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What’s Next?

1. Multi-armed Bandits: A Practitioner’s View

2. Data Privacy: DP Framework

3. Private Bandits: Fundamental Definitions
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Sequential Decision Making

Medicine 1pcured
1 = 0.75

Medicine 2pcured
2 = 0.95

Medicine 3pcured
3 = 0.90

· · ·

Medicine KpcuredK = 0.5
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Sequential Decision Makingunder Incomplete Information: Multi-armed Bandits

Medicine 1pcured
1 =?

Medicine 2pcured
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Sequential Decision Makingunder Incomplete Information: Multi-armed Bandits

Medicine 1pcured
1 =?

Medicine 2pcured
2 =?

Medicine 3pcured
3 =?

· · ·

Medicine KpcuredK =?

For the t-th patient (t ≤ T) in the study
1. the doctor π chooses a Medicine At ∈ {1, . . . , K},
2. Observes a response Rt ∈ {cured,not cured} such that

P(Rt = cured|At = a) = pcureda .

Goal: Maximise the number of patients cured:
∑︀T

t=1 Rt.
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A Fact CheckMulti-armed Bandits: A Practitioner’s Perspective
• What is the Algorithm?

• What is the Input?

• What is the Output?

• What are the sources of Randomness?
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A Fact CheckMulti-armed Bandits: A Practitioner’s Perspective
• What is the Algorithm?

– The doctor or a digital assistant π

• What is the Input?
– The sequence of observed responses from the patients
{R1, . . . ,RT}

• What is the Output?
– The sequence of chosen medicines by the algorithm
{A1, . . . ,AT}

• What are the sources of Randomness?
– The medical conditions of the patients and their reactions to the

medicines, {Pa}Ka=1 (and a randomised algorithm π)
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Data Privacy: ε-Differential Privacy [Dwork and Roth, 2014]

Information in input/database becomes private if it is
indistinguishable from the output of a query/algorithm.

P(π(DB+ my data) = Out)
P(π(DB) = Out)

≤ eε −→ ε− DP

Image Courtesy: www.winton.com
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Differential Privacy (DP)

Ingredients:

• Input space: X (with symmetric neighbouring relation ∼)

• Output space: Y (with σ-algebra of measurable events)

• Privacy level: ε ≥ 0 (lower is better)
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Differential Privacy (DP)

Ingredients:

• Input space: X (with symmetric neighbouring relation ∼)

• Output space: Y (with σ-algebra of measurable events)

• Privacy level: ε ≥ 0 (lower is better)

Formulation:
A randomised algorithmA : X→ Y is ε-differentially private if for all
neighbouring inputs x ∼ x′ ∈ X and for all subsets of outputs O ⊆ Y, we get

P[A (x) ∈ O] ≤ eεP[A (x′) ∈ O] .
• Neighbouring relation ∼ represents what is protected

• ε-DP is the worst-case guarantee
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Differential Privacy (DP)
Ingredients:

• Input space: X (with symmetric neighbouring relation ∼)

• Output space: Y (with σ-algebra of measurable events)

• Privacy level: ε ≥ 0 (lower is better)

Formulation:
A randomised algorithmA : X→ Y is ε-differentially private if for all
neighbouring inputs x ∼ x′ ∈ X and for all subsets of outputs O ⊆ Y, we get

P[A (x) ∈ O] ≤ eεP[A (x′) ∈ O] .

• The slack on probability eε quantifies the amount of protection

• The randomness in the algorithm ensures the privacy
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Why should we use Differential Privacy?Fundamental Properties of DP
• Robustness to Post-processing: IfA is (ε, δ)-DP, f ◦ A is also
(ε, δ)-DP for any f : Y → Z.

• Composition under Heterogeneity: IfAj are (εj, δj)-DP, aggregation
of their outputs (A1, . . . ,AK) is (

∑︀
j εj,
∑︀

j δj)-DP.

• Group Privacy: If two inputs x and x′ has t changes between them, a
private algorithmA satisfies (tε, tetεδ)-DP for them.

• Protection against Side-knowledge: If an attacker has prior knowledge
Pprior(x) and computes Pposterior(x) after observingA (x) from an
ε-DP algorithm, Pposterior(x) still maintains the eε slack from Pprior(x).
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A Fact CheckDifferential Privacy as a Data Privacy Framework

• What is privacy?

