A Unified Framework for Probabilistic Component analysis

Debabrota Basu

School of Computing National University of Singapore Nicolaou, Mihalis A., Stefanos Zafeiriou, and Maja Pantic. "A unified framework for probabilistic component analysis." *Machine Learning and Knowledge Discovery in Databases*. Springer Berlin Heidelberg, 2014. 469-484.

Introduction

Overview of CA techniques

- Principal Component Analysis (PCA)
- Linear Discriminant Analysis (LDA)
- Locality Preserving Projections (LPP)
- Slow Feature Analysis (SFA)
- Steps to Unification

Unified Maximum Likelihood framework

- Defining priors and Markov random fields
- Maximum likelihood solution

• Unified Expectation Minimization framework

- Generalizing the prior
- Expectation step
- Minimization step

• Experiments

Introduction

• Overview of CA techniques

- Principal Component Analysis (PCA)
- Linear Discriminant Analysis (LDA)
- Locality Preserving Projections (LPP)
- Slow Feature Analysis (SFA)
- Steps to Unification

Unified Maximum Likelihood framework

- Defining priors and Markov random fields
- Maximum likelihood solution

Unified Expectation Minimization framework

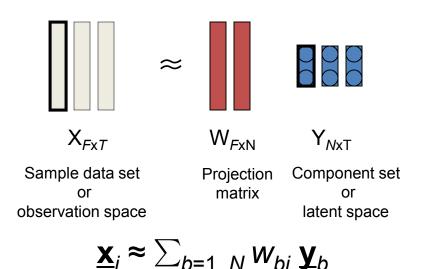
- Generalizing the prior
- Expectation step
- Minimization step

• Experiments

What is Component Analysis?

- Component analysis is a method of projecting data to subspace
- Subspace is a "manifold" (surface) embedded in a higher dimensional vector space
 - Data (e.g. images) are represented as points in a high dimensional vector space
 - Constraints in the natural world and the extraction process causes the points to "live" in a lower dimensional subspace
- Dimensionality reduction
 - Achieved by extracting 'important' features from the dataset
 → Learning
 - Desirable to avoid the "curse of dimensionality" in pattern recognition \rightarrow Classification
- Examples- PCA, LDA, ICA, LPP, SFA, Kernel methods....

Projection to Subspaces



- Orthonormal bases
 - Y is simply projection of X onto W: Y = W^T X
- General independent bases
 - If *N*=*F*, Q is obtained by solving linear system
 - If *N*<F, have to do some optimization (e.g., least squares)
- Different criterion for selecting W leads to different subspace methods -Motivation for unification

Introduction

• Overview of CA techniques

- Principal Component Analysis (PCA)
- Linear Discriminant Analysis (LDA)
- Locality Preserving Projections (LPP)
- Slow Feature Analysis (SFA)
- Steps to Unification

Unified Maximum Likelihood framework

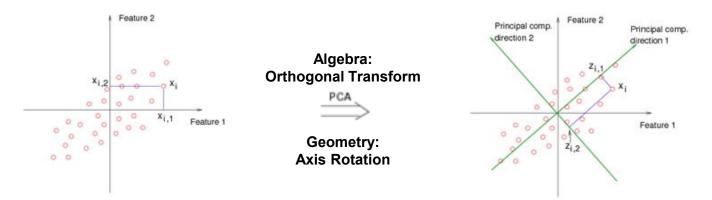
- Defining priors and Markov random fields
- Maximum likelihood solution

Unified Expectation Minimization framework

- Generalizing the prior
- Expectation step
- Minimization step

• Experiments

Principal Component Analysis

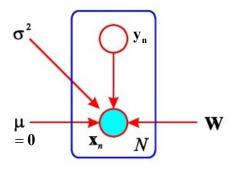


• Equivalent optimization problem

$$\mathbf{W}_{\mathbf{0}} = \underset{\mathbf{W}}{\operatorname{arg\,max}} tr\left[\mathbf{W}^{\mathrm{T}}\mathbf{S}\mathbf{W}\right] , \text{s. t. } \mathbf{W}^{\mathrm{T}}\mathbf{W} = \mathbf{I}$$

