data
(SIGMOD’79), pages 93–101.

Han, Z., Tan, H., Chen, G., Wang, R., Chen, Y., and Lau, F. C. M. (2016). Dynamic virtual
machine management via approximate markov decision process. In 35th Annual IEEE
International Conference on Computer Communications (INFOCOM), pages 1–9.

Hazan, E. et al. (2016). Introduction to online convex optimization. Foundations and
Trends® in Optimization, 2(3-4):157–325.

Honda, J. and Takemura, A. (2011). An asymptotically optimal policy for finite support
models in the multiarmed bandit problem. Machine Learning, 85(3):361–391.

Howard, R. A. and Matheson, J. E. (1972). Risk-sensitive markov decision processes. Man-
agement science, 18(7):356–369.

Huo, X. and Fu, F. (2017). Risk-aware multi-armed bandit problem with application to
portfolio selection. Royal Society open science, 4(11):171377.

Huppler, K., Lange, K.-D., and Beckett, J. (2012). Spec: Enabling efficiency measurement. In
Proceedings of the 3rd ACM/SPEC International Conference on Performance Engineering,
pages 257–258.

264 Bibliography

Iosup, A., Ostermann, S., Yigitbasi, M. N., Prodan, R., Fahringer, T., and Epema, D. (2011).
Performance analysis of cloud computing services for many-tasks scientific computing.
IEEE Transactions on Parallel and Distributed Systems, 22(6):931–945.

Jaakkola, T., Jordan, M. I., and Singh, S. P. (1994). Convergence of stochastic iterative
dynamic programming algorithms. In Advances in neural information processing systems,
pages 703–710.

Jacko, P. (2010). Restless bandits approach to the job scheduling problem and its extensions.
In Piunovskiy, A. B., editor, Modern Trends in Stochastic Controlled Processes: Theory
and Applications. Luniver Press.

Jaynes, E. T. (1968). Prior probabilities. IEEE Transactions on Systems Science and Cyber-
netics, 4:227–241.

Jimenez, I., LeFevre, J., Polyzotis, N., Sanchez, H., and Schnaitter, K. (2011). Benchmarking
online index-tuning algorithms. IEEE Data Engineering Bulletin, 34:28–35.

Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996). Reinforcement learning: A
survey. Journal of artificial intelligence research, pages 237–285.

Kappen, H. J. (2005). Linear theory for control of nonlinear stochastic systems. Physical
review letters, 95(20):200201.

Kappen, H. J., Gómez, V., and Opper, M. (2012). Optimal control as a graphical model
inference problem. Machine learning, 87(2):159–182.

Kaufmann, É., Cappé, O., and Garivier, A. (2012a). On Bayesian upper confidence bounds
for bandit problems. In AISTATS, pages 592–600.

Kaufmann, É. and Kalyanakrishnan, S. (2013). Information complexity in bandit subset
selection. In COLT, pages 228–251.

Kaufmann, É., Korda, N., and Munos, R. (2012b). Thompson sampling: An asymptotically
optimal finite-time analysis. In ALT, pages 199–213. Springer.

Kawale, J., Bui, H. H., Kveton, B., Tran-Thanh, L., and Chawla, S. (2015). Efficient Thomp-
son sampling for online matrix-factorization recommendation. In NIPS, pages 1297–1305.

Kearns, M. and Singh, S. (2002). Near-optimal reinforcement learning in polynomial time.
Machine learning, 49(2-3):209–232.

Kimura, H. and Kobayashi, S. (1998). An analysis of actor/critic algorithms using eligibility
traces: Reinforcement learning with imperfect value function. In ICML, pages 278–286.

Konidaris, G. and Barto, A. (2006). An adaptive robot motivational system. In International
Conference on Simulation of Adaptive Behavior, pages 346–356. Springer.

Koopman, B. O. (1936). On distributions admitting a sufficient statistic. Transactions of
the American Mathematical society, 39(3):399–409.

Krishnasamy, S., Sen, R., Johari, R., and Shakkottai, S. (2016). Regret of queueing bandits.
In Advances in Neural Information Processing Systems, pages 1669–1677.

