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Taxonomy of Model Extraction Attacks
What'’s out there?

e Access to model: White-box or black-box [TZJ*16]

Query dataset: Synthetic [TZ)* 16], perturbed version of private [PMG*17] or public [PGS* 20]

e Response to query: Prediction distribution [JCBT 20], gradients [MSDH19] or predicted
label [PMG™T17]

Model class: Linear [MSDH19], neural network [MSDH19, JCB*20], or CNN [CSBB* 18]

Objective of extraction: Task accuracy [JCB™20], fidelity [PGS™20], or functional
equivalence [PMG*17]
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Taxonomy of Model Extraction Attacks
Best of old and new worlds!

e Access to model: White-box or black-box [TZJ* 16]
e Query dataset: Synthetic [TZJ*16], perturbed version of private [PMG™ 17] or public [PGS*20]
e Response: Prediction distribution [JCB*20], gradients [MSDH19] or predicted label [PMG™17]

e Model class: Linear [MSDH19], neural network [MSDH19, JCB*20] or CNN [CSBB™ 18]
— model-agnostic

e Objective: Task accuracy [JCB*20], fidelity [PGS™*20], or functional equivalence [PMG™*17]

Can we define an information-theoretic objective that can cover the utilities of these objective?
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Distributionally Equivalent Model Extraction
Match the Prediction Distributions

Observations

1. Any classification model f7 and a data generating distribution 29 together induces a predictive
distribution over label-input pairs (Y, X).

2. Any utility metric, e.g. accuracy, fidelity, are functionals computed on this joint distribution.

Intuition: Design an extraction attack that selects a set of queries 2° and creates an extracted
modelfi to minimise the KL-divergence between the induced joint distributions.
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Max-Information Model Extraction
Leak Information about the Prediction Distribution

Goal of Privacy Attack

To maximially leak privacy of a target model and a private dataset, we should increase the
information content passed from predictive distribution of the target model to that of the
extracted model.

Intuition: An extracted model f£ and a query distribution should aim to maximise the mutual
information between the joint distributions of input features @ ~ 2? and predicted labels
induced by f£ and that of the target model f7.

(Wr o 2040 = argmax I(Pr(f], (Q), QI Pr(s5(Q). Q))
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A Variational Formulation of Model Extraction
Reducing the Attacks to an Optimisation Problem

Upper Bounding Distributional Closeness

If we choose KL-divergence as the similarity metric, then for a query generating distribution 2

b (Pre7.(@). NP, (©0.02) < min ECGENNEEN - HOS@)

Lower Bounding Information Leakage

For any given 29, the information leaked by any max-information attack is lower bounded as:

{(Pre7.(0), 9IPrE, (0).0)) > mox - EENGEGIEENN + HUS@)

5/10



Marich: Distributionally Equivalent and Max-Information Extraction
Entropy of Predictions and Model Mismatch-guided Query Selection

At every round t, Marich selects queries Q; satisfying

= argmax +
QeD?

o v

LossSampling [« EntropyGradientSampling

EntropySampling

A

Use Q; to train the extracted model and update it tofj .

6/10



Quality of Model Extraction
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Quality of Model Extraction
Distributional Closeness
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Quality of Model Extraction

Informativeness of Extraction Leading to Membership Inference

Member dataset | Target model | Query Dataset | Algorithm | #Queries | Mlacc. | Ml agreement | Ml agreement AUC
= = 50,000 87.99% = =
= = 50,000 92.30% = =
MNIST IR EMNIST MARICH 5130 88.58% 92.82% 92.73%
CIFAR10 MARICH 1,420 94.27% 93.97% 92.43%
EMNIST Random 5,130 89.61% 91.01% 91.11%
CIFAR10 Random 1,420 92.61% 89.84% 85.79%
= = 40,000 79.35% = =
CIFAR10 Resnet18 STL10 MARICH 6,950 | 93.90% 75.52% 76.69%
STL10 Random 6,950 92.32% 75.25% 75.83%
= = 1,490 98.61% = =
BBCNews BERT AGNews MARICH 1,070 94.42% 91.02% 82.62%
AGNews Random 1,070 89.17% 86.93% 58.64%
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Performance against e-DP Defenses
Privacy Level € > 2 cannot Protect Much
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Impact of Model Mismatch
More Expressive Models can Steal Low Expressive Models
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Marich is a model-agnostic extraction algorithm that adaptively selects a small subset of a public
dataset to maximise information leakage from f7.
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Can we develop a theoretical characterisation of the capabilities and limitations of these attacks?
For further details, please visit: https://github.com/Debabrota-Basu/marich


https://github.com/Debabrota-Basu/marich
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Marich: Distributionally Equivalent and Max-Information Extraction

Algorithm Marich

1: //* Initialisation of the extracted model*// > Phase 1
: ani” «— ng datapoints randomly chosen from D°
: Yga"" <—fT(Qg“i”) > Query the target model f7 with an"”
: fg « Train f£ with (Og""”, Yg“"”) for Enqx epochs
: //* Adaptive query selection*// > Phase 2
: fort < 1to T do
QE"'ToPY «— EntropySampling(ff_,, D\ Oir_“i”, B)
Ofmd — EntropyGradientSampIing(ff_l, Qf””o’”y, Y1B)
Oé"ss — LossSampIing(ff_l, Qf“’d, Qif’i”, thf’l"”, Y1v2B)
0. Yrew «—fT(O’t"SS) > Query the target model f™ with O’t"SS
1 O;rm‘n — Q;Tin U Qioss, Y;.‘r‘ain — ‘Y;’ia]i-n U Y:ew
12: ff « Train ff_l with (Q{%", Y[7%") for Emax epochs
13: end for
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Comparing Sampling Strategies
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Quality of Extraction by Marich

Parametric Fidelity
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Quality of Extraction by Marich

Agreement in Predictions

100

80

60

40

Agreement with fT %

20

HEl Marich

—e— Marich
Entropy
—— K-Center

(0] 1000 2000 3000 4000 5000
Queries

(a) LR with EMNIST

Entropy

Agreement with fT %

0.8

=
o

2
=~

=
N

I Random

—s— Marich

Entropy e =
—— Random g

(0] 250 500 750 1000 1250 1500
Queries

(b) BERT with AGNews

3/4



Membership Inference with Marich
Informativeness leading to Membership Inference

Member dataset | Target model | Query Dataset | Algorithm | Non-member dataset #Queries Ml acc. | Ml agreement | MI agreement AUC
= = EMNIST 50,000 (100%) | 87.99% = =
= = CIFAR10 50,000 (100%) | 92.30% = =
MNIST IR EMNIST MARICH EMNIST 5,130 (3.5%) 88.58% 92.82% 92.73%
CIFAR10 MARICH CIFAR10 1,420 (2.37%) 94.27% 93.97% 92.43%
EMNIST RS EMNIST 5,130 (3.5%) 89.61% 91.01% 91.11%
CIFAR10 RS CIFAR10 1,420 (2.37%) 92.61% 89.84% 85.79%
= STL10 40,000 (100%) | 79.35% = =
CIFAR10 Resnet18 STL10 MARICH STLIO 6,950 (6.15%) | 93.90% 75.52% 76.69%
STL10 RS STL10 6,950 (6.15%) 92.32% 75.25% 75.83%
S AGNews 1,490 (100%) 98.61% = -
BBCNews BERT AGNews MARICH AGNews 1,070 (0.83%) | 94.42% 91.02% 82.62%
AGNews RS AGNews 1,070 (0.83%) 89.17% 86.93% 58.64%
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