Privacy in Multi-armed Bandits

Fundamental Definitions & Lower Bounds on Performance

Debabrota Basu

Scool, Inria Lille - Nord Europe

What's Next?

- 1. Multi-armed Bandits: A Practitioner's View
- Data Privacy: DP Framework
- Private Bandits: Fundamental Definitions
- Multi-armed Bandits: A Designer's View
- Private Bandits: Regret Lower Bounds
- Open Problems: Things to Work on

Medicine 1 $p_1^{\text{cured}} = 0.75$

Medicine 2 $p_2^{\text{cured}} = 0.95$

Medicine 3 $p_3^{\text{cured}} = 0.90$

Medicine K $p_{K}^{\text{cured}} = 0.5$

under Incomplete Information: Multi-armed Bandits

Medicine 1 $p_1^{\text{cured}} = ?$

Medicine 2 $p_2^{\text{cured}} = ?$

Medicine 3 $p_3^{\text{cured}} = ?$

Medicine K $p_K^{\text{cured}} = ?$

under Incomplete Information: Multi-armed Bandits

Medicine 1 $p_1^{\text{cured}} = ?$

Medicine 2 $p_2^{\text{cured}} = ?$

Medicine 3 $p_2^{\text{cured}} = ?$

Medicine K $p_{\kappa}^{\text{cured}} = ?$

For the *t*-th patient $(t \le T)$ in the study

- 1. the doctor π chooses a Medicine $A_t \in \{1, ..., K\}$,
- 2. Observes a response $R_t \in \{\text{cured}, \text{not cured}\}\$ such that $\mathbb{P}(R_t = \text{cured}|A_t = a) = p_a^{\text{cured}}.$

Goal: Maximise the number of patients cured: $\sum_{t=1}^{T} R_t$.

A Fact Check

Multi-armed Bandits: A Practitioner's Perspective

• What is the Algorithm?

• What is the Input?

What is the Output?

• What are the sources of Randomness?

A Fact Check

Multi-armed Bandits: A Practitioner's Perspective

- What is the Algorithm?
 - The doctor or a digital assistant π
- What is the Input?
 - The sequence of observed responses from the patients $\{R_1, \ldots, R_T\}$
- What is the Output?
 - The sequence of chosen medicines by the algorithm $\{A_1, \ldots, A_T\}$
- What are the sources of Randomness?
 - The medical conditions of the patients and their reactions to the medicines, $\{\mathbb{P}_a\}_{a=1}^K$ (and a randomised algorithm π)

What's Next?

- 1. Multi-armed Bandits: A Practitioner's View
- 2. Data Privacy: DP Framework
- Private Bandits: Fundamental Definitions
- Multi-armed Bandits: A Designer's View
- 5. Private Bandits: Regret Lower Bounds
- 6. Open Problems: Things to Work or

Data Privacy: ε-Differential Privacy [Dwork and Roth, 2014]

Information in input/database becomes private if it is indistinguishable from the output of a query/algorithm.

Data Privacy: ε-Differential Privacy [Dwork and Roth, 2014]

Information in input/database becomes private if it is indistinguishable from the output of a query/algorithm.

$$\frac{\mathbb{P}(\pi(\mathrm{DB} + \mathrm{my \ data}) = \mathrm{Out})}{\mathbb{P}(\pi(\mathrm{DB}) = \mathrm{Out})} \le \mathrm{e}^{\epsilon} \longrightarrow \epsilon - \mathrm{DF}$$

Differential Privacy (DP)

Ingredients:

- Input space: X (with symmetric neighbouring relation ∼)
- Output space: Y (with σ -algebra of measurable events)
- Privacy level: $\epsilon \geq 0$ (lower is better)

Differential Privacy (DP)

Ingredients:

- Input space: X (with symmetric neighbouring relation ∼)
- Output space: Y (with σ -algebra of measurable events)
- Privacy level: $\epsilon \ge 0$ (lower is better)

Formulation:

A randomised algorithm $\mathscr{A}: X \to Y$ is ϵ -differentially private if for all neighbouring inputs $X \sim X' \in X$ and for all subsets of outputs $O \subseteq Y$, we get

$$\mathbb{P}[\mathcal{A}(x) \in O] \leq e^{\epsilon} \mathbb{P}[\mathcal{A}(x') \in O].$$

- Neighbouring relation ~ represents what is protected
- ϵ -DP is the worst-case guarantee

Differential Privacy (DP)

Ingredients:

- Input space: X (with symmetric neighbouring relation ~)
- Output space: Y (with σ -algebra of measurable events)
- Privacy level: $\epsilon \geq 0$ (lower is better)

Formulation:

A randomised algorithm $\mathscr{A}: X \to Y$ is ϵ -differentially private if for all neighbouring inputs $X \sim X' \in X$ and for all subsets of outputs $O \subseteq Y$, we get

$$\mathbb{P}[\mathcal{A}(x) \in O] \leq e^{\epsilon} \mathbb{P}[\mathcal{A}(x') \in O].$$

- The slack on probability e^{ϵ} quantifies the amount of protection
- The randomness in the algorithm ensures the privacy

Fundamental Properties of DP

• Robustness to Post-processing: If \mathscr{A} is (ϵ, δ) -DP, $f \circ \mathscr{A}$ is also (ϵ, δ) -DP for any $f : Y \to Z$.