• Probabilistic PCA

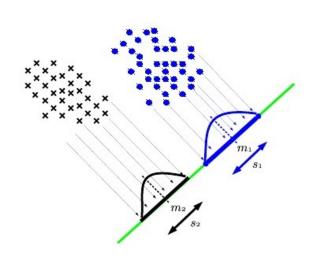
$$\mathbf{x}_{i} = \mathbf{W}\mathbf{y}_{i} + \mathbf{\varepsilon}_{i}$$



s.t.
$$y_i \sim \sim$$

Motivation If N < F, the latent variables will offer a more parsimonious representation.

Linear Discriminant Analysis



• Motivation-

Minimizing within-class variance i.e, $s_1 + s_2$ and maximizing between-class variance i.e, $(m_1 - m_2)^2$

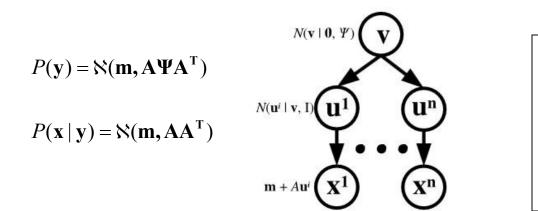
This is equivalent to finding a projection

 $\mathbf{W}_{0} = \underset{\mathbf{W}}{\operatorname{arg\,max}} \ \frac{\mathbf{W}^{\mathrm{T}} \mathbf{S}_{b} \mathbf{W}}{\mathbf{W}^{\mathrm{T}} \mathbf{S}_{w} \mathbf{W}}$

• This can be adopted as

$$\mathbf{W}_{0} = \underset{\mathbf{W}}{\operatorname{arg\,min}} tr[\mathbf{W}^{\mathsf{T}}\mathbf{S}_{w}\mathbf{W}] \quad , s.t. \ \mathbf{W}^{\mathsf{T}}\mathbf{S}_{b}\mathbf{W} = \mathbf{I}$$

• Probabilistic LDA is given as a generative model



• Achilles' heel of PLDA:

Every class has to have same number of data points.

```
-Unrealistic!!!
```

Locality Preserving Projections

• Motivation-

Finding a projection **W** such that locality of original samples is preserved in latent space.

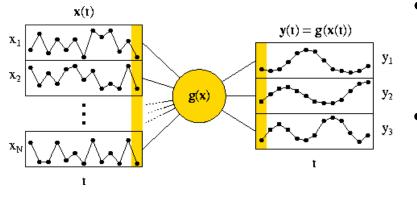
• This is equivalent to

$$\mathbf{W}_{0} = \underset{\mathbf{W}}{\operatorname{arg\,min}} tr[\mathbf{W}^{\mathsf{T}}\mathbf{X}\mathbf{L}\mathbf{X}^{\mathsf{T}}\mathbf{W}] \quad , s.t. \ \mathbf{W}^{\mathsf{T}}\mathbf{X}\mathbf{D}\mathbf{X}^{\mathsf{T}}\mathbf{W} = \mathbf{I}$$

$$\mathbf{U} = [u_{ij}] = \left[\exp\left\{ -\frac{\left\| x_i - x_j \right\|^2}{\gamma} \right\} \right] \qquad \mathbf{D} = diag(\mathbf{U}\mathbf{1}) \qquad \mathbf{L} = \mathbf{D} - \mathbf{U}$$

- Here, **U** represents the Heat kernel. This is used to represent locality.
- W_{ij} results a heavy penalty if the data points are mapped far apart.
- No probabilistic version was proposed.

Slow Feature Analysis



Motivation-Finding a projection W such that features of the output signal varies slowest with time.

