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What's Next?

1. Multi-armed Bandits: A Practitioner’s View
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Sequential Decision Making
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Sequential Decision Making
under Incomplete Information: Multi-armed Bandits
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Sequential Decision Making
under Incomplete Information: Multi-armed Bandits

Medicine 1 Medicine 2 Medicine 3 Medicine K
cured —? cured —? cured —7 cured —7
Py : ps : [ - pg -

For the t-th patient (t < T) in the study

1. the doctor 7 chooses a Medicine A; € {1,...,K},

2. Observes a response Ry € {cured, not cured} such that
P(R; = cured|A; = a) = pzured.

Goal: Maximise the number of patients cured: Zt; R;:.
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A Fact Check

Multi-armed Bandits: A Practitioner’s Perspective

e What is the Algorithm?

e What is the Input?

e What is the Output?

e What are the sources of Randomness?
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A Fact Check

Multi-armed Bandits: A Practitioner’s Perspective

What is the Algorithm?
- The doctor or a digital assistant m
What is the Input?

- The sequence of observed responses from the patients

What is the Output?

- The sequence of chosen medicines by the algorithm
{A,....Ar}
What are the sources of Randomness?

- The medical conditions of the patients and their reactions to the
medicines, {Pa}5=1 (and a randomised algorithm )
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What's Next?

2. Data Privacy: DP Framework
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Data Privacy: e-Differential Privacy [pwork and Roth, 2014]

Information in input/database becomes private if it is
indistinguishable from the output of a query/algorithm.

[ #1 )
=
/ (G

QUERY + QUERY
RESULT #1

Outcome is the
Your Data ~ same with or
without

QUERY
QUERY RESULT #2

g _/
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Data Privacy: e-Differential Privacy [pwork and Roth, 2014]

Information in input/database becomes private if it is
indistinguishable from the output of a query/algorithm.

[ #1 )
=
/ (G

QUERY + QUERY
RESULT #1

Outcome is the
Your Data ~ same with or
without

QUERY

QUERY RESULT #2

P(n(DB + my data) = Out)
P(n(DB) = Out)

Image Courtesy: www.winton.com 5/34



Differential Privacy (DP)

Ingredients:
e Input space: X (with symmetric neighbouring relation ~)
e Output space: Y (with o-algebra of measurable events)

e Privacy level: € > O (lower is better)
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Differential Privacy (DP)

Ingredients:
e |nput space: X (with symmetric neighbouring relation ~)
e Output space: Y (with o-algebra of measurable events)
e Privacy level: € > O (lower is better)

Formulation:
A randomised algorithm .« : X — Y is e-differentially private if for all
neighbouring inputs x ~ x” € X and for all subsets of outputs O C Y, we get

P[.of (x) € 0] < e°P[. (') € O].
e Neighbouring relation ~ represents what is protected

e ¢-DP is the worst-case guarantee
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Differential Privacy (DP)

Ingredients:
e |nput space: X (with symmetric neighbouring relation ~)
e Output space: Y (with g-algebra of measurable events)
e Privacy level: € > O (lower is better)

Formulation:
A randomised algorithm .&f : X — Y is e-differentially private if for all
neighbouring inputs x ~ x’ € X and for all subsets of outputs O C Y, we get

P[ .o/ (x) € 0] < e°P[.«7 (x') € O].

e The slack on probability e€ quantifies the amount of protection

e The randomness in the algorithm ensures the privacy
6/34



Why should we use Differential Privacy?
Fundamental Properties of DP

e Robustness to Post-processing: If ./ is (€, §)-DP, f o .of is also
(e, 6)-DPforanyf:Y — Z.
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Why should we use Differential Privacy?
Fundamental Properties of DP

e Robustness to Post-processing: If ./ is (€, §)-DP, f o .of is also
(e, 6)-DPforanyf:Y — Z.

e Composition under Heterogeneity: If .<f; are (g;, 6;)-DP, aggregation
of their outputs (., . . ., i) is (3_;€j, >_; 6;)-DP.

e Group Privacy: If two inputs x and x” has t changes between them, a
private algorithm .of satisfies (te, te'¢5)-DP for them.

e Protection against Side-knowledge: If an attacker has prior knowledge
Pprior(X) and computes Pposterior(X) after observing .7 (x) from an
€-DP algorithm, Pposterior (X) still maintains the e slack from Ppyior ().
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A Fact Check

Differential Privacy as a Data Privacy Framework

e What is privacy?

e What does DP definition encode?

e What are the benefits of using DP?
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A Fact Check

Differential Privacy as a Data Privacy Framework

e What is privacy?
- Indistinguishability from the mass in the eyes of a third-party.

e What does DP definition encode?