Fundamental Properties of DP

- Robustness to Post-processing: If \mathscr{A} is (ϵ, δ) -DP, $f \circ \mathscr{A}$ is also (ϵ, δ) -DP for any $f : Y \to Z$.
- Composition under Heterogeneity: If \mathscr{A}_j are (ϵ_j, δ_j) -DP, aggregation of their outputs $(\mathscr{A}_1, \ldots, \mathscr{A}_K)$ is $(\sum_i \epsilon_j, \sum_i \delta_j)$ -DP.

Fundamental Properties of DP

- Robustness to Post-processing: If \mathscr{A} is (ϵ, δ) -DP, $f \circ \mathscr{A}$ is also (ϵ, δ) -DP for any $f : Y \to Z$.
- Composition under Heterogeneity: If \mathscr{A}_j are (ϵ_j, δ_j) -DP, aggregation of their outputs $(\mathscr{A}_1, \ldots, \mathscr{A}_K)$ is $(\sum_i \epsilon_j, \sum_i \delta_j)$ -DP.
- Group Privacy: If two inputs x and x' has t changes between them, a private algorithm $\mathscr A$ satisfies ($t\varepsilon$, $te^{t\varepsilon}\delta$)-DP for them.

Fundamental Properties of DP

- Robustness to Post-processing: If \mathscr{A} is (ϵ, δ) -DP, $f \circ \mathscr{A}$ is also (ϵ, δ) -DP for any $f : Y \to Z$.
- Composition under Heterogeneity: If \mathcal{A}_j are (ϵ_j, δ_j) -DP, aggregation of their outputs $(\mathcal{A}_1, \ldots, \mathcal{A}_K)$ is $(\sum_i \epsilon_j, \sum_i \delta_j)$ -DP.
- Group Privacy: If two inputs x and x' has t changes between them, a private algorithm $\mathscr A$ satisfies $(t\varepsilon, te^{t\varepsilon}\delta)$ -DP for them.
- Protection against Side-knowledge: If an attacker has prior knowledge $P_{prior}(x)$ and computes $P_{posterior}(x)$ after observing $\mathscr{A}(x)$ from an ϵ -DP algorithm, $P_{posterior}(x)$ still maintains the e^{ϵ} slack from $P_{prior}(x)$.

A Fact Check

Differential Privacy as a Data Privacy Framework

- What is privacy?
- What does DP definition encode?
- What are the benefits of using DP?

A Fact Check

Differential Privacy as a Data Privacy Framework

- What is privacy?
 - Indistinguishability from the mass in the eyes of a third-party.
- What does DP definition encode?
 - The idea of indistinguishability, the need of randomness for that, and the worst case loss of privacy for everyone involved.
- What are the benefits of using DP?
 - Flexible use of privatised data in future, linear mixture of multiple privacy levels and private mechanisms, and protection under prior information about the algorithm/individuals.

What's Next?

- Multi-armed Bandits: A Practitioner's View
- Data Privacy: DP Framework
- 3. Private Bandits: Fundamental Definitions
- Multi-armed Bandits: A Designer's View
- Private Bandits: Regret Lower Bounds
- 6. Open Problems: Things to Work on

Sequential Decision Making: Data Generation Data Privacy in Bandits

The Bandit Game: For the t-th patient $(t \le T)$ in the study

- 1. the doctor π chooses a Medicine $A_t \in \{1, ..., K\}$,
- 2. Observes a response

$$R_t \in \{\text{cured, not cured}\}\$$
such that $\mathbb{P}(R_t = \text{cured}|A_t = a) = p_a^{\text{cured}}.$

Sequential Decision Making: Data Generation Data Privacy in Bandits

Input to π

Observed Responses: $R^T = \{R_1, \ldots, R_T\}$

Output of π

Decisions: $A^T = \{A_1, \dots, A_T\}$

Data Privacy in Bandits

A patient t wants to keep her response R_t to a medicine A_t private.

Private Bandits: The History

Plethora of Claims, Plethora of Contradictions

DP on the sequence (Sequential DP)
 [Mishra and Thakurta, 2015, Tossou and Dimitrakakis, 2017]:

$$\mathbb{P}_{\pi}(A^{\mathsf{T}} \mid r_1, \dots, r_t, \dots, r_{\mathsf{T}}) \leq e^{\epsilon} \, \mathbb{P}_{\pi}(A^{\mathsf{T}} \mid r_1, \dots, r_t', \dots, r_{\mathsf{T}})$$

2. DP at every instance $t \le T$ (Instantaneous DP) [Tossou and Dimitrakakis, 2016, Shariff and Sheffet, 2018]:

$$\mathbb{P}_{\pi}(a_{t+1} | r_1, \dots, r_k, \dots, r_t) \leq e^{\epsilon} \mathbb{P}_{\pi}(a_{t+1} | r_1, \dots, r'_k, \dots, r_t)$$

3. DP against external algorithm (Local DP) [Gajane et al., 2017]:

$$\mathbb{P}(\mathsf{input}_t \mid r_t) \leq e^{\epsilon} \, \mathbb{P}(\mathsf{input}_t \mid r_t')$$

Private Multi-armed Bandits: Differential Privacy

Generalising the Input

Make patient t's all possible responses

$$\mathbf{X}_t = [R_t^1, \dots, R_t^A]$$

to all the A medicines private.