This is equivalent to

$$\mathbf{W}_{0} = \underset{\mathbf{W}}{\operatorname{arg\,min}} tr[\mathbf{W}^{\mathsf{T}} \dot{\mathbf{X}} \mathbf{X}^{\mathsf{T}} \mathbf{W}] \quad , s.t. \ \mathbf{W}^{\mathsf{T}} \mathbf{S} \mathbf{W} = \mathbf{I}$$

 $\dot{\mathbf{X}} = [\mathbf{x}_j] = [\mathbf{x}_j - \mathbf{x}_{j-1}]$

First time derivative Matrix

• The generative model is an one-step linear Gaussian system

$$P(\mathbf{x}_{t} | \mathbf{y}_{t}, \mathbf{W}, \sigma_{X}) = \aleph \left(\mathbf{W}^{-1} \mathbf{y}_{t}, \sigma_{X}^{2} \mathbf{I} \right)$$
$$p(\mathbf{y}_{t} | \mathbf{y}_{t-1}, \lambda_{1:N}, \sigma_{1:N}^{2}) = \prod_{n=1}^{N} p(y_{n,t} | y_{n,t-1}, \lambda_{n}, \sigma_{n}^{2})$$

Introduction

• Overview of CA techniques

- Principal Component Analysis (PCA)
- Linear Discriminant Analysis (LDA)
- Locality Preserving Projections (LPP)
- Slow Feature Analysis (SFA)
- Steps to Unification

Unified Maximum Likelihood framework

- Defining priors and Markov random fields
- Maximum likelihood solution

Unified Expectation Minimization framework

- Generalizing the prior
- Expectation step
- Minimization step

• Experiments

Steps to Unification

- Unified Maximum Likelihood Framework
 - A linear generative model of observation is assumed with white Gaussian noise over latent space
 - Use Markov Random Fields to calculate the prior
 - MRF encapsulates connectivity of latent variables in CA's
 - Projection directions (W) for CA's are engendered by ML estimation of joint PDF P(X | Ψ)
- Unified Expectation Minimization framework
 - Generalize the prior for arbitrary number of MRFs
 - Using mean-field approximation calculate the marginal distribution
 - Execute the expectation and maximization steps of EM algorithm respectively

Steps to Unification

- Unified Maximum Likelihood Framework
 - A linear generative model of observation is assumed with white Gaussian noise over latent space
 - Use Markov Random Fields to calculate the prior
 - MRF encapsulates connectivity of latent variables in CA's
 - Projection directions (W) for CA's are engendered by ML estimation of joint PDF P(X | Y)
- Unified Expectation Minimization framework
 - Generalize the prior for arbitrary number of MRFs
 - Using mean-field approximation calculate the marginal distribution
 - Execute the expectation and maximization steps of EM algorithm respectively

Introduction

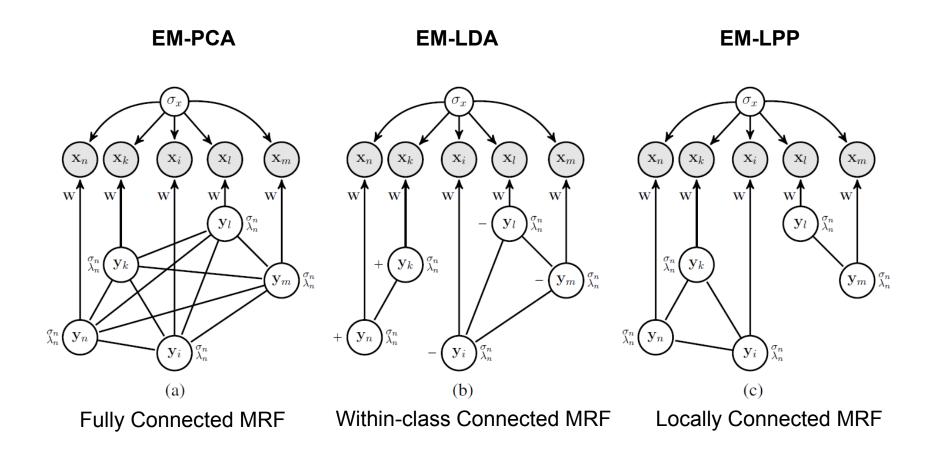
• Overview of CA techniques

- Principal Component Analysis (PCA)
- Linear Discriminant Analysis (LDA)
- Locality Preserving Projections (LPP)
- Slow Feature Analysis (SFA)
- Steps to Unification
- Unified Maximum Likelihood framework
 - Calculation of priors
 - Maximum likelihood solution