Kullback, S. (1997). Information theory and statistics. Courier Corporation.

Bibliography 265

Lago, D., Madeira, E., and Medhi, D. (2017). Energy-aware virtual machine scheduling on
heterogeneous bandwidths data centers. IEEE Transactions on Parallel and Distributed
Systems, PP(99):1–1.

Lagoudakis, M. G. and Parr, R. (2003a). Least-squares policy iteration. The Journal of
Machine Learning Research, 4:1107–1149.

Lagoudakis, M. G. and Parr, R. (2003b). Least-squares policy iteration. The Journal of
Machine Learning Research, 4:1107–1149.

Lai, T. and Robbins, H. (1985). Asymptotically efficient adaptive allocation rules. Adv. Appl.
Math., 6(1):4–22.

Lai, T. L. (1988). Asymptotic solutions of bandit problems. In Fleming, W. and Lions, P.-L.,
editors, Stochastic differential systems, stochastic control theory and applications, pages
275–292. Springer.

Lai, T. L. and Wei, C. Z. (1982). Least squares estimates in stochastic regression models with
applications to identification and control of dynamic systems. The Annals of Statistics,
pages 154–166.

Lang, S. (2006). Introduction to differentiable manifolds. Springer Science & Business Media.

Langford, J., Strehl, A., and Wortman, J. (2008). Exploration scavenging. In Proceedings of
the 25th international conference on Machine learning, pages 528–535. ACM.

Lattimore, T. (2015). Optimally confident ucb: Improved regret for finite-armed bandits.
arXiv preprint arXiv:1507.07880.

Lattimore, T. and Hutter, M. (2014). Near-optimal pac bounds for discounted mdps. Theo-
retical Computer Science, 558:125–143.

Lauritzen, S. L. (1987). Statistical manifolds. Differential Geometry in Statistical Inference,
10:163–216.

LeFevre, F., Sankaranarayanan, J., Hacigumus, H., Tatemura, J., Polyzotis, N., and Carey,
M. J. (2014). Exploiting opportunistic physical design in large-scale data analytics. In
Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data
(SIGMOD’14).

Leiserson, C. E. (1985). Fat-trees: Universal networks for hardware-efficient supercomputing.
IEEE Trans. Comput., 34(10):892–901.

Li, L., Chu, W., Langford, J., and Schapire, R. E. (2010). A contextual-bandit approach
to personalized news article recommendation. In Proceedings of the 19th international
conference on World wide web, pages 661–670. ACM.

Li, L. and Gruenwald, L. (2013). Self-managing online partitioner for databases (smopd):
A vertical database partitioning system with a fully automatic online approach. In
Proceedings of the 17th International Database Engineering and Applications Symposium
(IDEAS’13), pages 168–173.

Li, P., Guo, S., Miyazaki, T., Liao, X., Jin, H., Zomaya, A. Y., and Wang, K. (2017). Traffic-
aware geo-distributed big data analytics with predictable job completion time. IEEE
Transactions on Parallel and Distributed Systems, 28(6):1785–1796.

266 Bibliography

Lightstone, S. and Bhattacharjee, B. (2004). Automated design of multidimensional cluster-
ing tables for relational databases. In Proceedings of the 30th International Conference on
Very Large Data Bases (VLDB’04), pages 1170–1181.

Littman, M. L. (1996). Algorithms for sequential decision making. PhD thesis, Brown Uni-
versity Providence, RI.

Lohman, G. M. (2014). Is query optimization a “solved” problem? http://wp.sigmod.org/
?p=1075.

Lopes, M., Lang, T., Toussaint, M., and Oudeyer, P.-Y. (2012). Exploration in model-based
reinforcement learning by empirically estimating learning progress. In Advances in Neural
Information Processing Systems, pages 206–214.

Luhring, M., Sattler, K.-U., Schmidt, K., and Schallehn, E. (2007). Autonomous management
of soft indexes. In Proceedings of the 2nd International Workshop on Self-Managing Data
Bases (SMDB’07), pages 450–458.