• What does DP definition encode?

• What are the benefits of using DP?
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A Fact CheckDifferential Privacy as a Data Privacy Framework
• What is privacy?

– Indistinguishability from the mass in the eyes of a third-party.

• What does DP definition encode?
– The idea of indistinguishability, the need of randomness for that,

and the worst case loss of privacy for everyone involved.

• What are the benefits of using DP?
– Flexible use of privatised data in future, linear mixture of

multiple privacy levels and private mechanisms, and protection
under prior information about the algorithm/individuals.
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What’s Next?

1. Multi-armed Bandits: A Practitioner’s View

2. Data Privacy: DP Framework

3. Private Bandits: Fundamental Definitions

4. Multi-armed Bandits: A Designer’s View

5. Private Bandits: Regret Lower Bounds

6. Open Problems: Things to Work on
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Sequential Decision Making: Data GenerationData Privacy in Bandits

At

Rt

At−1

Rt−1

Choice of
Medicines

Observed
Responses

E
Response Distributions
of Medicines on Patients
E = {P(R|a)}Ka=1

π
Doctor/

Algorithmic Assistant

The Bandit Game: For the t-th patient
(t ≤ T) in the study

1. the doctor π chooses a
Medicine At ∈ {1, . . . , K},

2. Observes a response
Rt ∈ {cured,not cured} such
that P(Rt = cured|At = a) =
pcureda .
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Sequential Decision Making: Data GenerationData Privacy in Bandits

At

Rt

At−1

Rt−1

Choice of
Medicines

Observed
Responses

E
Response Distributions
of Medicines on Patients
E = {P(R|a)}Ka=1

π
Doctor/

Algorithmic Assistant

Input to π

Observed Responses: RT = {R1, . . . ,RT}
Output of π

Decisions: AT = {A1, . . . ,AT}

Data Privacy in Bandits

A patient t wants to keep her response Rt
to a medicine At private.
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Private Bandits: The HistoryPlethora of Claims, Plethora of Contradictions
1. DP on the sequence (Sequential DP)

[Mishra and Thakurta, 2015, Tossou and Dimitrakakis, 2017]:

Pπ(AT | r1, . . . , rt, . . . , rT) ≤ eε Pπ(AT | r1, . . . , r′t , . . . , rT)
2. DP at every instance t ≤ T (Instantaneous DP)

[Tossou and Dimitrakakis, 2016, Shariff and Sheffet, 2018]:

Pπ(at+1 | r1, . . . , rk, . . . , rt) ≤ eε Pπ(at+1 | r1, . . . , r′k, . . . , rt)
3. DP against external algorithm (Local DP) [Gajane et al., 2017]:

P(inputt | rt) ≤ eε P(inputt | r′t )
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Privacy in Sequential Decision MakingPrivate Multi-armed Bandits: Differential Privacy

At

Rt

Xt

At−1

Rt−1

Xt−1

E

π

Decision of
Medicines

Observed
Responses

All Possible
Responses

Generalising the Input

Make patient t’s all possible responses
Xt = [R1t, . . . ,RAt ]

to all the Amedicines private.

Generalised input: XT = {X1, . . . ,XT}
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Privacy in Sequential Decision MakingPrivate Multi-armed Bandits: Global DP [Basu et al., 2020]

At

Rt

Xt

At−1

Rt−1

Xt−1

E

π

Decision of
Medicines

Observed
Responses

All Possible
Responses

Input: XT
Output: AT
Algorithm: π
My data: Xt
ε-Global DP

Pπ

(︃
Set of
Decisions

⃒⃒⃒⃒
⃒Possible responses
of T patients

+
my
data

)︃
Pπ

(︃
Set of
Decisions

⃒⃒⃒⃒
⃒Possible responses
of T patients

)︃
≤ eε
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Privacy in Sequential Decision MakingPrivate Multi-armed Bandits: Global DP [Basu et al., 2020]

ε-(global) DP for Bandits

A bandit algorithm π satisfies ε-DP if:

Pπ(a1, . . . , aT | x1, . . . , xt, . . . , xT) ≤ eε Pπ(a1, . . . , aT | x1, . . . , x′t , . . . , xT)
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Privacy in Sequential Decision MakingPrivate Multi-armed Bandits: Global DP [Basu et al., 2020]

ε-(global) DP for Bandits

A bandit algorithm π satisfies ε-DP if:

Pπ(a1, . . . , aT | x1, . . . , xt, . . . , xT) ≤ eε Pπ(a1, . . . , aT | x1, . . . , x′t , . . . , xT)

The Unification of Existing Definitions:

• ε-(global) DP for bandits =⇒ ε-Sequential DP

• ε-(global) DP for bandits =⇒ 2ε-Instantaneous DP

• ε-Instantaneous DP =⇒ Tε-(global) DP for bandits
• ε-local DP =⇒ ε-(global) DP for bandits
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Privacy in Sequential Decision MakingPrivate Multi-armed Bandits: Local DP

At

Rt

Xt

At−1

Rt−1

Xt−1

E

π

Decision of
Medicines

Observed
Responses

All Possible
Responses

ε-Local DP

P

(︃
Observed
responses

⃒⃒⃒⃒
⃒Possible responses
of T patients

+
my
data

)︃
P

(︃
Observed
responses

⃒⃒⃒⃒
⃒Possible responses
of T patients

)︃
≤ eε

Local DP =⇒ Global DP
while not constraining algorithm π.

(Post-processing Property of DP).
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What did We Learn?

• What is the input for private bandit algorithm?

• What is the output for private bandit algorithm?

• What is the difference between local DP and other setups?

• What is the benefit of aiming for ε-global DP?
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What did We Learn?

• What is the input for private bandit algorithm?
– All possible generated responses of all the T patients against all

the K decisions XT = {X1, . . . ,XT}.
• What is the output for private bandit algorithm?

– All the decisions for T patients AT = {A1, . . . ,AT}.
• What is the difference between local DP and other setups?

– In other DPs, the individual has to believe in the centralised
algorithm. Local DP keeps the data private from individual level.

• What is the benefit of aiming for ε-global DP?
– It provides a unified definition for privacy in bandits and

satisfying this definition provides stronger guarantees than
existing definitions.
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What’s Next?

1. Multi-armed Bandits: A Practitioner’s View

2. Data Privacy: DP Framework

3. Private Bandits: Fundamental Definitions

4. Multi-armed Bandits: A Designer’s View

5. Private Bandits: Regret Lower Bounds

6. Open Problems: Things to Work on
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Sequential Decision Makingunder Incomplete Information: Multi-armed Bandits

Distribution 1preward
1 =?

Distribution 2preward
2 =?

Distribution 3preward
3 =?

· · ·

Distribution KprewardK =?

In the t-th step (t ∈ {1, . . . , T})
1. the algorithm π chooses a distribution At ∈ {1, . . . , K},
2. Observes a reward Rt ∈ R such that Rt ∼ prewardAt .

Goal: Maximise the observed cumulative reward:
∑︀T

t=1 Rt.
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Value of a Bandit AlgorithmExpected Cumulative Reward: A Theoretically Malleable Goal
• Maximise cumulative reward

∑︀Tt=1 Rt

→ a random variable
• Maximise expected cumulative reward or value of π:

VE ,π(T) , EE

[︃ T∑︁
t=0

Rt | At ∼ π

]︃

=
K∑︁

a=1
EπE

⎡⎢⎣ T∑︁
t=1

⎛⎜⎝RAt × 1(At = a)⏟  ⏞  
Arm a is played

⎞⎟⎠
⎤⎥⎦

⏟  ⏞  
Expected reward from arm a by time T

(the indicator
allows the
sum over a)

=
K∑︁

a=1
Eπ

[︃ T∑︁
t=1

1(At = a)
]︃

⏟  ⏞  
Expected #draws of a by T

EE [Ra] ,
K∑︁

a=1
Eπ

[︁NaT
]︁
μa
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Performance Metric Under Incomplete InformationRegret
Regret RegE ,π(T)

, Value of Optimal Algorithm with Full Information

− Value of Algorithm π with Incomplete Information

= Tμ∗ − K∑︁
a=1

Eπ

[︁NaT
]︁
μa

=
K∑︁

a=1
Eπ

[︁NaT
]︁
(μ∗ − μa)

(︃
since, T = K∑︁

a=1
Eπ

[︁NaT
]︁)︃

=
K∑︁

a=1
Expected number of time decision a is taken

× Expected suboptimality of arm a (Δa)
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Two Faces of a Bandit: Exploration and Exploitation

Pure Exploration
Take each decision uniformly and
accumulate empirical knowledge.