- The idea of indistinguishability, the need of randomness for that,
and the worst case loss of privacy for everyone involved.

e What are the benefits of using DP?

- Flexible use of privatised data in future, linear mixture of
multiple privacy levels and private mechanisms, and protection
under prior information about the algorithm/individuals.
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What's Next?

3. Private Bandits: Fundamental Definitions
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Sequential Decision Making: Data Generation
Data Privacy in Bandits

Response Distributions
of Medicines on Patients

& = {P(RIa)}*_, The Bandit Game: For the t-th patient

(t £ T) in the study

Observed 1. the doctor m chooses a
Responses Medicine A; € {1,..., K},
2. Observes a response
Choice of R: € {cured, not cured } such
bzl that P(R; = cured|A; = a) =
pzured'
Doctor/

Algorithmic Assistant
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Sequential Decision Making: Data Generation
Data Privacy in Bandits

Response Distributions
of Medicines on Patients
& = {P(RIa)}*_,

Input to

Observed Responses: R = {Ry,...,Rr}

Observed °
Responses Output of
Decisions: AT = {A;, ..., Ar}
Choice of
Medicines Data Privacy in Bandits
A patient t wants to keep her response R;
Doctor/ to a medicine A; private.

Algorithmic Assistant
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Private Bandits: The History

Plethora of Claims, Plethora of Contradictions

1. DP on the sequence (Sequential DP)
[Mishra and Thakurta, 2015, Tossou and Dimitrakakis, 2017]:

2. DP at every instance t < T (Instantaneous DP)
[Tossou and Dimitrakakis, 2016, Shariff and Sheffet, 2018]:

P.(asr | 11, ..., [ ri) < ef Pu(awq |, ..., ..., r)

3. DP against external algorithm (Local DP) [Gajane et al., 2017]:

P(input | re) < e P(input | r})
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Privacy in Sequential Decision Making
Private Multi-armed Bandits: Differential Privacy

All Possible
Responses

Observed
Responses

Decision of
Medicines

Generalising the Input

Make patient t's all possible responses

xt=[R1,...,Rf]

to all the A medicines private.

Generalised input: X" = {X, ..

. Xr}
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Privacy in Sequential Decision Making
Private Multi-armed Bandits: Global DP [Basu et al., 2020]

All Possible
Responses

Observed
Responses

Decision of
Medicines

Ri—1

e d
Output: AT
Algorithm: 7
My data: X;

€-Global DP

Set of
"™ \ Decisions

Possible responses my
of T patients data

f
Py ( el
Decisions

Possible responses
of T patients

<ef
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Privacy in Sequential Decision Making
Private Multi-armed Bandits: Global DP [sasu et al., 2020]

€-(global) DP for Bandits
A bandit algorithm 7 satisfies e-DP if:
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Privacy in Sequential Decision Making
Private Multi-armed Bandits: Global DP [sasu et al., 2020]

€-(global) DP for Bandits
A bandit algorithm 7 satisfies e-DP if:

The Unification of Existing Definitions:

€-(global) DP for bandits = e-Sequential DP

e-(global) DP for bandits = 2e-Instantaneous DP

e-Instantaneous DP =—> Te-(global) DP for bandits

€-local DP => e-(global) DP for bandits

13/34



Privacy in Sequential Decision Making
Private Multi-armed Bandits: Local DP

€-Local DP
All Possible @ @
Observed
Responses P (

responses

Possible responses my
of T patients data

(Observed
P

Possible responses
Observed

responses |of T patients
Responses
<ef
Decision of
o ——»| Local DP = Global DP
Medicines

while not constraining algorithm .

(Post-processing Property of DP).
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What did We Learn?

What is the input for private bandit algorithm?