Macready, W. G. and Wolpert, D. H. (1998). Bandit problems and the exploration/exploita-
tion tradeoff. IEEE Transactions on evolutionary computation, 2(1):2–22.

Maguluri, S. T., Srikant, R., and Ying, L. (2012). Stochastic models of load balancing and
scheduling in cloud computing clusters. In INFOCOM, 2012 Proceedings IEEE, pages
702–710.

Maillard, O.-A. (2013). Robust risk-averse stochastic multi-armed bandits. In International
Conference on Algorithmic Learning Theory, pages 218–233. Springer.

Malek, A., Abbasi-Yadkori, Y., and Bartlett, P. (2014). Linear programming for large-scale
markov decision problems. In International Conference on Machine Learning, pages 496–
504.

Malik, T., Wang, X., Dash, D., Chaudhary, A., Ailamaki, A., and Burns, R. (2009). Adaptive
physical design for curated archives. In Proceedings of the 21st International Conference
on Scientific and Statistical Database Management (SSDBM’09), pages 148–166.

Mann, Z. Á. (2015). Allocation of virtual machines in cloud data centers: A survey of problem
models and optimization algorithms. ACM Computing Surveys (CSUR), 48(1):11.

Mannor, S. and Tsitsiklis, J. N. (2004). The sample complexity of exploration in the multi-
armed bandit problem. Journal of Machine Learning Research, 5(Jun):623–648.

Masoumzadeh, S. S. and Hlavacs, H. (2013). Integrating vm selection criteria in distributed
dynamic vm consolidation using fuzzy q-learning. In Proceedings of the 9th International
Conference on Network and Service Management (CNSM 2013), pages 332–338.

Matumoto, T. (1993). Any statistical manifold has a contrast function—on the c3-functions
taking the minimum at the diagonal of the product manifold. Hiroshima Mathematical
Journal, 23(2):327–332.

Ménard, P. and Garivier, A. (2017). A minimax and asymptotically optimal algorithm for
stochastic bandits. In International Conference on Algorithmic Learning Theory, pages
223–237.

http://wp.sigmod.org/?p=1075
http://wp.sigmod.org/?p=1075

Bibliography 267

Meuleau, N. and Bourgine, P. (1999). Exploration of multi-state environments: Local mea-
sures and back-propagation of uncertainty. Machine Learning, 35(2):117–154.

Minas, L. and Ellison, B. (2009). Energy efficiency for information technology: How to reduce
power consumption in servers and data centers. Intel Press.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., and
Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement learning. In
International conference on machine learning, pages 1928–1937.

Montgomery, W. H. and Levine, S. (2016). Guided policy search via approximate mirror
descent. In Advances in Neural Information Processing Systems, pages 4008–4016.

Mosteller, F. et al. (1956). Stochastic learning models. In Proceedings of the Third Berke-
ley Symposium on Mathematical Statistics and Probability, Volume 5: Contributions to
Econometrics, Industrial Research, and Psychometry. The Regents of the University of
California.

Motte, R., Burns, R. S., and Calvert, S. (1988). An overview of current methods used in
weather routeing. Journal of Navigation, 41:101–114.

Nathuji, R. and Schwan, K. (2007). Virtualpower: coordinated power management in virtu-
alized enterprise systems. In Proce. SOSP, pages 265–278.

Nehme, R. and Bruno, N. (2011). Automated partitioning design in parallel database systems.
In Proceedings of the 2011 ACM SIGMOD International Conference on Management of
Data (SIGMOD’11), pages 1137–1148.

Nelson, M., Lim, B.-H., and Hutchins, G. (2005). Fast transparent migration for virtual ma-
chines. In Proceedings of the Annual Conference on USENIX Annual Technical Conference,
pages 25–25. USENIX Association.

Neu, G. and Gómez, V. (2017). Fast rates for online learning in linearly solvable markov
decision processes. arXiv preprint arXiv:1702.06341.

Neu, G., Jonsson, A., and Gómez, V. (2017). A unified view of entropy-regularized markov
decision processes. arXiv preprint arXiv:1705.07798.