Unified Expectation Minimization framework

- Generalizing the prior
- Expectation step
- Minimization step
- Experiments
- Discussions

MRFs and Latent Connectivity



Calculation of priors

• The unified formula for the prior of component analysis methods is of the form

$$P(\mathbf{Y} \mid \boldsymbol{\beta}) \propto \exp\left\{-\frac{1}{2}\left(tr\left[\boldsymbol{\Lambda}^{(1)}\mathbf{Y}\mathbf{B}^{(1)}\mathbf{Y}^{\mathrm{T}}\right] + tr\left[\boldsymbol{\Lambda}^{(2)}\mathbf{Y}\mathbf{B}^{(2)}\mathbf{Y}^{\mathrm{T}}\right]\right)\right\}$$

- **B**⁽¹⁾and **B**⁽²⁾ are functional form of potentials which encapsulate the latent covariance connectivity of neighborhoods.
- $\Lambda^{(1)}$ and $\Lambda^{(2)}$ are functions of parameters of MRF $\beta = \{\lambda_{1:N}, \sigma_{1:N}^2\}$

	ΡϹΑ	LDA	LPP	SFA
B ⁽¹⁾	I	$\mathbf{M}_{c} = \mathbf{I} - diag\left[\mathbf{C}_{c}\right]$	$\mathbf{L} = \mathbf{D}^{-1}\mathbf{L}$	$\mathbf{K}_1 = \mathbf{P}_1 \mathbf{P}_1^{\mathrm{T}}$
B ⁽²⁾	$\mathbf{M} = -\frac{1}{T}11^{\mathrm{T}}$	$\mathbf{M}_{t} = \mathbf{I} + \mathbf{M}$	$\mathbf{D} = \mathbf{I}$	Ι

Maximum Likelihood (ML) solution

• If we consider the linear generative model,

$$\mathbf{x}_{i} = \mathbf{W}^{-1}\mathbf{y}_{i} + \boldsymbol{\varepsilon}_{i} , s.t. \quad \boldsymbol{\varepsilon}_{i} \sim \mathbf{I}$$
$$\Rightarrow P(\mathbf{x}_{t} | \mathbf{y}_{t}, \mathbf{W}, \sigma_{x}^{2}) = \aleph(\mathbf{W}^{-1}\mathbf{y}_{t}, \sigma_{x}^{2})$$

• Thus, the likelihood will be

$$P(\mathbf{X} | \mathbf{\Psi}) = \int \prod_{t=1}^{T} P(\mathbf{x}_{t} | \mathbf{y}_{t}, \mathbf{W}, \sigma_{x}^{2}) P(\mathbf{Y} | \beta) d\mathbf{Y}$$

• Maximum likelihood solution for our model gives

 $\mathbf{I} = \mathbf{\Lambda}^{(1)} \mathbf{W} \mathbf{X} \mathbf{B}^{(1)} \mathbf{X}^{\mathrm{T}} \mathbf{W}^{\mathrm{T}} + \mathbf{\Lambda}^{(2)} \mathbf{W} \mathbf{X} \mathbf{B}^{(2)} \mathbf{X}^{\mathrm{T}} \mathbf{W}^{\mathrm{T}}$

• W simultaneously diagonalises $XB^{(1)}X^T$ and $XB^{(2)}X^T$.

Properties of ML solution

- W is independent of setting of λ_n , if they are all different.
- If $0 < \lambda_n < 1$, then larger values of λ_n corresponds to
 - More expressive PCA
 - More discriminant LDA
 - More local LPP
 - Slower latent variables in SFA
- To get the exact equivalence, we moreover need scaling.
 - Assuming, $\sigma_n^2 = 1 \lambda_n^2$ scales LDA, SFA and LPP.
 - In PCA, σ_n should be kept analogous to eigenvalues of covariance matrix.