Generalised input: $\mathbf{X}^T = \{\mathbf{X}_1, \dots, \mathbf{X}_T\}$

Private Multi-armed Bandits: Global DP [Basu et al., 2020]

Private Multi-armed Bandits: Global DP [Basu et al., 2020]

ϵ -(global) DP for Bandits

A bandit algorithm π satisfies ϵ -DP if:

$$\mathbb{P}_{\pi}(a_1,\ldots,a_T\mid \mathbf{x}_1,\ldots,\mathbf{x}_t,\ldots,\mathbf{x}_T)\leq e^{\epsilon}\,\mathbb{P}_{\pi}(a_1,\ldots,a_T\mid \mathbf{x}_1,\ldots,\mathbf{x}_t',\ldots,\mathbf{x}_T)$$

Private Multi-armed Bandits: Global DP [Basu et al., 2020]

ϵ -(global) DP for Bandits

A bandit algorithm π satisfies ϵ -DP if:

$$\mathbb{P}_{\pi}(a_1,\ldots,a_T\mid \mathbf{x}_1,\ldots,\mathbf{x}_t,\ldots,\mathbf{x}_T)\leq e^{\epsilon}\,\mathbb{P}_{\pi}(a_1,\ldots,a_T\mid \mathbf{x}_1,\ldots,\mathbf{x}_t',\ldots,\mathbf{x}_T)$$

The Unification of Existing Definitions:

- ϵ -(global) DP for bandits $\implies \epsilon$ -Sequential DP
- ϵ -(global) DP for bandits $\implies 2\epsilon$ -Instantaneous DP
- ϵ -Instantaneous DP $\Longrightarrow T\epsilon$ -(global) DP for bandits
- ϵ -local DP $\Longrightarrow \epsilon$ -(global) DP for bandits

Private Multi-armed Bandits: Local DP

Local DP \implies Global DP while not constraining algorithm π .

(Post-processing Property of DP).

What did We Learn?

- What is the input for private bandit algorithm?
- What is the output for private bandit algorithm?
- What is the difference between local DP and other setups?
- What is the benefit of aiming for ϵ -global DP?

What did We Learn?

- What is the input for private bandit algorithm?
 - All possible generated responses of all the T patients against all the K decisions $\mathbf{X}^T = \{\mathbf{X}_1, \dots, \mathbf{X}_T\}$.
- What is the output for private bandit algorithm?
 - All the decisions for T patients A^T = {A₁,..., A_T}.
- What is the difference between local DP and other setups?
 - In other DPs, the individual has to believe in the centralised algorithm. Local DP keeps the data private from individual level.
- What is the benefit of aiming for ϵ -global DP?
 - It provides a unified definition for privacy in bandits and satisfying this definition provides stronger guarantees than existing definitions.

What's Next?

- Multi-armed Bandits: A Practitioner's View
- 2. Data Privacy: DP Framework
- Private Bandits: Fundamental Definitions
- 4. Multi-armed Bandits: A Designer's View
- Private Bandits: Regret Lower Bounds
- 6. Open Problems: Things to Work on

under Incomplete Information: Multi-armed Bandits

Distribution 1 $p_1^{\text{reward}} = ?$

Distribution 2 $p_2^{\text{reward}} = ?$

Distribution 3 $p_2^{\text{reward}} = ?$

Distribution K $p_{\nu}^{\text{reward}} = ?$

In the t-th step $(t \in \{1, \ldots, T\})$

- 1. the algorithm π chooses a distribution $A_t \in \{1, ..., K\}$,
- 2. Observes a reward $R_t \in \mathbb{R}$ such that $R_t \sim p_{A_t}^{\text{reward}}$.

Goal: Maximise the observed cumulative reward: $\sum_{t=1}^{T} R_t$.

Expected Cumulative Reward: A Theoretically Malleable Goal

• Maximise cumulative reward $\sum_{t=1}^{T} R_t$

Expected Cumulative Reward: A Theoretically Malleable Goal

• Maximise cumulative reward $\sum_{t=1}^{T} R_t \rightarrow$ a random variable

Expected Cumulative Reward: A Theoretically Malleable Goal

- Maximise cumulative reward $\sum_{t=1}^{T} R_t \rightarrow$ a random variable
- Maximise expected cumulative reward or value of π :