Nguyen, M.-Q. and Bourgine, P. (2014). Multi-armed bandit problem and its applications in
intelligent tutoring systems. Master’s Thesis, École Polytechnique.

Nielsen, F. and Bhatia, R. (2013). Matrix information geometry. Springer.

Niño-Mora, J. (2006). Marginal productivity index policies for scheduling a multiclass delay-
/loss-sensitive queue. Queueing Systems, 54(4):281–312.

Niño-Mora, J. (2007). Dynamic priority allocation via restless bandit marginal productivity
indices. Top, 15(2):161–198.

Nino-Mora, J. (2011). Computing a classic index for finite-horizon bandits. INFORMS
Journal on Computing, 23(2):254–267.

North, D. W. (1968). A tutorial introduction to decision theory. Systems Science and
Cybernetics, IEEE Transactions on, 4(3):200–210.

268 Bibliography

O’Donoghue, B., Munos, R., Kavukcuoglu, K., and Mnih, V. (2016). Combining policy
gradient and q-learning. arXiv preprint arXiv:1611.01626.

Oneto, L., Anguita, D., and Ridella, S. (2016). Pac-bayesian analysis of distribution de-
pendent priors: Tighter risk bounds and stability analysis. Pattern Recognition Letters,
80:200–207.

Osband, I., Russo, D., and Van Roy, B. (2013). (More) efficient reinforcement learning via
posterior sampling. In NIPS, pages 3003–3011.

Osband, I. and Van Roy, B. (2016). Why is posterior sampling better than optimism for
reinforcement learning? arXiv preprint arXiv:1607.00215.

Osband, I. and Van Roy, B. (2017). On optimistic versus randomized exploration in rein-
forcement learning. arXiv preprint arXiv:1706.04241.

Oudeyer, P.-Y. and Kaplan, F. (2009). What is intrinsic motivation? a typology of compu-
tational approaches. Frontiers in Neurorobotics, 1:1–6.

Oudeyer, P.-Y., Kaplan, F., and Hafner, V. (2007). Intrinsic motivation systems for au-
tonomous mental development. IEEE transactions on evolutionary computation, 11(6).

Papadomanolakis, S., Dash, D., and Ailamaki, A. (2007a). Efficient use of the query optimizer
for automated physical design. In Proceedings of the 33rd International Conference on Very
Large Data Bases (VLDB’07), pages 1093–1104.

Papadomanolakis, S., Dash, D., and Ailamaki, A. (2007b). Efficient use of the query optimizer
for automated physical design. In Proceedings of the 33rd International Conference on Very
Large Data Bases (VLDB’07), pages 1093–1104.

Park, K. and Pai, V. S. (2006). Comon: a mostly-scalable monitoring system for planetlab.
ACM SIGOPS Operating Systems Review, 40(1):65–74.

Pavlo, A., Curino, C., and Zdonik, S. (2012). Skew-aware automatic database partition-
ing in shared-nothing, parallel oltp systems. In Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data (SIGMOD’12), pages 61–72.

Peters, J., Mülling, K., and Altun, Y. (2010). Relative entropy policy search. In AAAI, pages
1607–1612. Atlanta.

Powell, W. B. (2007). Approximate Dynamic Programming: Solving the Curses of Dimen-
sionality, volume 703. John Wiley & Sons.

Press, W. H. (2009). Bandit solutions provide unified ethical models for randomized clinical
trials and comparative effectiveness research. Proceedings of the National Academy of
Sciences, pages pnas–0912378106.

Puterman, M. L. (2009). Markov decision processes: discrete stochastic dynamic program-
ming, volume 414. John Wiley & Sons.

Putta, S. R. and Tulabandhula, T. (2017a). Efficient reinforcement learning via initial pure
exploration. CoRR, abs/1706.02237.

Putta, S. R. and Tulabandhula, T. (2017b). Pure exploration in episodic fixed-horizon Markov
decision processes. In AAMAS, pages 1703–1704.

