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Taxonomy of Model Extraction Attacks
What’s out there?

• Access to model:White-box or black-box [TZJ+16]

• Query dataset: Synthetic [TZJ+16], perturbed version of private [PMG+17] or public [PGS+20]

• Response to query: Prediction distribution [JCB+20], gradients [MSDH19] or predicted
label [PMG+17]

• Model class: Linear [MSDH19], neural network [MSDH19, JCB+20], or CNN [CSBB+18]

• Objective of extraction: Task accuracy [JCB+20], fidelity [PGS+20], or functional
equivalence [PMG+17]
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Taxonomy of Model Extraction Attacks
Best of old and new worlds!

• Access to model:White-box or black-box [TZJ+16]

• Query dataset: Synthetic [TZJ+16], perturbed version of private [PMG+17] or public [PGS+20]

• Response: Prediction distribution [JCB+20], gradients [MSDH19] or predicted label [PMG+17]

• Model class: Linear [MSDH19], neural network [MSDH19, JCB+20] or CNN [CSBB+18]
→model-agnostic

• Objective: Task accuracy [JCB+20], fidelity [PGS+20], or functional equivalence [PMG+17]

Can we define an information-theoretic objective that can cover the utilities of these objective?
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Distributionally Equivalent Model Extraction
Match the Prediction Distributions

Observations
1. Any classification model ƒ T and a data generating distribution D Q together induces a predictive
distribution over label-input pairs (Y, X).

2. Any utility metric, e.g. accuracy, fidelity, are functionals computed on this joint distribution.

Intuition: Design an extraction attack that selects a set of queries D Q and creates an extracted
model ƒE

ω
to minimise the KL-divergence between the induced joint distributions.

(ω∗
min

,D Q
min
) ≜ rgmin

ω,DQ

DKL

(︁
Pr(ƒ T

θ∗
(Q), Q)∥Pr(ƒE

ω
(Q), Q)

)︁
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Max-Information Model Extraction
Leak Information about the Prediction Distribution

Goal of Privacy Attack

To maximially leak privacy of a target model and a private dataset, we should increase the
information content passed from predictive distribution of the target model to that of the
extracted model.

Intuition: An extracted model ƒE and a query distribution should aim to maximise the mutual
information between the joint distributions of input features Q ∼ D Q and predicted labels
induced by ƒE and that of the target model ƒ T .

(ω∗
mx

,D Q
mx
) ≜ rgmx

ω,DQ

 (Pr(ƒ T
θ∗
(Q), Q)∥Pr(ƒE

ω
(Q), Q))
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A Variational Formulation of Model Extraction
Reducing the Attacks to an Optimisation Problem

Upper Bounding Distributional Closeness

If we choose KL-divergence as the similarity metric, then for a query generating distribution D Q

DKL

(︂
Pr(ƒ T

θ∗
(Q), Q)∥Pr(ƒE

ω∗
DEq

(Q), Q)
)︂
≤min

ω
EQ[ (ƒ Tθ∗(Q), ƒ

E
ω
(Q))] − H(ƒE

ω
(Q))

Lower Bounding Information Leakage

For any given D Q, the information leaked by any max-information attack is lower bounded as:



(︂
Pr(ƒ T

θ∗
(Q), Q)∥Pr(ƒE

ω∗
min

(Q), Q)
)︂
≥mx

ω
-EQ[ (ƒ Tθ∗(Q), ƒ

E
ω
(Q))] + H(ƒE

ω
(Q))
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Marich: Distributionally Equivalent and Max-Information Extraction
Entropy of Predictions and Model Mismatch-guided Query Selection

At every round t, Marich selects queries Qt satisfying

EntropySampling

t−1∑︀
=1

H(ƒE
ωt−1
(Q ∪ Q))+− 1

t

t−1∑︀
=1

(ƒ T
θ∗
(Q ∪ Q), ƒE

ωt−1
(Q ∪ Q))

EntropyGradientSampling

= rgmx
Q∈DQQt

LossSampling

Use Qt to train the extracted model and update it to ƒE
ωt
.
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Quality of Model Extraction
Task Accuracy

Marich Random Entropy K-Center Target model
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Quality of Model Extraction
Distributional Closeness

Marich Entropy Random

0 1000 2000 3000 4000 5000
Queries

2

1

0

1

lo
g

(K
L 

D
iv

er
ge

nc
e)

(a) LR with EMNIST

0 250 500 750 1000 1250 1500
Queries

3

2

1

0

1

lo
g

(K
L 

D
iv

er
ge

nc
e)

(b) BERT with AGNews

7/10



Quality of Model Extraction
Informativeness of Extraction Leading to Membership Inference