Pure Exploitation
Take the decision with maximum
empirical reward as per present
knowledge.
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Pure Exploration

Pure Exploitation

O(n)

Optimal Bandit Algorithm

O(log n)

The Exploration–exploitation Trade-off

Exploration and exploitation should be adapted on-the-go to achieve the
optimal regret.
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Hardness of a Bandit ProblemLower Bounds on Regret

Minimax Regret [Vogel, 1960]

Reg∗Minimax(T) ,minπ mx
E

Reg(π,E , T)

• The best achievable regret in the worst-case scenario.

• The lower bound for non-private case is
√︀
(K − 1)T
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Hardness of a Bandit ProblemLower Bounds on Regret
Bayesian Minimax Regret [Lattimore and Szepesvári, 2019]

In Bayesian setup, a prior distribution Q over environments E is assumed.

RegBayes(π, T,Q) ,
∫︁
E T Reg(π,E , T)dQ(E ).

The Bayesian minimax regret is the worst possible regret over all priors Q:
Reg∗Bayes(T) ,minπ mxQ

∫︁
E T Reg(π,E , T)dQ(E )

=min
π
mxQ RegBayes(π, T,Q).

• The best achievable regret for the worst-case prior.

• Lower bound for non-private case is
√︀
(K − 1)T.
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Hardness of a Bandit ProblemLower Bounds on Regret

Problem-dependent Regret [Lai and Robbins, 1985]

Reg∗E (T) ,minπ RegE (π, T)

• The best achievable regret for a specific environment E .

• The lower bound for non-private case is

K∑︁
a=1

Δa
DKL (fa‖f∗) log T , c(E ) log T.
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What’s Next?

1. Multi-armed Bandits: A Practitioner’s View

2. Data Privacy: DP Framework

3. Private Bandits: Fundamental Definitions

4. Multi-armed Bandits: A Designer’s View

5. Private Bandits: Regret Lower Bounds

6. Open Problems: Things to Work on
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Preparing the IngredientsThe Probability Space of Observed Histories
• Random variable: Observed historyHT , {(Ai, Xi)}Ti=1

• Measurable space, σ-measure:
(︀
([K] × R)T ,B ([K] × R)T)︀

• Probability measure: PT
πE induced by the algorithm π and

environment E

PT
πE , PπE (HT)

=
T∏︁
t=1

π(At|Ht−1)⏟  ⏞  
Chosen action depends only
on algorithm and history

× fAt(Xt)⏟  ⏞  
Observed reward depends
only on the environment
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A Proof of Regret Lower BoundsA Unified Framework

Step 1:
Choose two environments E1 and E2.

They are the same except that the arm 1 is optimal in E1
and arm i is optimal in E2.

Bad event for E1: E , N1(T) ≤ T/2
Bad event for E2: EC , N1(T) > T/2
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A Proof of Regret Lower BoundsA Unified Framework
Step 2:
Lower Bounding the Regrets of the Environments.

Reg(π,E1, T) =
K∑︁

a=1
Eπ

[︁NaT
]︁
(μ∗ − μa)

≥ PT
πE1
(N1(T) ≤ T/2) T

2
(μ1 − μi)

= PT
πE1
(E) T

2
(μ1 − μi)

Reg(π,E2, T) > PT
πE2
(N1(T) > T/2) T

2
(μ′i − μ1)

= PT
πE2

(︀EC)︀ T
2
(μ′i − μ1)
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A Proof of Regret Lower BoundsA Unified Framework
Step 3:
From regret lower bounds to KL-divergence of observed histories.