Bibliography 269

Raab, F. (1993). TPC-C - the standard benchmark for online transaction processing (OLTP).
In Gray, J., editor, The Benchmark Handbook. Morgan Kaufmann.

Ramakrishnan, R., Gehrke, J., and Gehrke, J. (2003). Database management systems, vol-
ume 3. McGraw-Hill New York.

Rao, J., Bu, X., Xu, C.-Z., Wang, L., and Yin, G. (2009). Vconf: A reinforcement learning
approach to virtual machines auto-configuration. In Proceedings of the 6th International
Conference on Autonomic Computing, ICAC ’09, pages 137–146, New York, NY, USA.
ACM.

Rao, J., Zhang, C., Megiddo, N., and Lohman, G. (2002). Automating physical database
design in a parallel database. In Proceedings of the 2002 ACM SIGMOD International
Conference on Management of Data (SIGMOD’02), pages 558–569.

Rasin, A. and Zdonik, S. (2013). An automatic physical design tool for clustered column-
stores. In Proceedings of the 16th International Conference on Extending Database Tech-
nology (EDBT’13), pages 203–214.

Reiss, C., Wilkes, J., and Hellerstein, J. L. (2011). Google cluster-usage traces: format +
schema. Google Inc., White Paper, pages 1–14.

Robbins, H. (1952). Some aspects of the sequential design of experiments. Bulletin of the
American Mathematical Society, 58(5):527–535.

Rockafellar, R. T. (2015). Convex analysis. Princeton university press.

Rösch, P., Dannecker, L., Färber, F., and Hackenbroich, G. (2012). A storage advisor for
hybrid-store databases. Proceedings of the VLDB Endowment, 5(12):1748–1758.

Rummery, G. A. and Niranjan, M. (1994). On-line q-learning using connectionist systems.
Technical Report.

Russo, D. and Van Roy, B. (2016). An information-theoretic analysis of thompson sampling.
The Journal of Machine Learning Research, 17(1):2442–2471.

Ruszczyński, A. (2010). Risk-averse dynamic programming for markov decision processes.
Mathematical programming, 125(2):235–261.

Sani, A., Lazaric, A., and Munos, R. (2012). Risk-aversion in multi-armed bandits. In
Advances in Neural Information Processing Systems, pages 3275–3283.

Sattler, K.-U., Geist, I., and Schallehn, E. (2003). Quiet: Continuous query-driven index
tuning. In Proceedings of the 29th International Conference on Very Large Data Bases
(VLDB’03), pages 1129–1132.

Schmidhuber, J. (1991a). Adaptive curiosity and adaptive confidence. Technical report,
Technical Report FKI-149-91, Institut f ur Informatik, Technische Universität Munchen.

Schmidhuber, J. (1991b). Curious model-building control systems. In IEEE International
Joint Conference on Neural Networks, volume 2, pages 1458–1463.

Schnaitter, K., Abiteboul, S., Milo, T., and Polyzotis, N. (2006). Colt: Continuous on-line
tuning. In Proceedings of the 2006 ACM SIGMOD International Conference on Manage-
ment of Data (SIGMOD’06), pages 793–795.

270 Bibliography

Schnaitter, K., Abiteboul, S., Milo, T., and Polyzotis, N. (2007). On-line index selection for
shifting workloads. In Proceedings of the 2nd International Workshop on Self-Managing
Data Bases (SMDB’07), pages 459–468.

Schnaitter, K. and Polyzotis, N. (2012). Semi-automatic index tuning: Keeping dbas in the
loop. Proceedings of the VLDB Endowment, 5(5):478–489.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P. (2015). Trust region policy
optimization. In International Conference on Machine Learning, pages 1889–1897.

Scott, S. L. (2010). A modern Bayesian look at the multi-armed bandit. Applied Stochastic
Models in Business and Industry, 26(6):639–658.

Seldin, Y., Cesa-Bianchi, N., Auer, P., Laviolette, F., and Shawe-Taylor, J. (2012). Pac-
bayes-bernstein inequality for martingales and its application to multiarmed bandits. In
Proceedings of the Workshop on On-line Trading of Exploration and Exploitation 2, pages
98–111.