Introduction

• Overview of CA techniques

- Principal Component Analysis (PCA)
- Linear Discriminant Analysis (LDA)
- Locality Preserving Projections (LPP)
- Slow Feature Analysis (SFA)
- Steps to Unification

Unified Maximum Likelihood framework

- Defining priors and Markov random fields
- Maximum likelihood solution

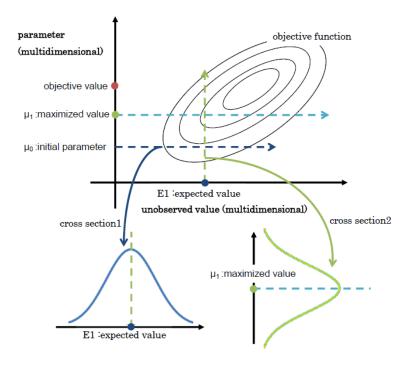
• Unified Expectation Minimization framework

- Generalizing the prior
- Expectation step
- Minimization step

• Experiments

Expectation-Maximization

 Iterative method for parameter (θ) estimation where you have missing data (Y).



- Starting from an initial guess, each iteration consists
 - An Expectation (E) step
 where it computes expectation of log likelihood over pre estimated
 parameters and available data

 $Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{i}) \triangleq P(\mathbf{X}, \mathbf{Y} | \boldsymbol{\theta}) | \mathbf{X}, \boldsymbol{\theta}^{i}]$

A Maximization (M) step
 where parameters are updated

$$\boldsymbol{\theta}^{i+1} = \arg \max_{\boldsymbol{\theta}} Q(\boldsymbol{\theta}, \boldsymbol{\theta}^i)$$

Generalizing prior

• The prior is defined as product of \mathcal{M} MRFs as

$$P(\mathbf{Y}|\beta) = \prod_{\mu \in \mathcal{M}} \frac{1}{Z^{\mu}} \exp\left\{Q^{\mu}\right\}$$
$$Q^{\mu} = -\sum_{n=1}^{N} \frac{f_{\mu}(\lambda_{n})}{2\sigma_{n}^{2}} \frac{1}{c} \sum_{i \in \omega_{i}} \frac{1}{c_{j}^{\mu}} \sum_{j \in \omega_{j}^{\mu}} (y_{n,i} - \phi_{\mu}(\lambda_{n})y_{n,j})^{2}$$

 If the linear generative model is assumed, using mean-field approximation we can write

$$P(\mathbf{Y}|\beta) \approx \prod_{i=1}^{T} P(\mathbf{y}_{i}|\mathbf{m}_{i}^{\mathcal{M}}, \beta^{\mathcal{M}}) = \prod_{i=1}^{T} \aleph(\mathbf{m}_{i}^{\mathsf{M}}, \Sigma^{\mathsf{M}})$$

- $\mathbf{m}_{i}^{\mathsf{M}}$ depends on model specific connectivity and depends on $E[\mathbf{y}_{i}]$ • Σ^{M} depends on $\beta = \{\lambda_{1:N}, \sigma_{1:N}^{2}\}$
- Linear generative model is assumed.

$$\mathbf{x}_i = \mathbf{W} \mathbf{y}_i + \epsilon_i, \epsilon_i \sim \mathcal{N}(0, \sigma_x^2)$$

Expectation Step

 Compute the first order moment on the latent posterior which returns a Gaussian distribution.

$$P(\mathbf{y}_i | \mathbf{x}_i, \mathbf{m}_i^{\mathcal{M}}, \boldsymbol{\Psi}^{\mathcal{M}}) = \mathcal{N}(\mathbf{y}_i | (\mathbf{W}^T \mathbf{x}_i + \boldsymbol{\Sigma}^{\mathcal{M}^{-1}} \mathbf{m}_i^{\mathcal{M}}) \mathbf{A}, \sigma_x^{\mathcal{M}^2} \mathbf{A})$$