Reg(π,E1, T) + Reg(π,E2, T)
≥
T
2

(︁
PT
πE1
(E)(μ1 − μi) + PT

πE2
(EC)(μ′i − μ1)

)︁
≥
T
2

(︁
PT
πE1
(E) + PT

πE2
(EC))︁min{(μ1 − μi), (μ′i − μ1)}

≥
T
4
exp(− DKL

(︁
PT
πE1
‖PT

πE2

)︁
⏟  ⏞  

Dissimilarity of probability mea-
sures for two contrasting envi-
ronments and a given algorithm

) min{(μ1 − μi), (μ′i − μ1)}⏟  ⏞  
suboptimality of the environ-
ments

Minimising regret is now equivalent to maximising DKL
(︀
PπE1‖PπE2

)︀
.

24/34
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A Proof of Regret Lower BoundsA Unified Framework
Step 4:
KL-divergence decomposition [Garivier et al., 2018] and upper bounding
the divergence.

DKL

(︁
PT
πE1
‖PT

πE2

)︁
=

T∑︁
t=1

DKL (π(At|Ht,E1)‖π(At|Ht,E2))

+
K∑︁

a=1
EE1 [Na(T)] DKL (fa ∈ E1‖fa ∈ E2)

=
T∑︁
t=1

DKL (π(At|Ht,E1)‖π(At|Ht,E2)) + EE1 [Ni(T)] DKL

(︁fi‖f′i )︁
≤ Upper Bound1 + Upper Bound2
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Upper Bounding the KL Divergence

Non-private

Upper Bound1 = 0

Upper Bound2 = EE1 [Ni(T)] DKL

(︁fi‖f′i )︁
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Upper Bounding the KL Divergence

Local DP

Upper Bound1 = 0

Upper Bound2 = 2min{4, e2ε}(eε − 1)2EE1 [Ni(T)] DKL

(︁fi‖f′i )︁
= L−2(ε) EE1 [Ni(T)] DKL

(︁fi‖f′i )︁
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Upper Bounding the KL Divergence

Global DP

Upper Bound1 = 2(ε+ L) = C
Upper Bound2 = exp(2(ε+ L)) EE1 [Ni(T)] DKL

(︁fi‖f′i )︁
= eC EE1 [Ni(T)] DKL

(︁fi‖f′i )︁
• L is the Lipschitz constant of the log-density of the observed rewards

ln sp
a,xa ,x′a

PE (xa)
PE (x′a) ≤ L

This is a measure of smoothness on the probability of rewards.
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Upper Bounding the KL Divergence

DKL

(︁
PT
πE1
‖PT

πE2

)︁
≤ u1 + u2 EE1 [Ni(T)] DKL

(︁fi‖f′i )︁

• For non-private bandit, u1 = 0 and u2 = 1

• For locally private bandit, u1 = 0 and u2 = L−2(ε)
• For globally private bandit, u1 = C = 2(ε+ L) and u2 = eC
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Minimax Regret Bound I

Step 5:
Substitute environment parameters such that
min{(μ1 − μi), (μ′i − μ1)} = Δ and EE1 [Ni(T)] ≤ TK−1 .
Thus, we get

mx{Reg(π,E1, T),Reg(π,E2, T)}
≥

1

2
(Reg(π,E1, T) + Reg(π,E2, T))

≥
TΔ
4
exp

[︂
u1 + u2 T

K − 1
DKL (fK(0, I)‖fK(2Δ, I))

]︂
≥

TΔ
4
exp

[︂
u1 + u2 T

K − 1
× 2Δ2

]︂
.
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Minimax Regret Bound II

Step 6:
Boring algebra

Reg∗Minimax(T) ≥
√︀G(ε)(K − 1)T For global DP, u1 = C and u2 = eC

≥
√︁L2(ε)(K − 1)T For local DP, u1 = 0 and u2 = L−2(ε)

Here,

G(ε) = ln(ε2 + 1)

e6εε(1+ 2
ε )
= O

(︂ 1

ε

)︂
L2(ε) = 1

min{4, e2ε}(eε − 1)2
= O

(︂ 1

ε2

)︂
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Bayesian Minimax Regret

Theorem 1 in [Lattimore and Szepesvári, 2019]

For bounded rewards,

Reg∗minimax(T) = Reg∗Bayes(T).