Expected Cumulative Reward: A Theoretically Malleable Goal

- Maximise cumulative reward $\sum_{t=1}^{T} R_t \rightarrow a$ random variable
- Maximise expected cumulative reward or value of π :

$$V_{\mathscr{E},\pi}(T) \triangleq \mathbb{E}_{\mathscr{E}} \left[\sum_{t=0}^{T} R_{t} \mid A_{t} \sim \pi \right]$$

$$= \sum_{a=1}^{K} \mathbb{E}_{\pi\mathscr{E}} \left[\sum_{t=1}^{T} \left(R_{A_{t}} \times \underbrace{\mathbb{1}(A_{t} = a)}_{\text{Arm } a \text{ is played}} \right) \right] \text{ (the indicator allows the sum over a)}$$

$$= \sum_{a=1}^{K} \mathbb{E}_{\pi} \left[\sum_{t=1}^{T} \mathbb{1}(A_{t} = a) \right] \mathbb{E}_{\mathscr{E}} [R_{a}] \triangleq \sum_{a=1}^{K} \mathbb{E}_{\pi} \left[N_{T}^{a} \right] \mu_{a}$$

$$\text{Expected #draws of } a \text{ by } T$$

Performance Metric Under Incomplete Information Regret

Regret $\operatorname{Reg}_{\mathscr{E},\pi}(T)$

- ≜ Value of Optimal Algorithm with Full Information
- Value of Algorithm π with Incomplete Information

$$= T\mu^* - \sum_{a=1}^K \mathbb{E}_{\pi} \left[N_T^a \right] \mu_a$$

$$= \sum_{a=1}^{K} \mathbb{E}_{\pi} \left[N_{T}^{a} \right] (\mu^{*} - \mu_{a}) \qquad \left(\text{since, } T = \sum_{a=1}^{K} \mathbb{E}_{\pi} \left[N_{T}^{a} \right] \right)$$

- = $\sum_{a=1}^{\infty}$ Expected number of time decision a is taken
- × Expected suboptimality of arm $a(\Delta_a)$

Two Faces of a Bandit: Exploration and Exploitation

Pure Exploration

Take each decision uniformly and accumulate empirical knowledge.

Pure Exploitation

Take the decision with maximum empirical reward as per present knowledge.

Two Faces of a Bandit: Exploration and Exploitation

Pure Exploration

Take each decision uniformly and accumulate empirical knowledge.

Pure Exploitation

Take the decision with maximum empirical reward as per present knowledge.

Two Faces of a Bandit: Exploration and Exploitation

Pure Exploration

Take each decision uniformly and accumulate empirical knowledge.

Pure Exploitation

Take the decision with maximum empirical reward as per present knowledge.

The Exploration-exploitation Trade-off

Exploration and exploitation should be adapted on-the-go to achieve the optimal regret.

Hardness of a Bandit Problem

Lower Bounds on Regret

Minimax Regret [Vogel, 1960]

$$\operatorname{Reg}_{\operatorname{Minimax}}^*(T) \triangleq \min_{\pi} \max_{\mathscr{E}} \operatorname{Reg}(\pi, \mathscr{E}, T)$$

- The best achievable regret in the worst-case scenario.
- The lower bound for non-private case is $\sqrt{(K-1)T}$

Hardness of a Bandit Problem

Lower Bounds on Regret

Bayesian Minimax Regret [Lattimore and Szepesvári, 2019

In Bayesian setup, a prior distribution Q over environments $\mathcal E$ is assumed.

$$\operatorname{Reg}_{\operatorname{Bayes}}(\pi,\mathsf{T},\mathsf{Q}) \triangleq \int_{\mathscr{E}^\mathsf{T}} \operatorname{Reg}(\pi,\mathscr{E},\mathsf{T}) d\mathsf{Q}(\mathscr{E}).$$

The Bayesian minimax regret is the worst possible regret over all priors Q:

$$\operatorname{Reg}_{\mathrm{Bayes}}^{*}(T) \triangleq \min_{\pi} \max_{Q} \int_{\mathscr{E}^{T}} \operatorname{Reg}(\pi, \mathscr{E}, T) dQ(\mathscr{E}) \\
= \min_{\pi} \max_{Q} \operatorname{Reg}_{\mathrm{Bayes}}(\pi, T, Q).$$

- The best achievable regret for the worst-case prior.
- Lower bound for non-private case is $\sqrt{(K-1)T}$.

Hardness of a Bandit Problem

Lower Bounds on Regret

Problem-dependent Regret [Lai and Robbins, 1985]

$$\operatorname{Reg}_{\mathscr{E}}^{*}(\mathsf{T}) \triangleq \min_{\pi} \operatorname{Reg}_{\mathscr{E}}(\pi, \mathsf{T})$$

- The best achievable regret for a specific environment \mathcal{E} .
- The lower bound for non-private case is

$$\sum_{a=1}^{K} \frac{\Delta_a}{D_{\mathrm{KL}}(f_a||f^*)} \log T \triangleq c(\mathscr{E}) \log T.$$

What's Next?

