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ABSTRACT
UDO is a versatile tool for offline tuning of database systems for
specific workloads. UDO can consider a variety of tuning choices,
reaching from picking transaction code variants over index selec-
tions up to database system parameter tuning. UDO uses reinforce-
ment learning to converge to near-optimal configurations, creating
and evaluating different configurations via actual query executions
(instead of relying on simplifying cost models). To cater to different
parameter types, UDO distinguishes heavy parameters (which are
expensive to change, e.g. physical design parameters) from light
parameters. Specifically for optimizing heavy parameters, UDO
uses reinforcement learning algorithms that allow delaying the
point at which reward feedback becomes available. This gives us
the freedom to optimize the point in time and the order in which dif-
ferent configurations are created and evaluated (by benchmarking
a workload sample). UDO uses a cost-based planner to minimize
configuration switching overheads. For instance, it aims to amortize
the creation of expensive data structures by consecutively evaluat-
ing configurations using them. We demonstrate UDO on Postgres
as well as MySQL and on TPC-H as well as TPC-C, optimizing a
variety of light and heavy parameters concurrently.
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1 INTRODUCTION
We demonstrate UDO, the Universal Database Optimizer. UDO is an
offline tuning tool that optimizes settings for various kinds of data-
base tuning parameters, given an example workload and a tuning
time limit. UDO does not rely on simplifying cost models to assess
the quality of tuning options. Instead, it relies only on feedback
obtained via sample runs, after creating a tuning configuration to
evaluate. This makes the optimization process expensive but avoids
sub-optimal choices due to erroneous cost estimates (which are
otherwise common [1]). It is suitable for scenarios in which an
optimized configuration, obtained in an expensive one-time step,
can be used over extended periods of time.

UDO operates on various types of tuning parameters, which are
traditionally handled by separate tuning tools. For instance, for
our demonstration, we combine optimization of transaction query
orders [11], index selections [2], as well as database system con-
figuration parameters [12]. Considering various parameter types
together can be advantageous as optimal choices for one parameter
type may depend on settings for other parameters (e.g., we may
disable sequential scans, a configuration parameter, only if specific
indexes are created). We use the generic term Parameter for each
tuning choice in the following and the term Configuration for an
assignment from parameters to values. UDO handles all parameters
by a unified approach.

UDO explores the search space iteratively, selecting configura-
tions to try, creating them (e.g., creating index structures or setting
system parameters as specified by the configuration), and eval-
uating their performance on a workload sample. Evaluation can
be based on multiple metrics such as throughput or latency. We
demonstrate optimization with both metrics on different database
systems (Postgres and MySQL) on standard benchmarks (TPC-C
and TPC-H). UDO uses Reinforcement Learning (RL) to determine
which configurations to try next. Improvement in performance
measurements translate into reward values that guide an RL agent
during search towards actions that maximize reward.

RL has been used previously for optimizing database system con-
figuration parameters [7] in particular. The main novelty of UDO
lies in the fact that it broadens the scope of optimization to a much
larger class of parameters. This becomes particularly challenging
due to what we callHeavy Parameters (we distinguish them from
Light Parameters in the following). For heavy parameters, it is
expensive to change the parameter value. For instance, parameters
that relate to index creations are expensive to change. Creating an
index, in particular a clustered index, may take an amount of time
that dominates query or transaction evaluation time for a small
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Figure 1: Overview of UDO system.

workload sample. Similarly, configuration parameters requiring a
database server restart are relatively expensive to change. As we
show in our experiments, a naive reinforcement learning approach
is limited by costs of changing heavy parameters. This leads to high
costs per iteration and slows down convergence.

UDO avoids this pitfall by giving heavy parameters special treat-
ment. UDO separates heavy from light parameters and uses different
reinforcement learning algorithms to optimize them. Specifically
for heavy parameters, it uses reinforcement learning algorithms
that can adjust with delays until reward values for previous choices
become available. We leverage such delayed feedbacks as follows.
All configurations selected by the RL algorithm are forwarded to a
planning component. This component decides, when and in which
order to create and to evaluate configurations. Depending on those
choices, we are able to amortize cost for changing heavy parameters
over the evaluation of many similar configurations. For instance, it
allows us to create an expensive index once to evaluate multiple
similar configurations that all include the index. The alternative
(alternating between configurations that use or do not use the index,
requiring multiple index creations and drops) is less efficient.