Lower bounds are available for free here! :)
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Problem-dependent Regret Bound

Step 5:
Substitute environment variables such that

DKL

(︁fi‖f′i )︁ ≤ DKL (fi‖f∗) + δ.

For small δ, f′i and f∗ are similar and thus, hard to distinguish.

Reg(π,E1, T) + Reg(π,E2, T)
≥
T
4
min{(μi − μ∗), (μ′i − μ∗)}

exp
[︀
−u1 − u2EπE1 [Ni(T)] (DKL (fi‖f∗) + δ)

]︀
.
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Problem-dependent Regret Bound

Step 6:
Do some boring algebra, take limit T→∞, and assume that the regrets for
both the environments are sublinear,

lim infT→∞
Reg(π,E1, T)

log T = lim infT→∞
∑︁
a 6=a∗

EπE1 [Na(T)] (μa − μ∗)

log T (Def. of regret)

≥
1

u2
∑︁
a 6=a∗

(μa − μ∗)

DKL (fa‖f∗)
(upper bound on KL
divergence)

=
1

L2(ε)
∑︁
a 6=a∗

Δa
DKL (fa‖f∗) for local DP

≥
1

1+ 2ε

∑︁
a 6=a∗

Δa
DKL (fa‖f∗) for global DP
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The Cost of PrivacyRegret Lower Bounds for Private Bandits [Basu et al., 2020]
Lower Minimax Bayesian Minimax Problem-dependent
Bounds Regret Regret Regret

Non-private
√︀
(A− 1)T √︀

(A− 1)T c(E ) log T
Global DP

√︀G(ε)(A− 1)T √︀G(ε)(A− 1)T (1+ ε)−1c(E ) log T
Local DP L(ε)√︀(A− 1)T L(ε)√︀(A− 1)T L2(ε)c(E ) log T

Lower bounds:
Non-private (O(1)) < Global DP (O(1/ε)) < Local DP (O(1/ε2))
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Amount of Noise Injected

• As ε→ 0, the lower bounds go to infinity but in practice regret in
bandits is always O(T).

• As ε→∞, the lower bounds match with non-private lower bounds.
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What’s Next?

1. Multi-armed Bandits: A Practitioner’s View

2. Data Privacy: DP Framework

3. Private Bandits: Fundamental Definitions

4. Multi-armed Bandits: A Designer’s View

5. Private Bandits: Regret Lower Bounds

6. Open Problems: Things to Work on
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Open Problems(Dis)solving a Conjecture
Conjecture

The problem dependent lower bound for global DP will be(︂
c(E ) + 1

ε

)︂
log(T).

• Our lower bound is different as c(E ) + 1/ε ≥ c(E )
1+ε . We still

don’t know whether ours is achievable.

• The existing proof for contextual bandits by
[Shariff and Sheffet, 2018] is not correct for all ε.
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Open ProblemsDesigning Optimal Algorithms
• Designing optimal local DP algorithms, both UCB and Thompson

sampling types, for bandits
– Recent works in UCB type algorithms: [Ren et al., 2020,

Zheng et al., 2020, Chen et al., 2020, Zhou and Tan, 2020]

• Designing optimal global DP algorithms, both UCB and
Thompson sampling types, for bandits

– Recent works in UCB type algorithms for linear bandits:
[Sajed, 2019, Dubey and Pentland, 2020, Hannun et al., 2019,
Malekzadeh et al., 2020]

• Designing optimal DP algorithms for general RL
– Recent works with local DP: [Vietri et al., 2020]
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Privacy in Multi-armed Bandits
Fundamental Definitions & Lower Bounds on Regret

Extended Paper: https://arxiv.org/abs/1905.12298

Co-creator: Christos Dimitrakakis
Chalmers University of Technology, Sweden & University of Oslo, Norway

https://arxiv.org/abs/1905.12298


References I

[Basu et al., 2020] Basu, D., Dimitrakakis, C., and Tossou, A. (2020).
Differential privacy for multi-armed bandits: What is it and what is its cost?
arXiv preprint arXiv:1905.12298.

