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Component analysis is a method of projecting data to subspace

Subspace is a “manifold” (surface) embedded in a higher 
dimensional vector space

Data (e.g. images) are represented as points in a high dimensional 
vector space

Constraints in the natural world and the extraction process causes the 
points to “live” in a lower dimensional subspace

Dimensionality reduction
Achieved by extracting ‘important’ features from the dataset 
 Learning

Desirable to avoid the “curse of dimensionality” in pattern recognition 
 Classification

Examples- PCA, LDA, ICA, LPP, SFA, Kernel methods….

What is Component Analysis?
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Projection to Subspaces
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• Selection of W
– Orthonormal bases

• Y is simply projection of X onto W: Y = WT X

– General independent bases
• If N=F, Q is obtained by solving linear system

• If N<F, have to do some optimization (e.g., least squares)

• Different criterion for selecting W leads to different subspace methods

-Motivation for unification

XFxT WFxN YNxT

≈

xi ≈ b=1..Nwbi yb

Sample data set

or 

observation space

Projection

matrix

Component set

or 

latent space
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Principal Component Analysis
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• Motivation-
If N < F, the latent variables will offer a more 
parsimonious representation.

Algebra:

Orthogonal Transform

Geometry:

Axis Rotation
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• Equivalent optimization problem

• Probabilistic PCA
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Linear Discriminant Analysis

14 August 
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• Motivation-
Minimizing within-class variance i.e,           and 
maximizing between-class variance i.e, 

• This is equivalent to finding a projection

• This can be adopted as
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• Probabilistic LDA is given as a generative model

( ) ( )P  T
y m,AΨA

( | ) ( )P  T
x y m,AA

• Achilles’ heel of PLDA:

Every class has to have same
number of data points.

-Unrealistic!!!
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Locality Preserving Projections
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• Motivation-
Finding a projection W such that locality of original samples is preserved in 
latent space.

• This is equivalent to

• Here, U represents the Heat kernel. This is used to represent locality.

• results a heavy penalty if the data points are mapped far apart.

• No probabilistic version was proposed.

L = D-U
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Slow Feature Analysis
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• Motivation-
Finding a projection W such that features of 
the output signal varies slowest with time.

• This is equivalent to

0 arg min [ ] , . .Ttr s t 
..
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j j jX x x x First time derivative Matrix

• The generative model is an one-step linear Gaussian system
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Unified Maximum Likelihood Framework
A linear generative model of observation is assumed with white 
Gaussian noise over latent space

Use Markov Random Fields to calculate the prior

• MRF encapsulates connectivity of latent variables in CA’s

Projection directions (W) for CA’s  are engendered by ML 
estimation of joint PDF 

Steps to Unification
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Unified Expectation Minimization framework
Generalize the prior for arbitrary number of MRFs

Using mean-field approximation calculate the marginal distribution

Execute the expectation and maximization steps of EM algorithm 
respectively

Steps to Unification
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Unified Maximum Likelihood framework
Calculation of priors

Maximum likelihood solution

Roadmap
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MRFs and Latent Connectivity

3 March 2015 Unifying Probabilistic Component Analysis 16

Fully Connected MRF Within-class Connected MRF Locally Connected MRF

EM-LDAEM-PCA EM-LPP
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The unified formula for the prior of component analysis methods is of the 
form

and      are functional form of potentials which encapsulate the latent 
covariance connectivity of neighborhoods. 

and       are functions of parameters of MRF 

Calculation of priors
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If we consider the linear generative model,

Thus, the likelihood will be

Maximum likelihood solution for our model gives

W simultaneously diagonalises and

Maximum Likelihood (ML) solution
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W is independent of setting of    , if they are all different.

If             , then larger values of    corresponds to

More expressive PCA

More discriminant LDA

More local LPP

Slower latent variables in SFA

To get the exact equivalence, we moreover need scaling.
Assuming,                   scales LDA, SFA and LPP.

In PCA,     should be kept analogous to eigenvalues of covariance matrix.

Properties of ML solution
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Unified Expectation Minimization framework
Generalizing the prior

Expectation step

Minimization step

Roadmap
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Iterative method for parameter (   ) estimation where you have 
missing data (  ).

Expectation-Maximization
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Starting from an initial guess, 
each iteration consists

An Expectation (E) step

where it computes expectation of 
log likelihood over pre estimated 
parameters and available data

A Maximization (M) step

where parameters are updated 



Y

 ( ) log |Q E P  
i i

Yθ,θ X,Y | θ X,θ
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The prior is defined as product of      MRFs as

If the linear generative model is assumed, using mean-field 
approximation we can write

depends on model specific connectivity and depends on        

depends on                      

Linear generative model is assumed.

Generalizing prior
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Compute the first order moment on the latent posterior which 
returns a Gaussian distribution.

It in turn gives us, expectation terms for missing data

Expectation Step
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By applying mean-field approximation the data-likelihood can 
be factorized as,

Thus, the maximization term becomes

This gives us closed form update rules for model parameters.

Maximization Step
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EM-PCA
Equivalent to PPCA when

Generally shifted by a mean field

Models per dimension variance, that PCA cannot 

Complexity is              , unlike           for deterministic PCA (F,N<<T)           

EM for SFA
Undirected MRF interpretation
• Autoregressive SFA

• Can learn bi-directional latent dependencies

Directed Dynamic Bayesian Network interpretation
• A direction specific model of our EM model with directed MRF prior

Probabilistic LDA
Only need to estimate likelihood of each test datum in each class

Probabilistic nature can be exploited to infer the most likely class 
assignment of unseen data

Features of EM solutions
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Experiments

Roadmap
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Proof of equivalence
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Face recognition: EM-LDA
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Face Visualization: EM-LPP
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Discussions

Roadmap
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All component analysis methods are constraint based subspace 
projection

Subspace methods can be modeled probabilistically
By defining a prior as product of MRFs having different latent 
neighborhood connectivity

Estimating maximum likelihood depending on a linear model with white 
Gaussian noise

An EM algorithm for each of the subspace method can be 
proposed

Use of mean field approximation and MRF priors give us the updates

Discussions(1)
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EM variants of these algorithms are compatible with state-of-
art 

Most variants are less computationally complex

This method models variance per dimension

Efficient CA’s can be generated just by varying prior MRF 
connectivity

Experiments show the EM variants are more immune to noise 
in data and also more efficient

Discussions(2)
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Questions?
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Thank you…
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