Sha, L., Abdelzaher, T., Årzén, K.-E., Cervin, A., Baker, T., Burns, A., Buttazzo, G.,
Caccamo, M., Lehoczky, J., and Mok, A. K. (2004). Real time scheduling theory: A
historical perspective. Real-time systems, 28(2-3):101–155.

Sherman, J. and Morrison, W. J. (1949). Adjustment of an inverse matrix corresponding to
a change in one element of a given matrix. Annals of Mathematical Statistics, 20:317.

Shortle, J. F., Thompson, J. M., Gross, D., and Harris, C. M. (2018). Fundamentals of
queueing theory, volume 399. John Wiley & Sons.

Silver, D. (2015). Lecture notes on reinforcement learning. COMPM050 Reinforcement
Learning Course in University College London.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., Schrit-
twieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. (2016). Mastering the
game of go with deep neural networks and tree search. Nature, 529(7587):484.

Şimşek, Ö. and Barto, A. G. (2006). An intrinsic reward mechanism for efficient exploration.
In Proceedings of the 23rd international conference on Machine learning, pages 833–840.
ACM.

Singh, S., Jaakkola, T., Littman, M. L., and Szepesvári, C. (2000). Convergence results for
single-step on-policy reinforcement-learning algorithms. Machine learning, 38(3):287–308.

Song, W., Xiao, Z., Chen, Q., and Luo, H. (2014). Adaptive resource provisioning for the
cloud using online bin packing. Computers, IEEE Transactions on, 63(11):2647–2660.

SPECpower Committee (2014). SPEC power and performance benchmark methodology.

Still, S. and Precup, D. (2012). An information-theoretic approach to curiosity-driven rein-
forcement learning. Theory in Biosciences, 131(3):139–148.

Stillger, M., Lohman, G. M., Markl, V., and Kandil, M. (2001). Leo-db2’s learning optimizer.
In VLDB, volume 1, pages 19–28.

Strehl, A. L., Li, L., and Littman, M. L. (2009). Reinforcement learning in finite mdps: Pac
analysis. Journal of Machine Learning Research, 10(Nov):2413–2444.

Bibliography 271

Strens, M. (2000). A bayesian framework for reinforcement learning. In International Con-
ference on Machine Learning, pages 943–950.

Sutton, R. (1988). Learning to predict by the methods of temporal differences. Machine
Learning, 3(1):9–44.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement learning: An introduction, volume 28.
MIT press, Cambridge.

Szepesvári, C. (2010). Algorithms for reinforcement learning. Morgans & Claypool.

Szita, I. and Lőrincz, A. (2008). The many faces of optimism: a unifying approach. In
Proceedings of the 25th international conference on Machine learning, pages 1048–1055.
ACM.

Thompson, W. R. (1933). On the likelihood that one unknown probability exceeds another
in view of the evidence of two samples. Biometrika, 25(3–4):285.

Thrun, S. B. (1992). Efficient exploration in reinforcement learning. Technical report,
Carnegie Mellon University, Pittsburgh, PA, USA.

Todorov, E. (2007). Linearly-solvable markov decision problems. In Advances in neural
information processing systems, pages 1369–1376.

Todorov, E. (2008). General duality between optimal control and estimation. In Decision
and Control, 2008. CDC 2008. 47th IEEE Conference on, pages 4286–4292. IEEE.

Tseng, H. W., Yang, T. T., Yang, K. C., and Chen, P. S. (2017). An energy efficient vm
management scheme with power-law characteristic in video streaming data centers. IEEE
Transactions on Parallel and Distributed Systems, PP(99):1–1.

Van Mieghem, J. A. (1995). Dynamic scheduling with convex delay costs: The generalized
c| mu rule. The Annals of Applied Probability, pages 809–833.

Wang, M., Meng, X., and Zhang, L. (2011). Consolidating virtual machines with dynamic
bandwidth demand in data centers. In INFOCOM, 2011 Proceedings IEEE, pages 71–75.