Member dataset Target model Query Dataset Algorithm #Queries MI acc. MI agreement MI agreement AUC

MNIST LR

- - 50,000 87.99% - -

- - 50,000 92.30% - -

EMNIST MARICH 5,130 88.58% 92.82% 92.73%

CIFAR10 MARICH 1,420 94.27% 93.97% 92.43%

EMNIST Random 5,130 89.61% 91.01% 91.11%

CIFAR10 Random 1,420 92.61% 89.84% 85.79%

CIFAR10 Resnet18

- - 40,000 79.35% - -

STL10 MARICH 6,950 93.90% 75.52% 76.69%

STL10 Random 6,950 92.32% 75.25% 75.83%

BBCNews BERT

- - 1,490 98.61% - -

AGNews MARICH 1,070 94.42% 91.02% 82.62%

AGNews Random 1,070 89.17% 86.93% 58.64%
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Performance against ϵ-DP Defenses
Privacy Level ϵ ≥ 2 cannot Protect Much

Target model (LR)  = 0.25  = 2  = 8  = 
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Impact of Model Mismatch
More Expressive Models can Steal Low Expressive Models
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Marich is a model-agnostic extraction algorithm that adaptively selects a small subset of a public
dataset to maximise information leakage from ƒ T .
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Can we develop a theoretical characterisation of the capabilities and limitations of these attacks?
For further details, please visit: https://github.com/Debabrota-Basu/marich

https://github.com/Debabrota-Basu/marich
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Marich: Distributionally Equivalent and Max-Information Extraction

AlgorithmMarich
1: //* Initialisation of the extracted model*// ▷ Phase 1
2: Qtrn

0
← n0 datapoints randomly chosen from DQ

3: Y trn
0
← ƒ T(Qtrn

0
) ▷ Query the target model ƒ T with Qtrn

0
4: ƒE

0
← Train ƒE with (Qtrn

0
, Y trn
0
) for Em epochs

5: //* Adaptive query selection*// ▷ Phase 2
6: for t← 1 to T do
7: Qentropy

t
← EntropySampling(ƒE

t−1,D
Q \ Qtrn

t−1 , B)
8: Qgrd

t
← EntropyGradientSampling(ƒE

t−1, Q
entropy
t

, γ1B)
9: Qoss

t
← LossSampling(ƒE

t−1, Q
grd
t

, Qtrn
t−1 , Y

trn
t−1 , γ1γ2B)

10: Yne
t
← ƒ T(Qoss

t
) ▷ Query the target model ƒ T with Qoss

t

11: Qtrn
t
← Qtrn

t−1 ∪ Qoss
t

, Y trn
t
← Y trn

t−1 ∪ Yne
t

12: ƒE
t
← Train ƒE

t−1 with (Q
trn
t

, Y trn
t
) for Emx epochs

13: end for
1/4



Comparing Sampling Strategies

1000 2000 3000 4000
Size of entire query set

0

10

20

30

40

Ti
m

e 
(s

)

Entropy sampling
Entropy - Gradient sampling
Loss sampling

2/4



Quality of Extraction by Marich
Parametric Fidelity
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Quality of Extraction by Marich
Agreement in Predictions

Marich Entropy Random
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Membership Inference with Marich
Informativeness leading to Membership Inference

Member dataset Target model Query Dataset Algorithm Non-member dataset #Queries MI acc. MI agreement MI agreement AUC

MNIST LR

- - EMNIST 50,000 (100%) 87.99% - -

- - CIFAR10 50,000 (100%) 92.30% - -

EMNIST MARICH EMNIST 5,130 (3.5%) 88.58% 92.82% 92.73%

CIFAR10 MARICH CIFAR10 1,420 (2.37%) 94.27% 93.97% 92.43%

EMNIST RS EMNIST 5,130 (3.5%) 89.61% 91.01% 91.11%

CIFAR10 RS CIFAR10 1,420 (2.37%) 92.61% 89.84% 85.79%

CIFAR10 Resnet18

- STL10 40,000 (100%) 79.35% - -

STL10 MARICH STL10 6,950 (6.15%) 93.90% 75.52% 76.69%

STL10 RS STL10 6,950 (6.15%) 92.32% 75.25% 75.83%

BBCNews BERT

- AGNews 1,490 (100%) 98.61% - -

AGNews MARICH AGNews 1,070 (0.83%) 94.42% 91.02% 82.62%

AGNews RS AGNews 1,070 (0.83%) 89.17% 86.93% 58.64%

4/4


	Model Extraction Attacks
	
	Appendix