- 1. Multi-armed Bandits: A Practitioner's View
- Data Privacy: DP Framework
- Private Bandits: Fundamental Definitions
- Multi-armed Bandits: A Designer's View
- 5. Private Bandits: Regret Lower Bounds
- 6. Open Problems: Things to Work or

Preparing the Ingredients

The Probability Space of Observed Histories

- Random variable: Observed history $\mathcal{H}_T \triangleq \{(A_i, X_i)\}_{i=1}^T$
- Measurable space, σ -measure: $(([K] \times \mathbb{R})^T, \mathcal{B}([K] \times \mathbb{R})^T)$
- Probability measure: $\mathbb{P}_{\pi\mathscr{E}}^{\mathsf{T}}$ induced by the algorithm π and environment \mathscr{E}

$$\begin{split} \mathbb{P}_{\pi\mathscr{E}}^{\mathsf{T}} &\triangleq \mathbb{P}_{\pi\mathscr{E}}(\mathscr{H}_{\mathsf{T}}) \\ &= \prod_{t=1}^{\mathsf{T}} \underbrace{\pi(\mathsf{A}_{t}|\mathscr{H}_{t-1})}_{\text{Chosen action depends only}} \times \underbrace{f_{\mathsf{A}_{t}}(\mathsf{X}_{t})}_{\text{Observed reward depends only on algorithm and history}}_{\text{only on the environment}} \end{split}$$

A Unified Framework

Step 1:

Choose two environments \mathcal{E}_1 and \mathcal{E}_2 .

They are the same except that the arm 1 is optimal in \mathcal{E}_1 and arm i is optimal in \mathcal{E}_2 .

Bad event for \mathscr{E}_1 : $E \triangleq N_1(T) \leq T/2$

Bad event for \mathscr{E}_2 : $E^C \triangleq N_1(T) > T/2$

A Unified Framework

Step 2:

Lower Bounding the Regrets of the Environments.

$$\operatorname{Reg}(\pi, \mathcal{E}_{1}, T) = \sum_{a=1}^{K} \mathbb{E}_{\pi} \left[N_{T}^{a} \right] (\mu^{*} - \mu_{a})$$

$$\geq \mathbb{P}_{\pi\mathcal{E}_{1}}^{T} (N_{1}(T) \leq T/2) \frac{T}{2} (\mu_{1} - \mu_{i})$$

$$= \mathbb{P}_{\pi\mathcal{E}_{1}}^{T} (E) \frac{T}{2} (\mu_{1} - \mu_{i})$$

$$\operatorname{Reg}(\pi, \mathcal{E}_{2}, T) > \mathbb{P}_{\pi\mathcal{E}_{2}}^{T} (N_{1}(T) > T/2) \frac{T}{2} (\mu'_{i} - \mu_{1})$$

$$= \mathbb{P}_{\pi\mathcal{E}_{2}}^{T} (E^{c}) \frac{T}{2} (\mu'_{i} - \mu_{1})$$

A Unified Framework

Step 3:

From regret lower bounds to KL-divergence of observed histories.

$$\begin{split} \operatorname{Reg}(\pi,\mathscr{E}_{1},T) + \operatorname{Reg}(\pi,\mathscr{E}_{2},T) \\ \geq & \frac{T}{2} \left(\mathbb{P}_{\pi\mathscr{E}_{1}}^{T}(E)(\mu_{1} - \mu_{i}) + \mathbb{P}_{\pi\mathscr{E}_{2}}^{T}(E^{c})(\mu_{i}' - \mu_{1}) \right) \\ \geq & \frac{T}{2} \left(\mathbb{P}_{\pi\mathscr{E}_{1}}^{T}(E) + \mathbb{P}_{\pi\mathscr{E}_{2}}^{T}(E^{c}) \right) \min \left\{ (\mu_{1} - \mu_{i}), (\mu_{i}' - \mu_{1}) \right\} \\ \geq & \frac{T}{4} \exp(- \underbrace{D_{\mathrm{KL}} \left(\mathbb{P}_{\pi\mathscr{E}_{1}}^{T} \| \mathbb{P}_{\pi\mathscr{E}_{2}}^{T} \right)}_{\text{Dissimilarity of probability measures for two contrasting envisors}} \right) \underbrace{\min \left\{ (\mu_{1} - \mu_{i}), (\mu_{i}' - \mu_{1}) \right\}}_{\text{suboptimality of the environsments and a given algorithm}} \end{split}$$

Minimising regret is now equivalent to maximising $D_{\mathrm{KL}}\left(\mathbb{P}_{n\mathcal{E}_{i}}||\mathbb{P}_{n\mathcal{E}_{i}}\right)$.

≤ Upper Bound₁ + Upper Bound₂

A Unified Framework

Step 4:

KL-divergence decomposition [Garivier et al., 2018] and upper bounding the divergence.