For the current setting of heavy parameters, we use RL again
to find optimal settings for light parameters. Of course, optimal
settings for light parameters may depend on the values for heavy pa-
rameters. UDO takes that into account and models the optimization
of light parameters for each heavy parameter setting as a separate
Markov Decision Process (MDP), to which RL is applied to. In con-
trast to heavy parameters, we use an undelayed RL algorithm to
converge faster to near-optimal settings for light parameters.

In our demonstration, we will give participants the chance to
compare configurations of their own design against the one identi-
fied by UDO. Also, participants will be able to gain insights into how
UDO identifies optimal solutions (by visualizing convergence over
time for different parameters, based on pre-recorded traces). In the
reminder of this paper, we give a more detailed overview of UDO
(Section 2), present an extract from our experiments (Section 3),
and describe our demonstration plan in more detail (Section 4).

2 SYSTEM OVERVIEW
Figure 1 shows an overview of the UDO system. Next, we discuss
its components in more detail.

Input and Output. The input to UDO is threefold. First, we
specify a search space for tuning. The search space is defined as

a set of tuning parameters that may represent system parameters,
physical design choices, or query planning decisions. Each param-
eter is associated with a set of admissible values and scripts that
change the value (e.g., by creating an index). Second, UDO is given
a workload to optimize. The workload is represented by a script
that evaluates a given configuration with a workload sample and
returns a reward value (which may represent throughput or the
inverse of execution time). Third, UDO requires a time limit for
optimization. The output is the best configuration found until the
timeout.

Search Space Analysis. Search space analysis examines the
space for configuration optimization. In particular, it divides tuning
parameters into “heavy” and “light” parameters. For heavy tuning
parameters, changing the value causes non-trivial overheads. Typi-
cally, index creations or parameter changes that require restarting
the database server are heavy. On the other side, light parameters
include system parameters that can be changed without restart or
optimizer planning decisions. Here, values can be changed with
high frequency. As outlined in more detail next, heavy and light pa-
rameters are treated differently during optimization. Currently, we
classify parameters based on parameter type, considering parame-
ters related to physical design and parameters requiring database
server restarts for changes as heavy, the others as light.

Next, the search space analyzer creates an environment in which
learning takes place. UDO uses reinforcement learning as core
optimization mechanism. Reinforcement learning generally applies
to Markov Decision Processes (MDPs), defined by states S, actions
A, state transitions T : S × A → S (we consider deterministic
transitions), and a function that assigns transitions to reward values.
Here, we associate actions with configuration changes (e.g., creating
an index or changing a system parameter). States are associatedwith
configurations. Actions transition from a state representing a first
configuration to a state representing the configuration obtained,
after applying the change represented by the action to the first
configuration.

A particularity of our approach is that we divide the search space
into two levels. The top level is focused on heavy parameters alone.
Each state only represents choices for those parameters and actions
refer only to those parameters. The reward for taking an action
in a state is linked to the performance improvement obtained by
the associated configuration change. The performance depends
however not only on choices for heavy parameters but also on
choices for light parameters. Ideally, we want to assess settings
for heavy parameters, based on the optimal settings for the light
parameters. The optimal settings for light parameters may however
depend on the choices for heavy parameters (e.g., we may want to
disable sequential scans in the optimizer search space only after
creating a particularly useful index). Hence, we introduce a second
level of optimization that focuses on light parameters only. Here,
we assume fixed values for heavy parameters while exploring a
state space representing alternative settings for light parameters.
As outlined next, this separation enables us to reduce overheads
related to configuration changes. The search space analyzer creates
an implicit (i.e., space-efficient) representation of that search space,
which is used to initialize the reinforcement learning agents.