[Chen et al., 2020] Chen, X., Zheng, K., Zhou, Z., Yang, Y., Chen, W., and Wang, L. (2020).
(locally) differentially private combinatorial semi-bandits.
arXiv preprint arXiv:2006.00706.

[Dubey and Pentland, 2020] Dubey, A. and Pentland, A. (2020).
Differentially-private federated linear bandits.
Advances in Neural Information Processing Systems, 33.

[Dwork and Roth, 2014] Dwork, C. and Roth, A. (2014).
The algorithmic foundations of differential privacy.
Foundations and Trends® in Theoretical Computer Science, 9(3–4):211–407.

[Gajane et al., 2017] Gajane, P., Urvoy, T., and Kaufmann, E. (2017).
Corrupt bandits for preserving local privacy.
arXiv preprint arXiv:1708.05033.

34/34



References II

[Garivier et al., 2018] Garivier, A., Ménard, P., and Stoltz, G. (2018).
Explore first, exploit next: The true shape of regret in bandit problems.
Mathematics of Operations Research.

[Hannun et al., 2019] Hannun, A., Knott, B., Sengupta, S., and van der Maaten, L. (2019).
Privacy-preserving contextual bandits.
arXiv preprint arXiv:1910.05299.

[Lai and Robbins, 1985] Lai, T. L. and Robbins, H. (1985).
Asymptotically efficient adaptive allocation rules.
Advances in applied mathematics, 6(1):4–22.

[Lattimore and Szepesvári, 2019] Lattimore, T. and Szepesvári, C. (2019).
An information-theoretic approach to minimax regret in partial monitoring.
In Conference on Learning Theory, pages 2111–2139.

[Malekzadeh et al., 2020] Malekzadeh, M., Athanasakis, D., Haddadi, H., and Livshits, B.
(2020).
Privacy-preserving bandits.
Proceedings of Machine Learning and Systems, 2:350–362.

34/34



References III

[Mishra and Thakurta, 2015] Mishra, N. and Thakurta, A. (2015).
(nearly) optimal differentially private stochastic multi-arm bandits.
In Proceedings of the Thirty-First Conference on Uncertainty in Artificial Intelligence,
pages 592–601. AUAI Press.

[Ren et al., 2020] Ren, W., Zhou, X., Liu, J., and Shroff, N. B. (2020).
Multi-armed bandits with local differential privacy.
arXiv preprint arXiv:2007.03121.

[Sajed, 2019] Sajed, T. (2019).
Optimal differentially private finite armed stochastic bandit.

[Shariff and Sheffet, 2018] Shariff, R. and Sheffet, O. (2018).
Differentially private contextual linear bandits.
In Advances in Neural Information Processing Systems, pages 4296–4306.

[Tossou and Dimitrakakis, 2016] Tossou, A. C. and Dimitrakakis, C. (2016).
Algorithms for differentially private multi-armed bandits.
In Thirtieth AAAI Conference on Artificial Intelligence.

34/34



References IV

[Tossou and Dimitrakakis, 2017] Tossou, A. C. Y. and Dimitrakakis, C. (2017).
Achieving privacy in the adversarial multi-armed bandit.
In Thirty-First AAAI Conference on Artificial Intelligence.

[Vietri et al., 2020] Vietri, G., Balle, B., Krishnamurthy, A., and Wu, Z. S. (2020).
Private reinforcement learning with pac and regret guarantees.
arXiv preprint arXiv:2009.09052.

[Vogel, 1960] Vogel, W. (1960).
An asymptotic minimax theorem for the two armed bandit problem.
The Annals of Mathematical Statistics, 31(2):444–451.

[Zheng et al., 2020] Zheng, K., Cai, T., Huang, W., Li, Z., and Wang, L. (2020).
Locally differentially private (contextual) bandits learning.
arXiv preprint arXiv:2006.00701.

[Zhou and Tan, 2020] Zhou, X. and Tan, J. (2020).
Local differential privacy for bayesian optimization.
arXiv preprint arXiv:2010.06709.

34/34


	Multi-armed Bandits: A Practitioner's View
	Data Privacy: DP Framework
	Private Bandits: Fundamental Definitions
	Multi-armed Bandits: A Designer's View
	Private Bandits: Regret Lower Bounds
	Open Problems: Things to Work on