$$\begin{split} D_{\mathrm{KL}}\left(\mathbb{P}_{\pi\mathscr{E}_{1}}^{\mathsf{T}} \| \mathbb{P}_{\pi\mathscr{E}_{2}}^{\mathsf{T}}\right) \\ &= \sum_{t=1}^{\mathsf{T}} D_{\mathrm{KL}}\left(\pi(\mathsf{A}_{t} | \mathscr{H}_{t}, \mathscr{E}_{1}) \| \pi(\mathsf{A}_{t} | \mathscr{H}_{t}, \mathscr{E}_{2})\right) \\ &+ \sum_{a=1}^{\mathsf{K}} \mathbb{E}_{\mathscr{E}_{1}}\left[N_{a}(\mathsf{T})\right] D_{\mathrm{KL}}\left(f_{a} \in \mathscr{E}_{1} \| f_{a} \in \mathscr{E}_{2}\right) \\ &= \sum_{t=1}^{\mathsf{T}} D_{\mathrm{KL}}\left(\pi(\mathsf{A}_{t} | \mathscr{H}_{t}, \mathscr{E}_{1}) \| \pi(\mathsf{A}_{t} | \mathscr{H}_{t}, \mathscr{E}_{2})\right) + \mathbb{E}_{\mathscr{E}_{1}}\left[N_{i}(\mathsf{T})\right] D_{\mathrm{KL}}\left(f_{i} \| f_{i}'\right) \end{split}$$

Non-private

$$\begin{aligned} & \text{Upper Bound}_1 = 0 \\ & \text{Upper Bound}_2 = \mathbb{E}_{\mathcal{E}_1} \left[\, N_i(T) \, \right] D_{\text{KL}} \left(f_i \| f_i' \right) \end{aligned}$$

Local DP

Upper Bound₁ = 0
Upper Bound₂ =
$$2 \min \{4, e^{2\epsilon}\} (e^{\epsilon} - 1)^2 \mathbb{E}_{\mathcal{E}_i} [N_i(T)] D_{KL} (f_i || f_i')$$

= $L^{-2}(\epsilon) \mathbb{E}_{\mathcal{E}_i} [N_i(T)] D_{KL} (f_i || f_i')$

Global DP

Upper Bound₁ =
$$2(\epsilon + L) = C$$

Upper Bound₂ = $\exp(2(\epsilon + L)) \mathbb{E}_{\mathcal{E}_1}[N_i(T)] D_{KL}(f_i || f'_i)$
= $e^C \mathbb{E}_{\mathcal{E}_1}[N_i(T)] D_{KL}(f_i || f'_i)$

• L is the Lipschitz constant of the log-density of the observed rewards

$$\ln \sup_{a,x_a,x_a'} \frac{\mathbb{P}_{\mathscr{E}}(x_a)}{\mathbb{P}_{\mathscr{E}}(x_a')} \leq L$$

This is a measure of smoothness on the probability of rewards.

$$D_{\mathrm{KL}}\left(\mathbb{P}_{\pi\mathcal{E}_{1}}^{T} \big\| \mathbb{P}_{\pi\mathcal{E}_{2}}^{T}\right) \leq u_{1} + u_{2} \, \mathbb{E}_{\mathcal{E}_{1}}\left[\, N_{i}(T) \right] D_{\mathrm{KL}}\left(f_{i} \big\| f_{i}'\right)$$

- For non-private bandit, $u_1 = 0$ and $u_2 = 1$
- For locally private bandit, $u_1 = 0$ and $u_2 = L^{-2}(\epsilon)$
- For globally private bandit, $u_1 = C = 2(\epsilon + L)$ and $u_2 = e^C$

Minimax Regret Bound I

Step 5:

Substitute environment parameters such that $\min\{(\mu_1 - \mu_i), (\mu'_i - \mu_1)\} = \Delta$ and $\mathbb{E}_{\mathscr{E}_1}[N_i(T)] \leq \frac{T}{K-1}$. Thus, we get

$$\begin{aligned} & \max\{\operatorname{Reg}(\pi, \mathscr{E}_{1}, T), \operatorname{Reg}(\pi, \mathscr{E}_{2}, T)\} \\ & \geq \frac{1}{2}(\operatorname{Reg}(\pi, \mathscr{E}_{1}, T) + \operatorname{Reg}(\pi, \mathscr{E}_{2}, T)) \\ & \geq \frac{T\Delta}{4} \exp\left[u_{1} + u_{2} \frac{T}{K - 1} D_{\mathrm{KL}} (f_{K}(0, I) || f_{K}(2\Delta, I))\right] \\ & \geq \frac{T\Delta}{4} \exp\left[u_{1} + u_{2} \frac{T}{K - 1} \times 2\Delta^{2}\right]. \end{aligned}$$

Minimax Regret Bound II

Step 6:

Boring algebra

$$\operatorname{Reg}^*_{\operatorname{Minimax}}(T) \geq \sqrt{G(\epsilon)(K-1)T} \quad \text{For global DP, } u_1 = C \text{ and } u_2 = e^C$$

$$\geq \sqrt{L^2(\epsilon)(K-1)T} \quad \text{For local DP, } u_1 = 0 \text{ and } u_2 = L^{-2}(\epsilon)$$

Here,

$$G(\epsilon) = \frac{\ln(\epsilon^2 + 1)}{e^{6\epsilon} \epsilon^{(1 + \frac{2}{\epsilon})}} = O\left(\frac{1}{\epsilon}\right)$$

$$L^2(\epsilon) = \frac{1}{\min\{4, e^{2\epsilon}\}(e^{\epsilon} - 1)^2} = O\left(\frac{1}{\epsilon^2}\right)$$

Bayesian Minimax Regret

Theorem 1 in [Lattimore and Szepesvári, 2019]