What is the output for private bandit algorithm?

What is the difference between local DP and other setups?

What is the benefit of aiming for e-global DP?
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What did We Learn?

What is the input for private bandit algorithm?
- All possible generated responses of all the T patients against all
the K decisions X” = {X;, ..., Xr}.
What is the output for private bandit algorithm?
- All the decisions for T patients AT = {A,, ..., Art.

What is the difference between local DP and other setups?
- In other DPs, the individual has to believe in the centralised
algorithm. Local DP keeps the data private from individual level.
What is the benefit of aiming for e-global DP?

- It provides a unified definition for privacy in bandits and
satisfying this definition provides stronger guarantees than
existing definitions.
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What's Next?

4. Multi-armed Bandits: A Designer’s View
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Sequential Decision Making
under Incomplete Information: Multi-armed Bandits

Distribution 1 Distribution 2 Distribution 3 Distribution K
prcward =7 prcward =7 preward =7 prcward =7
1 ’ p) ’ 3 ’ K ’

Inthe t-thstep (t€ {1,...,T})

1. the algorithm @ chooses a distribution A; € {1, ..., K},

2. Observes a reward R; € R such that Ry ~ pZ‘“;W&rd_

o e . T
Goal: Maximise the observed cumulative reward: ZH R;.
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Value of a Bandit Algorithm

Expected Cumulative Reward: A Theoretically Malleable Goal

e Maximise cumulative reward ZtT_1 Rt
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Value of a Bandit Algorithm

Expected Cumulative Reward: A Theoretically Malleable Goal

o e . T .
e Maximise cumulative reward ZH R: — arandom variable
e Maximise expected cumulative reward or value of m:
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Value of a Bandit Algorithm
Expected Cumulative Reward: A Theoretically Malleable Goal

e Maximise cumulative reward ZtT_1 R: — arandom variable
e Maximise expected cumulative reward or value of m:

;
Ven(T) £ Eg [Z Re| A ~ n]

t=0
K T (the indicator
= Z Eqe Z Ra, X 1(Ar=a) allows the
= = ———
e = Arm a is played sum over a)
Expected reward from arm a by time T
K T K
S REN DITOEE] PES D et (1 %
a=1 t=1 a=1

Expected #draws of a by T
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Performance Metric Under Incomplete Information
Regret

Regret Regg (T)
£ Value of Optimal Algorithm with Full Information

— Value of AIgorithm 7 with Incomplete Information
=Tu* Z E. [N"] Ha
K
[N‘;] (L™ — ua) (since, T= Z E. [N‘;] )
a=1

Expected number of time decision a is taken

X Expected suboptimality of arm a (A,)
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Two Faces of a Bandit: Exploration and Exploitation

Pure Exploration
Take each decision uniformly and
accumulate empirical knowledge.

Pure Exploitation

Take the decision with maximum
empirical reward as per present
knowledge.
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Two Faces of a Bandit: Exploration and Exploitation

Pure Exploration
Take each decision uniformly and
accumulate empirical knowledge.

Pure Exploitation

Take the decision with maximum
empirical reward as per present
knowledge.

The Exploration-exploitation Trade-off

Exploration and exploitation should be adapted on-the-go to achieve the
optimal regret.
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Hardness of a Bandit Problem
Lower Bounds on Regret

Minimax Regret

Regl’\"/ﬁnimax(T) = mnin max Reg(m, &, T)

e The best achievable regret in the worst-case scenario.

e The lower bound for non-private case is /(K — 1)T
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Hardness of a Bandit Problem
Lower Bounds on Regret

Bayesian Minimax Regret

In Bayesian setup, a prior distribution Q over environments & is assumed.

Retpnye (0 T,Q) £ [ Rea(n, &, 7)d0(8).
gT
The Bayesian minimax regret is the worst possible regret over all priors Q:
* A H
RegBayes(T) =min mgx ]gT Reg(m, &, T)dQ(&)
= minmax Regp,yes(m T, Q).
s Q

e The best achievable regret for the worst-case prior.

e Lower bound for non-private case is /(K — 1)T.