Warmuth, M. K. and Jagota, A. K. (1997). Continuous and discrete-time nonlinear gradi-
ent descent: Relative loss bounds and convergence. In Electronic proceedings of the 5th
International Symposium on Artificial Intelligence and Mathematics. Citeseer.

Watkins, C. J. and Dayan, P. (1992). Q-learning. Machine learning, 8(3-4):279–292.

Watkins, C. J. C. H. (1989). Learning from delayed rewards. PhD thesis, King’s College,
Cambridge.

White, D. J. (1993). Markov decision processes. John Wiley & Sons New York, NY.

Wieder, P., Butler, J. M., Theilmann, W., and Yahyapour, R. (2011). Service level agreements
for cloud computing. Springer Science & Business Media.

Wiering, M. and Schmidhuber, J. (1998). Fast online q (λ). Machine Learning, 33(1):105–115.

Williams, R. J. (1992). Simple gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256.

272 Bibliography

Williams, R. J. (1993). Tight performance bounds on greedy policies based on imperfect
value functions. Technical report, College of Computer Science, Northeastern University.

Wood, T., Shenoy, P., Venkataramani, A., and Yousif, M. (2007). Black-box and gray-box
strategies for virtual machine migration. In Proc. NSDI, pages 11–13.

Xu, C.-Z., Rao, J., and Bu, X. (2012). Url: A unified reinforcement learning approach for
autonomic cloud management. Journal of Parallel and Distributed Computing, 72(2):95 –
105.

Young, P. (2011). Recursive least squares estimation. In Recursive Estimation and Time-
Series Analysis, pages 29–46. Springer Berlin Heidelberg.

Yu, R., Xue, G., Zhang, X., and Li, D. (2017). Survivable and bandwidth-guaranteed em-
bedding of virtual clusters in cloud data centers. In Computer Communications, IEEE
INFOCOM 2017-The 36th Annual IEEE International Conference on. IEEE.

Ziebart, B. D. (2010). Modeling purposeful adaptive behavior with the principle of maximum
causal entropy. PhD thesis, Carnegie Mellon University, Pittsburgh, PA, USA.

Ziebart, B. D., Maas, A. L., Bagnell, J. A., and Dey, A. K. (2008). Maximum entropy inverse
reinforcement learning. In AAAI, pages 1433–1438.

Zilio, D. C., Rao, J., Lightstone, S., Lohman, G., Storm, A., Garcia-Arellano, C., and Fad-
den, S. (2004a). Db2 design advisor: Integrated automatic physical database design. In
Proceedings of the 30th International Conference on Very Large Data Bases (VLDB’04),
pages 1087–1097.

Zilio, D. C., Zuzarte, C., Lightstone, S., Ma, W., Lohman, G. M., Cochrane, R., Pirahesh,
H., Colby, L. S., Gryz, J., Alton, E., Liang, D., and Valentin, G. (2004b). Recommending
materialized views and indexes with ibm db2 design advisor. In Proceedings of the 1st
International Conference on Autonomic Computing (ICAC’04), pages 180–188.

	Contents
	Abstract
	List of Contributions
	List of Tables
	List of Figures
	List of Notations
	1 Introduction
	1.1 Learning to Make Good Decisions under Uncertainty: Reinforcement Learning
	1.1.1 Basic Elements of Reinforcement Learning
	1.1.2 Settings of Reinforcement Learning

	1.2 Motivations and Contributions
	1.2.1 Theoretical Aspects
	1.2.2 Application Aspects

	1.3 Structure of the Thesis

	2 A Primer on Reinforcement Learning
	2.1 Multi-Armed Bandits
	2.1.1 Finite-Armed Stochastic Bandit
	2.1.2 Bandit Algorithms
	2.1.3 Pure Exploration Bandits
	2.1.4 Our Contribution: BelMan

	2.2 Markov Decision Processes
	2.2.1 Finite-State Finite-Action MDPs
	2.2.2 Functional Abstraction of MDP
	2.2.3 Dynamic Programming
	2.2.4 On-Policy and Off-Policy Learning
	2.2.5 Temporal-Difference Algorithm
	2.2.6 Functional Approximation Algorithms
	2.2.7 Actor, Critic, and Actor-critic Algorithms
	2.2.8 Exploration in MDPs
	2.2.9 Balancing Exploration and Exploitation in MDPs