For bounded rewards,

$$\operatorname{Reg}^*_{\operatorname{minimax}}(T) = \operatorname{Reg}^*_{\operatorname{Bayes}}(T).$$

Lower bounds are available for free here! :)

Problem-dependent Regret Bound

Step 5:

Substitute environment variables such that

$$D_{\mathrm{KL}}\left(f_{i}||f_{i}'\right)\leq D_{\mathrm{KL}}\left(f_{i}||f^{*}\right)+\delta.$$

For small δ , f'_i and f^* are similar and thus, hard to distinguish.

$$\begin{split} &\operatorname{Reg}(\pi,\mathscr{E}_{1},T) + \operatorname{Reg}(\pi,\mathscr{E}_{2},T) \\ \geq & \frac{T}{4} \min \{ (\mu_{i} - \mu^{*}), (\mu'_{i} - \mu^{*}) \} \\ & \exp \left[-u_{1} - u_{2} \mathbb{E}_{\pi\mathscr{E}_{1}} \left[N_{i}(T) \right] (D_{\operatorname{KL}}(f_{i} || f^{*}) + \delta) \right]. \end{split}$$

Problem-dependent Regret Bound

Step 6:

Do some boring algebra, take limit $T \to \infty$, and assume that the regrets for both the environments are sublinear,

$$\liminf_{T \to \infty} \frac{\operatorname{Reg}(\pi, \mathscr{E}_{1}, T)}{\log T} = \liminf_{T \to \infty} \sum_{a \neq a^{*}} \frac{\mathbb{E}_{\pi\mathscr{E}_{1}}[N_{a}(T)](\mu_{a} - \mu^{*})}{\log T} \quad \text{(Def. of regret)}$$

$$\geq \frac{1}{u_{2}} \sum_{a \neq a^{*}} \frac{(\mu_{a} - \mu^{*})}{D_{\mathrm{KL}}(f_{a} \| f^{*})} \quad \text{(upper bound on KL divergence)}$$

$$= \frac{1}{L^{2}(\epsilon)} \sum_{a \neq a^{*}} \frac{\Delta_{a}}{D_{\mathrm{KL}}(f_{a} \| f^{*})} \quad \text{for local DP}$$

$$\geq \frac{1}{1 + 2\epsilon} \sum_{a \neq a^{*}} \frac{\Delta_{a}}{D_{\mathrm{KL}}(f_{a} \| f^{*})} \quad \text{for global DP}$$

The Cost of Privacy

Regret Lower Bounds for Private Bandits [Basu et al., 2020]

Lower	Minimax	Bayesian Minimax	Problem-dependent
Bounds	Regret	Regret	Regret
Non-private	$\sqrt{(A-1)T}$	$\sqrt{(A-1)T}$	<i>c</i> (ℰ) log T
Global DP	$\sqrt{G(\epsilon)(A-1)T}$	$\sqrt{G(\epsilon)(A-1)T}$	$(1+\epsilon)^{-1}c(\mathscr{E})\log T$
Local DP	$L(\epsilon)\sqrt{(A-1)T}$	$L(\epsilon)\sqrt{(A-1)T}$	$L^2(\epsilon)c(\mathscr{E})\log T$

The Cost of Privacy

Regret Lower Bounds for Private Bandits [Basu et al., 2020]

Lower	Minimax	Bayesian Minimax	Problem-dependent
Bounds	Regret	Regret	Regret
Non-private	$\sqrt{(A-1)T}$	$\sqrt{(A-1)T}$	c(ℰ) log T
Global DP	$\sqrt{G(\epsilon)(A-1)T}$	$\sqrt{G(\epsilon)(A-1)T}$	$(1+\epsilon)^{-1}c(\mathscr{E})\log T$
Local DP	$L(\epsilon)\sqrt{(A-1)T}$	$L(\epsilon)\sqrt{(A-1)T}$	$L^2(\epsilon)c(\mathscr{E})\log T$

Lower bounds:
$$(O(1)) < Global DP (O(1/\epsilon)) < Local DP (O(1/\epsilon^2))$$
Amount of Noise Injected

- As $\epsilon \to 0$, the lower bounds go to infinity but in practice regret in bandits is always O(T).
- As $\epsilon \to \infty$, the lower bounds match with non-private lower bounds.

What's Next?

- 1. Multi-armed Bandits: A Practitioner's View
- Data Privacy: DP Framework
- Private Bandits: Fundamental Definitions
- Multi-armed Bandits: A Designer's View
- Private Bandits: Regret Lower Bounds
- 6. Open Problems: Things to Work on

Open Problems

(Dis)solving a Conjecture

Conjecture

The problem dependent lower bound for global DP will be

$$\left(c(\mathscr{E}) + \frac{1}{\epsilon}\right) \log(T).$$

- Our lower bound is different as $c(\mathscr{E}) + 1/\epsilon \ge \frac{c(\mathscr{E})}{1+\epsilon}$. We still don't know whether ours is achievable.
- The existing proof for contextual bandits by [Shariff and Sheffet, 2018] is not correct for all ε.

