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“You probably said or were told at some point that diamonds
are forever, right? That depends on your definition of forever!
A theorem – that really is forever.”
– Eduardo Sánz de Cabezón
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History

Sun Tzu first mentioned this
problem in his 3rd century
book Sunzi Suanjing.

Aryabhata described an
algorithm to solve it in 6th

century A.D.

Fibonacci mentioned a
special case of it in Liber
Abaci, published in 1202.

Gauss used congruences to give it the modern formulation in
his Disquisitiones Arithmeticae of 1801.
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An Example

There are certain things whose number is unknown. Repeatedly
divided by 3, the remainder is 2; by 5 the remainder is 3; and by 7
the remainder is 2. What will be the number?

-Sun Tzu
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Chinese Remainder Theorem (I)

Theorem (Remainder Version)

If

i. {ni}Ki=1 are pairwise coprime integers greater than 1,

ii. N =
∏K

i=1 ni, and

iii. {ai}Ki=1 are K integers, such that ai ∈ {0, 1, . . . , ni − 1} for
every i,

then there exists an unique integer x ∈ {0, 1, . . . , N − 1} such
that the remainder of x divided by ni is ai for every i.

– Primitive version
– Two integers a and b are called pairwise coprime or relatively
prime, if gcd(a, b) = 1.
– ni’s are called modulis or divisors.
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Chinese Remainder Theorem (II)

Theorem (Congruence Modulo Version)

If

i. {ni}Ki=1 are pairwise coprime integers greater than 1,

ii. N =
∏K

i=1 ni, and

iii. {ai}Ki=1 are K integers,

then there exists an unique residue class x(modN) such that,

x ≡ a1(modn1),

x ≡ a2(modn2),

...

x ≡ aK(modnK).
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Chinese Remainder Theorem (III)

Theorem (Ring Isomorphism Version)

If

i. {ni}Ki=1 are pairwise coprime integers greater than 1, and

ii. N =
∏K

i=1 ni,

then the map xmodN 7→ (xmodn1, . . . , xmodnK) defines a
ring isomorphism,

Z/NZ ∼= Z/n1Z× . . .× Z/nKZ.

– Z/niZ is the quotient ring of Z generated by the equivalence
class [ni] .

October 5, 2016 D. Basu CS1231R: CRT 7 / 24



Introduction Construction Applications The Coda

Chinese Remainder Theorem (III)

Theorem (Ring Isomorphism Version)

If

i. {ni}Ki=1 are pairwise coprime integers greater than 1, and

ii. N =
∏K

i=1 ni,

then the map xmodN 7→ (xmodn1, . . . , xmodnK) defines a
ring isomorphism,

Z/NZ ∼= Z/n1Z× . . .× Z/nKZ.

– Z/niZ is the quotient ring of Z generated by the equivalence
class [ni] .

October 5, 2016 D. Basu CS1231R: CRT 7 / 24



Introduction Construction Applications The Coda

Chinese Remainder Theorem (IV)

Theorem (Generalized Version)

If

i. {Ii}Ki=1 are pairwise coprime two-sided ideals of a ring R,
and

ii. I = ∩Ki=1Ii,

then the map xmod I 7→ (xmod I1, . . . , xmod IK) defines a ring
isomorphism,

R/I ∼= R/I1 × . . .×R/IK .

– xmod I denotes the image of the element x in the quotient ring
R/I defined by the ideal I.
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Linear Diophantine’s Equation

Problem

Given a, b, c ∈ Z,

ax+ by = c,

find integers x and y satisfying this equation.

Solution methods–

Geometric approach
Modular or algebraic approach
General solution : not possible to obtain (Hilbert’s 10th

problem)
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Geometric approach

Step 1: Find out the equation of curve

x = − b

a
y +

c

a
.

The solutions to the Diophantine equation correspond to
lattice points that lie on the curve.

Step 2: Find out the minimal element
Plug in y = 0.The basic solution is ( ca , 0).

Step 3: The general solution is

x = −bt+ c

a
y = at

for t ∈ Z.
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a-axis

b -axis

ax+ by = c
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Modular or Algebraic approach

ax+ by = c

⇒ ax = −by + c

⇒ ax ≡ c(mod b)

⇒ x ≡ ca−1(mod b)

– Thus, the problem reduces to finding out the equivalence class[
ca−1

]
for mod b.