21/34



Hardness of a Bandit Problem
Lower Bounds on Regret

Problem-dependent Regret
Regy (T) £ mnin Regg(m, T)

e The best achievable regret for a specific environment &.
e The lower bound for non-private case is

K

)

— % _logT2¢(&)logT.
= Dk (fallf*)
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What's Next?

5. Private Bandits: Regret Lower Bounds
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Preparing the Ingredients
The Probability Space of Observed Histories

e Random variable: Observed history 7 = {(A;, X,-)}’.T=1
e Measurable space, o-measure: (([K] x R)T, #([K] x R)")

e Probability measure: P;g induced by the algorithm m and
environment &

P’ £ Prg(47)

T
= |_| m(A¢| #—1) X fa (Xt
t=1 .
Chosen action depends only Observed reward depends

on algorithm and history only on the environment
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A Proof of Regret Lower Bounds
A Unified Framework

Step 1:
Choose two environments &; and &5.

They are the same except that the arm 1is optimal in &,
and arm i is optimal in &>.

Bad event for &: E = Ny(T) < T/2

Bad event for &: E¢ £ N;(T) > T/2
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A Proof of Regret Lower Bounds
A Unified Framework

Step 2:
Lower Bounding the Regrets of the Environments.

K
Reg(m, &, T) =) Eq [N2] (1" — o)
a=1
. T
2 Pl g (N(T) < T/2) (s — )
. T
=P, (E) 5(#1 — Hi)
T T ’
Reg(m, 62, T) > P, g, (N(T) > 772) (1 — 1)
— T C T ’
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A Proof of Regret Lower Bounds
A Unified Framework

Step 3:
From regret lower bounds to KL-divergence of observed histories.

Reg(m, &, T) + Reg(m, &, T)
;
2 (B (B — 1) + B (EV ) — )

g
2 (BLo (B + B, (£ min s — ), (] — )}

-~

2 exp(— D (BLIET, ) ) min{(u—m). (& — )}
| ——

Dissimilarity of probability mea- suboptimality of the environ-
sures for two contrasting envi- ments
ronments and a given algorithm

Minimising regret is now equivalent to maximising D, (IP’,“g1 ”Pngz).
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https://en.wikipedia.org/wiki/Kullback-Leibler_divergence

A Proof of Regret Lower Bounds
A Unified Framework

Step 4:

KL-divergence decomposition [Garivier et al., 2018] and upper bounding
the divergence.

T T
Dk, (PMHPH&)

.
= Z Dk, (n(Ad| 74, &)In(Adl 5, 6,))

t=1

K
+ ) Eg [Na(T)]1Dku (fa € &illfa € &)

a=1

)
=Y D (n(Ad A, 8)IIn(Ad 7, ) + Ea, IN(T)] Dxct (ilF )

t=1

< Upper Bound, + Upper Bound,
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Upper Bounding the KL Divergence

Upper Bound; =0

Upper Bound, = Eg [ N;(T)] Dk1, (f,-||f’.')
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Upper Bounding the KL Divergence

Local DP

Upper Bound; =0
Upper Bound, = 2min{4, ¢ } (e — 1)’Eg, [N(T)] Dic, (il

= 172(e) Eq, [N()] Dxc, (il
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Upper Bounding the KL Divergence

Global DP

Upper Bound, =2(e +L) =C
Upper Bound, = exp(2(e + L)) Eg [Ni(T)] Dxr, (f,-||f,./)

= ¢ Eg, [N:(T)] Dxr. (fi||f,~/)

e L is the Lipschitz constant of the log-density of the observed rewards

Pé’(xa)
In sup ~ <
ﬂrXa,X; Pé” (xa)

This is a measure of smoothness on the probability of rewards.
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Upper Bounding the KL Divergence

Dkr, (IP’L&IIIP’;&) < up+uz Eg [Ni(T)] Dxi (fi”f,-/)

e For non-private bandit, uy = 0and u, =1
e For locally private bandit, u; = 0 and u, = L=2(€)

e For globally private bandit, u; = C = 2(e + L) and u, = e
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Minimax Regret Bound |

Step 5:
Substitute environment parameters such that
min{(ur— ), (u/ —m)} = Aand Eg [N(T)] < ;5.