• It in turn gives us, expectation terms for missing data

$$\mathbb{E}^{\mathcal{M}}[\mathbf{y}_{i}] = \mathbf{y}_{i} | (\mathbf{W}^{T}\mathbf{x}_{i} + \boldsymbol{\Sigma}^{\mathcal{M}^{-1}}\mathbf{m}_{i}^{\mathcal{M}})\mathbf{A}$$

$$\overset{\text{mean}}{\mathbb{E}^{\mathcal{M}}}[\mathbf{y}_{i}\mathbf{y}_{i}^{T}] = \sigma_{x}^{\mathcal{M}^{2}}\mathbf{A} + \mathbb{E}[\mathbf{y}_{i}]\mathbb{E}[\mathbf{y}_{i}]^{T}$$

$$\overset{\text{covariance}}{\overset{\text{covariance}}{\overset{\text{mean}}{\overset{\text{man}}{\overset{\text{mean}}}{\overset{\text{mean}}}{\overset{\text{mean}}{\overset{\text{mean}}}{\overset{\text{mean}}{\overset{\text{mean}}}{\overset{\text{mean}}}{\overset{\text{mean}}}}}}}}}}}}}}}}}}$$

Maximization Step

• By applying mean-field approximation the data-likelihood can be factorized as,

$$P(\mathbf{Y}, \mathbf{X} | \Psi^{\mathcal{M}}) \approx \prod_{i=1}^{T} P(\mathbf{x}_i | \mathbf{y}_i, \theta^{\mathcal{M}}) P(\mathbf{y}_i | \mathbf{m}_i^{\mathcal{M}}, \beta^{\mathcal{M}})$$

• Thus, the maximization term becomes

$$\theta^{\mathcal{M}} = \arg \max \left\{ \sum_{i=1}^{T} \int_{\mathbf{y}_{i}} P(\mathbf{y}_{i} | \mathbf{x}_{i}, \mathbf{m}_{i}^{\mathcal{M}}, \Psi^{\mathcal{M}}) \log P(\mathbf{x}_{i} | \mathbf{y}_{i}, \theta^{\mathcal{M}}) d\mathbf{y}_{i} \right\}$$

$$\beta^{\mathcal{M}} = \arg \max \left\{ \sum_{i=1}^{T} \int_{\mathbf{y}_{i}} P(\mathbf{y}_{i} | \mathbf{x}_{i}, \mathbf{m}_{i}^{\mathcal{M}}, \Psi^{\mathcal{M}}) \log P(\mathbf{y}_{i} | \mathbf{m}_{i}^{\mathcal{M}}, \beta^{\mathcal{M}}) d\mathbf{y}_{i} \right\}$$

• This gives us closed form update rules for model parameters.

Features of EM solutions

- EM-PCA
 - Equivalent to PPCA when $\lambda_n = 0$ and $\sigma_n = 1$
 - Generally shifted by a mean field
 - Models per dimension variance, that PCA cannot
 - Complexity is O(TNF), unlike $O(T^3)$ for deterministic PCA (F,N<<T)
- EM for SFA
 - Undirected MRF interpretation
 - Autoregressive SFA
 - Can learn bi-directional latent dependencies
 - Directed Dynamic Bayesian Network interpretation
 - A direction specific model of our EM model with directed MRF prior
- Probabilistic LDA
 - Only need to estimate likelihood of each test datum in each class
 - Probabilistic nature can be exploited to infer the most likely class assignment of unseen data

Introduction

• Overview of CA techniques

- Principal Component Analysis (PCA)
- Linear Discriminant Analysis (LDA)
- Locality Preserving Projections (LPP)
- Slow Feature Analysis (SFA)
- Steps to Unification

Unified Maximum Likelihood framework

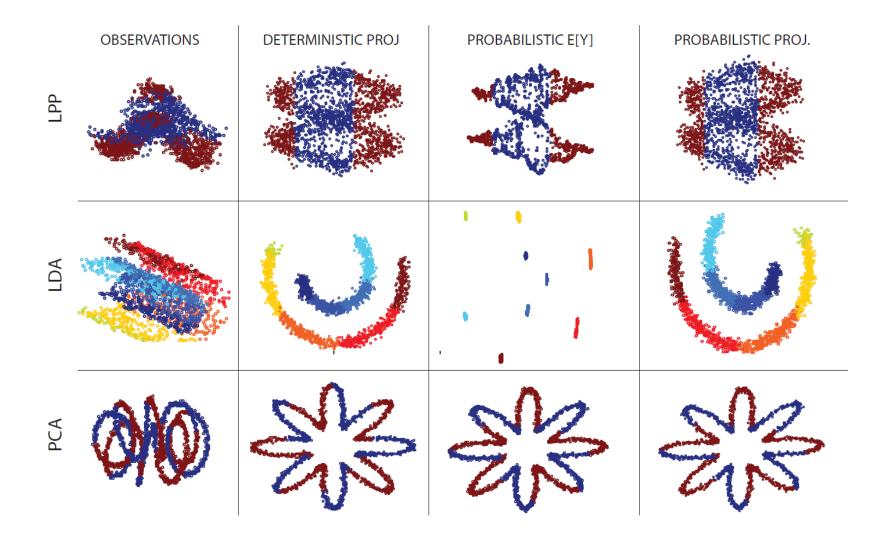
- Defining priors and Markov random fields
- Maximum likelihood solution