	I A Functional Approximation Approach to Learning with Unknown Reward and Unknown Transition Function
	3 Learning with Unknown Reward: Automated Database Tuning
	3.1 Introduction
	3.2 Literature Review and Contextualisation
	3.2.1 Automated Database Configuration
	3.2.2 Reinforcement Learning in Data Management

	3.3 Automated Database Tuning as a Learning Problem
	3.4 Automated Database Tuning with Cost-Model Learning
	3.4.1 Algorithmic Framework
	3.4.2 Reducing the Search Space
	3.4.3 Reducing the Dimensionality in Policy Iteration
	3.4.4 Learning the Cost Model

	3.5 Automated Database Tuning with Regularised Cost-Model Learning
	3.5.1 Regularised Cost-Model Estimator
	3.5.2 Performance Bound

	3.6 Case Study: Adaptive Index Tuning
	3.6.1 Reducing the Search Space
	3.6.2 Defining the Feature Mapping
	3.6.3 Defining the Feature Mapping
	3.6.4 Performance Bounds for Regularised COREIL

	3.7 Performance Evaluation
	3.7.1 Dataset and Workload
	3.7.2 WFIT: Brief Description
	3.7.3 COREIL: Experiments and Results
	3.7.4 rCOREIL: Experiments and Results
	3.7.5 Analysis of Cost Estimator

	3.8 Conclusion

	4 Learning with Unknown Transitions: Live Migration of Virtual Machines
	4.1 Introduction
	4.2 Literature Review and Contextualisation
	4.2.1 Dynamic VM Consolidation
	4.2.2 Reinforcement Learning Algorithms for VM Migration

	4.3 A Cloud Data Centre: System and Cost Models
	4.3.1 System Model
	4.3.2 Energy Consumption Cost
	4.3.3 SLA Violation Cost

	4.4 Live Virtual Machine Migration as a Learning Problem
	4.5 Megh: Learn to Migrate As-you-go
	4.6 Performance Evaluation
	4.6.1 Experimental Setup
	4.6.2 Dataset and Workload
	4.6.3 Comparative Performance Analysis
	4.6.4 Scalability Analysis
	4.6.5 Parameter Sensitivity

	4.7 Conclusion

	II An Information Geometric Approach to Learning with Incomplete Information
	5 BelMan: An Information Geometric Approach to Multi-armed Bandits
	5.1 Introduction
	5.2 Revisiting the Multi-armed Bandit Literature
	5.3 Bandits: Problem Formulation
	5.4 Methodology
	5.4.1 A Primer on Information Geometry
	5.4.2 Belief-reward Manifold
	5.4.3 Pseudobelief: Summarising the Explored Knowledge
	5.4.4 Focal Distribution: Inducing Exploitative Bias
	5.4.5 BelMan: An Alternating Projection Scheme
	5.4.6 BelMan for Exponential Family Distributions

	5.5 Empirical Performance Analysis
	5.5.1 Exploration–exploitation Bandit
	5.5.2 Two-phase Bandit

	5.6 Conclusion

	6 QBelMan: An Information Geometric Approach to Queueing Bandits
	6.1 Introduction
	6.2 A Primer on Queueing and Bandits
	6.2.1 Queueing Theory
	6.2.2 Multi-armed Bandits in Queueing

	6.3 Queueing Bandit: Problem Formulation
	6.3.1 M/B/K Queueing Bandit
	6.3.2 M/M/K Queueing Bandit

	6.4 Methodology
	6.4.1 Q-ThS and Q-UCB: The state-of-the-art Algorithms
	6.4.2 QBelMan: BelMan for Queueing Bandits

	6.5 Experimental Analysis
	6.6 Conclusion

	7 The Closure
	7.1 Conclusions
	7.2 Perspectives
	7.2.1 An Information Geometric Approach to MDP

	7.3 Future Work

	Bibliography