Example 2.1. Assume our search space is defined by the follow-
ing parameters with associated binary value domains. 𝐼1 and 𝐼2
representing decisions as to whether index one and two are created
or not. Parameters 𝑂1 ∈ {0, . . . , 7} and 𝑂2 ∈ {0, . . . , 4} represent
alternative query orderings (identified by an integer number) for
transactions one and two. Here, 𝐼1 and 𝐼2 should be classified as
heavy parameters (as creating indexes typically takes time) while
𝑂1 and 𝑂2 are light (changing query order merely requires switch-
ing to a different version of the transaction code). Hence, our search
space at level 1 has four states (corresponding to the admissible
value combinations for 𝐼1 and 𝐼2). Its actions refer only to changes
with regards to the indexes. For each index combination, we intro-
duce a separate MDP (at level 2) to optimize settings for𝑂1 and𝑂2.
Each MDP at level 2 has 7 · 4 = 28 possible states. The reward of an
index combination (level 1) is calculated based on (near-)optimal,
index-specific settings for 𝑂1 and 𝑂2. To find those near-optimal
settings, the associated MDP at level 2 is solved.

Reinforcement Learning. UDO applies reinforcement learn-
ing to solve the MDPs described before. As discussed before, we
decompose the search space into multiple dependent MDPs. Do-
ing so allows us to solve those MDPs by different algorithms. We
outline next why that is interesting.

Reinforcement Learning (RL) often benefits from a high fre-
quency of iterations. This allows the RL agent to explore the search
space in depth within a reasonable time frame. In our case, iteration
frequency is limited by two factors: time for creating a configuration
and time for evaluating a configuration. The time for evaluating a
configuration can often be reduced via sampling (from the given
workload). As we consider stochastic rewards in general, obtaining
performance on a sample is in principle sufficient for convergence.
The time for creating configurations, however, cannot easily be
reduced. For instance, actions related to physical design changes
(e.g., index creations) can take significant amount of time. As we
cannot fully avoid such overheads, our goal is to amortize them
over multiple evaluations instead.

For instance, to decrease index creation overheads per iteration,
we ideally want to create indexes once and then evaluate a set
of similar configurations consecutively. Standard reinforcement
learning algorithms do not cope with this requirement. They expect
reward values immediately after taking an action. This does not
leave any slack to collect similar configurations before evaluating
them. Hence, specifically for theMDP optimizing heavy parameters,
we use algorithms [4, 6] that accept delays between an action is
taken and the associated reward becomes known.

Instead of evaluating heavy parameter configurations directly,
we forward them to the evaluation manager component. This com-
ponent, described in more detail next, uses cost-based planning to
evaluate configuration sets efficiently. Once performance results
become available, the corresponding reward values are forwarded
to the RL agent. We use an algorithm that copes with delayed re-
wards to optimize heavy parameters. On the other side, we use
non-delayed reinforcement learning to optimize light parameters
(via the UCT algorithm with Rapid Value Estimation [3]). Here,
amortization is not required (since changes are cheap) and would
only delay convergence unnecessarily. We show in Section 3 the
benefits of this two-level approach.

Evaluation Manager. The evaluation manager continuously
receives evaluation requests from the RL agent. Each evaluation
request references a configuration whose performance to evaluate.
Additionally, each request specifies a deadline until which the eval-
uation result is required. The evaluation manager is responsible for
addressing each request before the deadline. Under that constraint,
its goal is to minimize evaluation overheads. Such overheads are
minimized by optimizing the point in time and the order in which
configurations are evaluated.

More specifically, we focus on minimizing overheads for creating
configurations to evaluate. For instance, we amortize index creation
overheads if we evaluate two configurations with similar indexes
consecutively. We amortize overheads for a database server restart
(to have system configuration parameter changes take effect) if we
evaluate multiple configurations using the current settings consec-
utively. The evaluation manager tries to take advantages of such
effects as much as possible.

