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Overview
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Motivation

Problem Description

State-of-art techniques:

•Isomap

•Local Linear Embedding (LLE)

•Laplacian Eigenmap

Limitations:

•Non-convexity

•Complex geometry

•Noise

Discussion: Part I

Curvature Adaptive LLE

•Theory

•Experiments

Discussion: Part II



MOTIVATION
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Why Dimensionality Reduction?
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3-dimensional data points 

on Swiss roll

Dimensionality Reducing 

Algorithm

2-dimensional embedding 

of Swiss roll
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Dimensionality Reduction Techniques
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Dimensionality Reducing 

Algorithm

Linear Methods

• PCA

• MDS

Non-linear Methods

• Isomap

• LLE

• Laplacian 

Eigenmap
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Why Non-linear Dimensionality Reduction?
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Original data points Principal Components Low dimensional embedding
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Why Non-linear Dimensionality Reduction?
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PROBLEM DESCRIPTION
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Non-linear dimensionality reduction (NLDR)
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Input

• Collection of N data points in  • Collection of N data points in  

Axiom

• Data points are sampled from some underlying 
non-linear manifold given by

• Data points are sampled from some underlying 
non-linear manifold given by

Output

• Find d( << D) dimensional embedding                     
that gives a good approximation of f

• Find d( << D) dimensional embedding                     
that gives a good approximation of f

NLDR
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STATE-OF-ART TECHNIQUES
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ISOMAP, LOCAL LINEAR EMBEDDING (LLE)
AND LAPLACIAN EIGENMAP
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“Curves can give the shortest distance.”
Steps:

Build graph from K Nearest Neighbors.

Estimate geodesic distances between points using 
shortest path algorithm.

Run MDS on the data.

Problems:

Assumes dataset is convex and uniformly sampled.

Faces problem with noise.

Sensitive to k.

Slow.

ISOMAP
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Experiments: Swiss Roll
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k=4 k=7

k=10 k=12

N=2000
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“Think locally, Fit globally.”
Steps:

Build graph from k Nearest Neighbors.

Determine reconstruction weights by assuming 
neighborhoods are locally linear and insuring 
invariance.

Determine embedding by minimizing the 
reconstruction error term using eigen-solver.

Problems:

Sensitive to noise and k.

Fails abruptly with complex geometry and noise.

LLE
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Experiments: Swiss Roll
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k=5 k=8

k=11 k=14

N=2000
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“Neighbors are normally distributed around 
you.”
Steps:

Build graph from k Nearest Neighbors.

Construct weighted adjacency matrix with Gaussian 
kernel.

Compute embedding from by minimizing                       
of normalized graph Laplacian f.

Problems:

Assumes convexity of neighborhood and uniform 
sampling.

Sensitive to k.

Laplacian Eigenmap
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Experiments: Swiss Roll
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k=3 k=7

k=11 k=15

N=2000

sigma=1



LIMITATIONS
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Non-convexity: Swiss hole
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LLE (k = 9)

Swiss hole

ISOMAP (k =7)

Laplacian (k = 8)
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Non-uniform Geometry: Twin peaks
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Twin Peaks

ISOMAP (k =7)

LLE (k =7)

Laplacian (k =7)
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Noise: Helix
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Helix with Gaussian noise

(Noise=0.10)

ISOMAP (k =10)

LLE (k =10)

Laplacian (k =9)
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ISOMAP LLE Laplacian

Very slow Fast Faster

Distance preserving Topology preserving Topology preserving

Very poor in handling 
non-convexity

Very poor in handling 
non-convexity

Poor in handling 
non-convexity

May deal with curvature 
variation

Deals poorly with curvature 
variation

Deals with curvature 
variation better

Medium sensitivity to noise Very sensitive to noise Less sensitive to noise

Average level of 
dependence on k

Too much dependent on k Less dependent on k

Discussion: Part I
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CURVATURE ADAPTIVE LLE
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Theory: Curvature
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In 2 dimension for curves

In 3 dimension for surfaces
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Theory: Gaussian & Mean Curvature
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• Gaussian Curvature

• Mean Curvature
1

2  1 2
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Mӧbius strip
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Capturing local geometry:
Calculate principal and mean curvature, H and K, using the area and angle of 
neighboring triangles obtained from data mesh

Adapting Neighborhood:
For each data point consider other data points as neighboring points if their H 
and K values are comparable with the data point.

H and K values are comparable if they are inside certain deviation from the 
corresponding value. This deviation is decided from H and K variation of total 
curve.

Also check             i.e, variation of K and H in different directions to finally 
identify the region where the two considered data points might occur in 
manifold.

Apply LLE on this structure.

Theory: Algorithm
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Experiments: Swiss Roll
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Experiments: S curve
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k=12k=10

Original LLE Curvature Adaptive LLE
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Experiments: Twin peaks
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Curvature Adaptive LLE
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Experiments: Mӧbius Strip
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Original LLE

Curvature Adaptive LLE

k=12

k=14

k=13

k=15

UNSTABLE
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Gives better embedding 
in the test cases.

Takes competitive 
operation time.

Gives unique stable 
solution where LLE fails 
or generate unstable 
solutions.

No theoretical guarantee, 
yet.

Heterogeneous 
neighborhood size may 
create challenge in the 
path of proof.

Probably would not work 
for non-convex surfaces 
like Swiss hole.

Discussion: Part II
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Hopes Worries
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Questions?

14 August 
2015
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14 August 
2015
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Thank you…