Unified Expectation Minimization framework

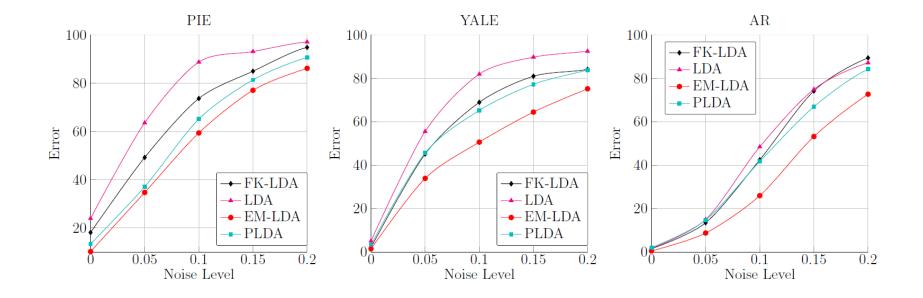
- Generalizing the prior
- Expectation step
- Minimization step

• Experiments

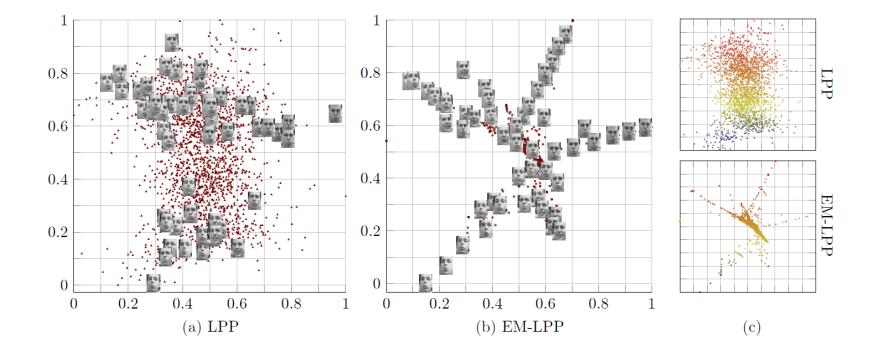
Proof of equivalence



Face recognition: EM-LDA



Face Visualization: EM-LPP



Introduction

• Overview of CA techniques

- Principal Component Analysis (PCA)
- Linear Discriminant Analysis (LDA)
- Locality Preserving Projections (LPP)
- Slow Feature Analysis (SFA)
- Steps to Unification

Unified Maximum Likelihood framework

- Defining priors and Markov random fields
- Maximum likelihood solution

Unified Expectation Minimization framework

- Generalizing the prior
- Expectation step
- Minimization step

• Experiments

Discussions(1)

- All component analysis methods are constraint based subspace projection
- Subspace methods can be modeled probabilistically
 - By defining a prior as product of MRFs having different latent neighborhood connectivity
 - Estimating maximum likelihood depending on a linear model with white Gaussian noise
- An EM algorithm for each of the subspace method can be proposed
 - Use of mean field approximation and MRF priors give us the updates

Discussions(2)

- EM variants of these algorithms are compatible with state-ofart
- Most variants are less computationally complex
- This method models variance per dimension
- Efficient CA's can be generated just by varying prior MRF connectivity
- Experiments show the EM variants are more immune to noise in data and also more efficient

Questions?

Thank you...