Example 2.2. We describe configurations by vectors in which
each vector component represents a parameter value. Assume
we have to evaluate configurations (1, 1, 16𝑀𝐵), (0, 0, 12𝑀𝐵), and
(0, 1, 16𝑀𝐵). Here, the first two components indicate whether two
specific indexes are created or not, the third component repre-
sents the (configurable) amount of working memory. Assume that
the latter parameter requires a server restart with a duration of
10 seconds to take effect. For simplicity, we assume that creating
an index takes 20 seconds while dropping one is free. Evaluating
the configurations in the given order creates (pure configuration
switching) overheads of 2 · 20 + 10 + 10 + 20 + 10 = 90 seconds
(assuming that no indexes are initially created and an initial setting
of 8𝑀𝐵 for memory). If we evaluate them in the order (0, 0, 12𝑀𝐵),
(0, 1, 16𝑀𝐵), and (1, 1, 16𝑀𝐵) instead, those overheads reduce to
10 + 10 + 20 + 20 = 60 seconds. Relative savings tend to increase
with the size of configuration batches.

Evaluation Planner. To reduce overheads, the evaluation man-
ager uses a cost-based planner. This planner formalizes the evalua-
tion of configuration sets as an optimization problem. The goal is
to minimize overheads for switching between configurations while
generating all results until the corresponding deadline.

The cost model of the planner is based on time measurements,
taken when changing heavy parameters. The search space corre-
sponds to configuration evaluation orders that are admissible, given
the current evaluation deadlines. To explore this search space, the
planner uses a dynamic programming algorithm.

3 EXPERIMENTS
We present a small extract from our experiments, evaluating UDO
on different benchmarks and systems.

Setup.Weuse a server with 2 Intel XeonGold 5218 2.3 GHzCPUs
with 32 physical cores and 384 GB of RAM for our experiments.
We implemented UDO in Python, using OpenAI gym1. We com-
pare against two popular deep reinforcement learning algorithms,
DDPG [8] and SARSA [9], implemented in the same framework (but
not using the UDO-specific amortization of configuration change
cost). Also, we compare against a simplified UDO version that does

1https://gym.openai.com/
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Figure 2: Performance comparison of UDO and baselines.

not separate heavy from light parameters and does not exploit
delayed evaluations either. Finally, we compare against more tradi-
tional tuning tools and combine their solution for different classes
of parameters. Namely, we set system parameters for Postgres (v
10.15) via PGTuner 2 and select indexes via Dexter [5]. For MySQL
(v5.7.29), we set system parameters via MySQLTuner 3, using in-
dexes recommended by Dexter for Postgres which turned out to be
equivalent to indexes recommended by another baseline we tried
directly on MySQL, NoDBA [10], for the following experiments. We
use Quro [11] as baseline for optimizing query order in transactions.

Results. We report an extract of our experimental results in
Figure 2. We show latency for TPC-H, with scaling factor 1, on
Postgres as a function of optimization time in Figure 2(a). We show
throughput for TPC-C on MySQL (with scaling factor 10, 32 con-
current requests, and 10 warehourses) in Figure 2(b). For TPC-H,
we consider index selection and system parameter tuning, a total of
137 tuning parameters. For TPC-C, we consider indexing, transac-
tion query re-orderings [11], and system parameters, a total of 112
parameters. Given enough time, UDO finds the best solutions for
both systems and benchmarks. Compared to other learning-based
baselines, UDO achieves significantly faster iterations due to de-
layed evaluations and cost-based planning (speedup of factor 8 for
TPC-C and factor 4 for TPC-H, comparing UDO to simplified UDO).

4 DEMONSTRATION SETUP
Our demonstration consists of two parts. First, we give participants
the opportunity to compare alternative configurations against the
ones found by UDO. Second, we give participants a chance to vi-
sualize convergence of UDO for different parameters, based on
pre-recorded traces.

Competition. We will provide participants with access to an
EC2 machine on which the TPC-H benchmark is installed. We will
point audience members to a public document in which they can
register for access during 30 minutes time slots. We will provide
registered participants with the login details, a list of parameters
considered by UDO, and the final performance numbers achieved.
Visitors are free to try out different configurations, also installing
tuning tools of their choice. In case of significant changes, we

2https://github.com/jfcoz/postgresqltuner
3https://github.com/major/MySQLTuner-perl

Figure 3: Screenshot of UDO visualization tool.

will be able to restore the defaults quickly via a stored EC2 AMI.
Participants may send us their best performing configuration. We
will benchmark the configuration ourselves and maintain a public
“high-score list” with achieved performance results.