– This is canonical to finding the isomorphism Z→ Z/bZ and to
evaluate it for ca−1.
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System of Linear Diophantine’s Equations

Problem

Given integers {ni}Ki=1 and {ai}Ki=1,

x = a1 + x1n1,

...

x = aK + xKnK ,

find integers x and {xi}Ki=1 satisfying this equation.

– Does there exist a solution?
– If it exists, how is it?
– Is it unique?
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System of Linear Congruences

We can reformulate this problem as,

Problem

Given integers {ni}Ki=1 and {ai}Ki=1,

x ≡ a1(modn1),

...

x ≡ aK(modnK),

find integer x satisfying this equation.

Claims of Chinese remainder theorem:

There exists a solution if ni’s are pairwise coprime.
The solution will have unique modN .
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Uniqueness Proof

Let x and y be two solutions of this system of equations.

⇒ x ≡ ai(modni) ∧ y ≡ ai(modni) ∀i

⇒ x ≡ y(modni) ∀i

⇒ ni | x− y ∀i

⇒ N | x− y (since ni’s are coprime)

∴ The solution is unique in modN . Q.E.D.

– Thus, the map xmodN 7→ (xmodn1, . . . , xmodnK) is
injective.
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Existence Proof: Ring Isomorphism

xmodN 7→ (xmodn1, . . . , xmodnK)
maps congruence classes modN to K set of congruence classes
modni.

The proof of uniqueness shows that this map is injective.

As the domain and the codomain of this map have the same
number of elements, N , the map is also surjective.

Thus, the map induces an isomorphism
Z/NZ ∼= Z/n1Z× . . .× Z/nKZ.

– This proves the existence of the solution.
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Existence Proof: Computational (I)

–Shall be described in lecture
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Existence Proof: Computational (II)

– Shall be described in lecture
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Applications: Cryptography

i. RSA decryption
Most state-of-art implementations of RSA use the Chinese
remainder theorem to optimize and speed-up decryption and
signing.

ii. Secret sharing
Each of the shares of secrets is represented using a
congruence, and the solution of the system of congruences
using the Chinese remainder theorem is the secret to be
recovered.
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Applications: Fast computation

i. Fast Fourier Transform
The prime-factor FFT algorithm or Good-Thomas algorithm
reduces the computation of a fast Fourier transform of size
n1n2 to the computation of two fast Fourier transforms of
smaller sizes n1 and n2 which are coprime.

ii. Parallel computation
If we have an expensive computational task that involves
adding, multiplying and subtracting integers on a finite set S.
Then, we can choose primes p1, p2, . . . , pr which do not divide
any element of S and split the computation over r processors.
Afterwards CRT is used to put the answers back together.
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Applications: Mathematics

i. Lagrangian interpolation
Given a set of k + 1 data points (x0, y0), . . . , (xk, yk) where
no two xj ’s are the same, the Lagrangian interpolation tries to
fit a polynomial of degree k.

ii. Hermite interpolation
Given a set of k + 1 data points (x0, y0), . . . , (xk, yk), the
Hermite polynomial tries to find out a polynomial of the least
possible degree, such that the polynomial and its first
derivatives take given values at the given data points.

iii. Gödel’s (First) incompleteness theorem
Proof of the theorem depends on choosing a way to encode
formulas and proofs as numbers. The Chinese remainder
theorem has been used to construct such a Gdel numbering
for sequences.
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“The elegance of a mathematical theorem is directly proportional
to the number of independent ideas one can see in the theorem
and inversely proportional to the effort it takes to see them.”

– George Pólya
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Useful Links

Wikipedia: Chinese remainder theorem

http://www.cut-the-knot.org/blue/chinese.shtml

Jane Liu’s page on CRT

Stanford’s crypto group page

https://drexel28.wordpress.com/2011/09/06/

the-chinese-remainder-theorem/

http://math.stackexchange.com/questions/1102037/

the-chinese-remainder-theorem-for-rings
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