Open Problems

Designing Optimal Algorithms

- Designing optimal local DP algorithms, both UCB and Thompson sampling types, for bandits
 - Recent works in UCB type algorithms: [Ren et al., 2020,
 Zheng et al., 2020, Chen et al., 2020, Zhou and Tan, 2020]
- Designing optimal global DP algorithms, both UCB and Thompson sampling types, for bandits
 - Recent works in UCB type algorithms for linear bandits: [Sajed, 2019, Dubey and Pentland, 2020, Hannun et al., 2019, Malekzadeh et al., 2020]
- Designing optimal DP algorithms for general RL
 - Recent works with local DP: [Vietri et al., 2020]

Privacy in Multi-armed Bandits

Fundamental Definitions & Lower Bounds on Regret

Extended Paper: https://arxiv.org/abs/1905.12298

Co-creator: Christos Dimitrakakis

Chalmers University of Technology, Sweden & University of Oslo, Norway

References I

- [Basu et al., 2020] Basu, D., Dimitrakakis, C., and Tossou, A. (2020). Differential privacy for multi-armed bandits: What is it and what is its cost? arXiv preprint arXiv:1905.12298.
- [Chen et al., 2020] Chen, X., Zheng, K., Zhou, Z., Yang, Y., Chen, W., and Wang, L. (2020). (locally) differentially private combinatorial semi-bandits. arXiv preprint arXiv:2006.00706.
- [Dubey and Pentland, 2020] Dubey, A. and Pentland, A. (2020). Differentially-private federated linear bandits.

 Advances in Neural Information Processing Systems. 33.
- [Dwork and Roth, 2014] Dwork, C. and Roth, A. (2014).

 The algorithmic foundations of differential privacy.

 Foundations and Trends* in Theoretical Computer Science, 9(3-4):211-407.
- [Gajane et al., 2017] Gajane, P., Urvoy, T., and Kaufmann, E. (2017). Corrupt bandits for preserving local privacy. arXiv preprint arXiv:1708.05033.

References II

[Garivier et al., 2018] Garivier, A., Ménard, P., and Stoltz, G. (2018).

Explore first, exploit next: The true shape of regret in bandit problems.

Mathematics of Operations Research.

[Hannun et al., 2019] Hannun, A., Knott, B., Sengupta, S., and van der Maaten, L. (2019).

Privacy-preserving contextual bandits.

arXiv preprint arXiv:1910.05299.

[Lai and Robbins, 1985] Lai, T. L. and Robbins, H. (1985).

Asymptotically efficient adaptive allocation rules.

Advances in applied mathematics, 6(1):4-22.

[Lattimore and Szepesvári, 2019] Lattimore, T. and Szepesvári, C. (2019).

An information-theoretic approach to minimax regret in partial monitoring.

In Conference on Learning Theory, pages 2111–2139.

[Malekzadeh et al., 2020] Malekzadeh, M., Athanasakis, D., Haddadi, H., and Livshits, B. (2020).

Privacy-preserving bandits.

Proceedings of Machine Learning and Systems, 2:350–362.

References III

[Mishra and Thakurta, 2015] Mishra, N. and Thakurta, A. (2015).

(nearly) optimal differentially private stochastic multi-arm bandits.

In Proceedings of the Thirty-First Conference on Uncertainty in Artificial Intelligence, pages 592–601. AUAI Press.

[Ren et al., 2020] Ren, W., Zhou, X., Liu, J., and Shroff, N. B. (2020).

Multi-armed bandits with local differential privacy.

arXiv preprint arXiv:2007.03121.

[Sajed, 2019] Sajed, T. (2019).

Optimal differentially private finite armed stochastic bandit.

[Shariff and Sheffet, 2018] Shariff, R. and Sheffet, O. (2018).

Differentially private contextual linear bandits.

In Advances in Neural Information Processing Systems, pages 4296-4306.

[Tossou and Dimitrakakis, 2016] Tossou, A. C. and Dimitrakakis, C. (2016).

Algorithms for differentially private multi-armed bandits.

In Thirtieth AAAI Conference on Artificial Intelligence.

References IV

- [Tossou and Dimitrakakis, 2017] Tossou, A. C. Y. and Dimitrakakis, C. (2017). Achieving privacy in the adversarial multi-armed bandit.

 In Thirty-First AAAI Conference on Artificial Intelligence.
- [Vietri et al., 2020] Vietri, G., Balle, B., Krishnamurthy, A., and Wu, Z. S. (2020). Private reinforcement learning with pac and regret guarantees. arXiv preprint arXiv:2009.09052.
- [Vogel, 1960] Vogel, W. (1960).
 An asymptotic minimax theorem for the two armed bandit problem.
 The Annals of Mathematical Statistics, 31(2):444–451.
- [Zheng et al., 2020] Zheng, K., Cai, T., Huang, W., Li, Z., and Wang, L. (2020). Locally differentially private (contextual) bandits learning. arXiv preprint arXiv:2006.00701.
- [Zhou and Tan, 2020] Zhou, X. and Tan, J. (2020). Local differential privacy for bayesian optimization. arXiv preprint arXiv:2010.06709.