Visualization. Audience members may gain insights into how
UDO works internally, using a visualization tool. To save time, we
will provide pre-recorded optimization traces for TPC-C on MySQL
and Postgres for download, together with the visualization tool.
The visualization tool allows users to select subsets of parameters
to visualize, and shows a video illustrating UDO’s convergence over
time (in addition to statistics such as reward values, visit frequencies,
and UCT search tree growth). Figure 3 shows a screenshot.

ACKNOWLEDGMENTS
This research project is supported byNSF grant IIS-1910830 (“Regret-
Bounded Query Evaluation via Reinforcement Learning”) and a
Cornell Computer Science Electronic Arts Fellowship.

REFERENCES
[1] Renata Borovica, Ioannis Alagiannis, and Anastasia Ailamaki. 2012. Automated

physical designers: what you see is (not) what you get. In Proceedings of the Fifth
International Workshop on Testing Database Systems. 9:1—-9:6. https://doi.org/10.
1145/2304510.2304522

[2] Surajit Chaudhuri. 2004. Index selection for databases: A hardness study and a
principled heuristic solution. KDE 16, 11 (2004), 1313–1323. http://ieeexplore.
ieee.org/xpls/abs

[3] Sylvain Gelly and David Silver. 2011. Monte-Carlo tree search and rapid action
value estimation in computer Go. Artificial Intelligence 175, 11 (2011), 1856–1875.

[4] Pooria Joulani, Andras Gyorgy, and Csaba Szepesvári. 2013. Online learning under
delayed feedback. In International Conference on Machine Learning. 1453–1461.

[5] Jan Kossmann, Stefan Halfpap, Marcel Jankrift, and Rainer Schlosser. 2020. Magic
Mirror in My Hand, Which is the Best in the Land? An Experimental Evaluation
of Index Selection Algorithms. Proc. VLDB Endow. 13, 12 (July 2020), 2382–2395.
https://doi.org/10.14778/3407790.3407832

[6] Bingcong Li, Tianyi Chen, and Georgios B Giannakis. 2019. Bandit online learn-
ing with unknown delays. In The 22nd International Conference on Artificial
Intelligence and Statistics. PMLR, 993–1002.

[7] Guoliang Li, Xuanhe Zhou, Shifu Li, and Bo Gao. 2018. QTune: A QueryAware
database tuning system with deep reinforcement learning. PVLDB 12, 12 (2018),
2118–2130. https://doi.org/10.14778/3352063.3352129

[8] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. 2015. Continuous control with
deep reinforcement learning. arXiv preprint arXiv:1509.02971 (2015).

[9] Gavin A Rummery and Mahesan Niranjan. 1994. On-line Q-learning using con-
nectionist systems. Vol. 37. University of Cambridge, UK.

[10] Ankur Sharma, Felix Martin Schuhknecht, and Jens Dittrich. 2018. The case for
automatic database administration using deep reinforcement learning. arXiv
preprint arXiv:1801.05643 (2018).

[11] Cong Yan and Alvin Cheung. 2016. Leveraging lock contention to improve
OLTP application performance. Proceedings of the VLDB Endowment 9, 5 (2016),
444–455.

[12] Bohan Zhang, Dana Van Aken, Justin Wang, Tao Dai, Shuli Jiang, Jacky Lao,
Siyuan Sheng, Andrew Pavlo, and Geoffrey J Gordon. 1910. A demonstration of
the OtterTune automatic database management system tuning service. VLDB 11,
12 (1910), 1910–1913.

https://doi.org/10.1145/2304510.2304522
https://doi.org/10.1145/2304510.2304522
http://ieeexplore.ieee.org/xpls/abs
http://ieeexplore.ieee.org/xpls/abs
https://doi.org/10.14778/3407790.3407832
https://doi.org/10.14778/3352063.3352129

	Abstract
	1 Introduction
	2 System Overview
	3 Experiments
	4 Demonstration Setup
	Acknowledgments
	References