Thus, we get

max{Reg(n, &, T), Reg(m, &, T)}

1
> 2 (Reg(m, &, T) + Reg(m, &, T))

TA
= —explu+u;
4 K

TA
> Texp up + up

)
D (0, D28, :))]

X 2A2] .
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Minimax Regret Bound Il

Step 6:
Boring algebra

Regh. . (T)2+/G(e)(K—1)T For global DP, u; = C and u, = e°

> /12(e)(K—1)T For local DP, u; = 0 and u, = L™2%(€)

Here, In(e? )
n(e +1 1
Gl = b+ (2)
1
ey = min{4, e*} (e — 1)? O( )
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Bayesian Minimax Regret

Theorem 1in [Lattimore and Szepesvari, 2019]

For bounded rewards,

Reg? . (T)=Reg} (7).

mlnlmax

Lower bounds are available for free here! :)
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Problem-dependent Regret Bound

Step 5:
Substitute environment variables such that

Dx1, (fi||f,.') < Dk, (fillf*) + 6.

For small 8, f’,' and f* are similar and thus, hard to distinguish.

Reg(m, &, T) + Reg(m, &, T)

;
27 min{(u—u), (4 — ™)}

exp [—ui — UsEqrg, [Ni(T)] (k. (fillf*) + 6)] .
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Problem-dependent Regret Bound

Step 6:
Do some boring algebra, take limit T — 00, and assume that the regrets for
both the environments are sublinear,

Reg(m, &, T) Erg [Na(T)] (g — 1)

it gy i L (Def. of regret)
T—o00 |Og T T—00 a#a* |Og T
> l M (upper bound on KL
U agar DKL (f.llf*) divergence)
1 A,
= for local DP
L?(e) ;2 Dxw (fallf*)
1 A

= i " for global DP
1+ 2e o= Dk (fallf*)

29/34



The Cost of Privacy
Regret Lower Bounds for Private Bandits [Basu et al., 2020]

Lower Minimax Bayesian Minimax | Problem-dependent

Bounds Regret Regret Regret
Non-private V(A=NDT V(A=NDT c(&)logT
GlobalDP | /G(e)(A— 1T | /G(e)(A—NDT | (1+¢e)'c(&)logT
localDP | L(e)\/(A—DT | L(e)\/(A—1DT 12(e)c(&)log T
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The Cost of Privacy
Regret Lower Bounds for Private Bandits [Basu et al., 2020]

Lower Minimax Bayesian Minimax | Problem-dependent

Bounds Regret Regret Regret
Non-private V(A=NDT V(A=NDT c(&)logT
GlobalDP | /G(e)(A— 1T | /G(e)(A—NDT | (1+¢e)'c(&)logT
localDP | L(e)\/(A—DT | L(e)\/(A—1DT 12(e)c(&)log T

Lower bounds:

Non-private (O(1)) < Global DP (O(1/€)) < Local DP (O(1/€2))

Amount of Noise Injected

e As e — 0, the lower bounds go to infinity but in practice regret in
bandits is always O(T).

® As e — o0, the lower bounds match with non-private lower bounds.
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What's Next?

6. Open Problems: Things to Work on
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Open Problems
(Dis)solving a Conjecture

Conjecture

The problem dependent lower bound for global DP will be

(c(é") 4= ) log(T).

e Our lower bound is different as c(&) + 1/e = C(g) . We still
don’t know whether ours is achievable.

e The existing proof for contextual bandits by
[Shariff and Sheffet, 2018] is not correct for all €.
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Open Problems
Designing Optimal Algorithms

e Designing optimal local DP algorithms, both UCB and Thompson
sampling types, for bandits

- Recent works in UCB type algorithms: [Ren et al., 2020,
Zheng et al., 2020, Chen et al., 2020, Zhou and Tan, 2020]

e Designing optimal global DP algorithms, both UCB and
Thompson sampling types, for bandits

- Recent works in UCB type algorithms for linear bandits:
[Sajed, 2019, Dubey and Pentland, 2020, Hannun et al., 2019,
Malekzadeh et al., 2020]

e Designing optimal DP algorithms for general RL
- Recent works with local DP: [Vietri et al., 2020]
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Fundamental Definitions & Lower Bounds on Regret

Extended Paper: https://arxiv.org/abs/1905.12298
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