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(Un)Fairness in Machine Learning
Predic on of eligibility of health insurance

• Sensi ve features,A = {age}
• Non-sensi ve features,X = {fitness, income}
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Final Des na on
Audi ng, Understanding, and Elimina ng Bias

• Problem:ML classifiers may become unfair/biased to certain demographic groups

• Solu on:Mul ple fairness metrics & algorithms are proposed to enhance fairness

• Missing Link: Scalable algorithms for verifica on and explana on of fairness

Plat du Jour

- Fairness Verifica on: A rigorous es mate of fairness of a classifier
- Fairness Explana on: Iden fying the source of unfairness of a classifier through the
lens of input features
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Jus cia: A Stochas c SAT Approach to Formally Verify Fairness
Fairness Verifica on with Boolean Representa on [GBM ]

Given
• a binary classifierA : (X,A)→ Ŷ ∈ {0,1} and
• a probability distribu on (X,A, Y) ∼ D ,

verify whetherA achieves fairness w.r.t. D
Sta s cal parity:A sa sfies ε-sta s cal parity if for ε ∈ [0,1],

mx
a

Pr[ Ŷ = 1|A = a] −min
a

Pr[ Ŷ = 1|A = a] ≤ ε

Our Approach: Compute the maximum and minimum of Pr[ Ŷ = 1|A = a]
by a reduc on to stochas c SAT

Key Quan ty

Pr[ Ŷ = 1|A = a] is called
the condi onal PPV (Posi ve
Predic ve Value)
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Sa sfiability (SAT) problem
A Recap

Given a Boolean formula φ in CNF (Conjunc ve Normal Form) defined over Boolean
variablesX, the SAT problem finds a sa sfying assignment ofX that evaluates φ to true

φ = (X1 ∨¬X2)∧ (¬X1 ∨ X2 ∨ X3)∧¬X1

• SAT solu on: X1 = false, X2 = false, X3 = true



Stochas c SAT (SSAT)
A Brief Introduc on

An SSAT formula  has a prefix and a CNF formula φ

 = q1X1, . . . , qnXn︸ ︷︷ ︸
prefix

, φ

• q is an universal (∀), existen al (∃), or randomized

Rp quan fier with
p = Pr[X = true]

• SSAT computes the probability of sa sfac on Pr[]



Stochas c SAT (SSAT)
The Seman cs

Let X be the le -most variable in the prefix of . The recursive seman cs of a SSAT
formula are

. Pr[true] = 1, Pr[false] = 0

. Pr[] =mxX{Pr[|X] ,Pr[|¬X]} if X is existen ally quan fied (∃)

. Pr[] =minX{Pr[|X] ,Pr[|¬X]} if X is universally quan fied (∀)

. Pr[] = pPr[|X] + (1 − p)Pr[|¬X] if X is randomized quan fied (

Rp)



Stochas c SAT (SSAT)
A Tale of Two Encodings

• Existen al-random SSAT formula

ER = ∃X2,∃X3,

R0.25X1, (X1 ∨¬X2)∧ (¬X1 ∨ X2 ∨ X3)∧¬X1

• Pr[ER] = 0.75
• Op mal assignment (maximiza on): X2 = false, X3 = false

• Universal-random SSAT formula

UR = ∀X2,∀X3,

R0.25X1, (X1 ∨¬X2)∧ (¬X1 ∨ X2 ∨ X3)∧¬X1

• Pr[UR] = 0
• Op mal assignment (minimiza on): X2 = true, X3 = false



Jus cia: Fairness Verifica on with SSAT

• featuresX ∪A are Boolean
• predicted class Ŷ is a CNF formula φŶ defined onX ∪A

Two Steps to Jus cia

. Compu ngmxa Pr[ Ŷ = 1|A = a], is equivalent to solving

ER ≜ ∃A1, . . . ,∃An︸ ︷︷ ︸
sensi ve features

,

Rp1X1, . . . ,

RpmXm︸ ︷︷ ︸
non-sensi ve features

, φŶ .

. For compu ngmina Pr[ Ŷ = 1|A = a], we subs tute ∃ with ∀ for sensi ve
features, and observe Pr[UR] = 1 − Pr[ER(¬φŶ)].

Use an SSAT solver to solve the ER-SSAT problems [LWJ ].
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• CNF representa on: (¬F∨  ∨ A)∧ (F∨ J)

• Pr[F] = 0.41, Pr[ ] = 0.93, Pr[ J] = 0.09

• To computemxa Pr[ Ŷ = 1|A = a], we
construct

ER = ∃A,
R0.41F,

R0.93,
R0.09J, (¬F∨∨A)∧(F∨J)

• mxa Pr[ Ŷ = 1|A = a] = Pr[ER] = 0.46

• mina Pr[ Ŷ = 1|A = a] = 0.43

• Sta s cal parity is 0.46 − 0.43 = 0.03
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construct

ER = ∃A,
R0.41F,

R0.93,
R0.09J, (¬F∨∨A)∧(F∨J)
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Theore cal Analysis
Psuedologarithmic Sample Complexity

Theorem (A PAC Bound for Jus cia)

With probability 1 − δ, Jus cia can es mate Sta s cal Parity (SP) up to a mul plica ve
error 2ε0, i.e. ŜP ≤ 2ε0SP, if it has access to

k = O

((
n+ ln

(1
δ

)) lnm

ln ε0

)

samples from the data-genera ng distribu on.
Here,m and n are the number of variables with randomised and existen al quan fiers
respec vely. Note that δ ∈ (0,1) and ε0 > 1.



Experimental Analysis
Robustness and Compound A ribute Level Analysis
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Experimental Results
Faster than the Fastest
State-of-the-art probabilis c fairness verifiers
• FairSquare: computes weighted volume of programs using SMT reduc on [ADDN ]
• VeriFair: probabilis c verifica on via sampling [BZSL ]

Dataset FairSquare VeriFair Jus cia

Ricci 4.8 5.3 0.1
Titanic 16 1.2 0.1
COMPAS 36.9 15.9 0.1
Adult — 295.6 0.2

Table: Run me of different verifiers in terms of execu on me (in seconds) with decision tree
classifiers. ‘—’ refers to meout.



Summary of Jus cia [GBM ]

What Jus cia can do?
• Jus cia is a SSAT based probabilis c fairness verifier
• First method to verify compound sensi ve groups
• More scalable in verifying decision trees and classifiers in Boolean formulas

What Jus cia cannot do?

• Classifiers have to be expressed as Boolean formulas, which is computa onally
expensive even for linear classifiers
• Assump on of probabilis c independence of features leads to incorrect es mates



Fairness Verifica on with Graphical Models [GBM a]
What did we achieve?
• We propose a method to include feature correla ons using a Bayesian network
leading to higher accuracy.

• A pseudo-polynomial fairness verifica on framework for linear classifiers that
solves a stochas c subset-sum problem (S3P).

What did we lack?
• Accuracy for Deep Nets: We do not have a formal and accurate verifier for
nonlinear classifiers

• Scalability for Images and Texts: Bayesian network scales badly for
high-dimensional data like images and texts.
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Explaining Unfairness
Data contains bias and classifiers trained on the data inherit the bias.
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Y N

Y N Y N

Decision tree (DT_ )

0.0 0.2 0.4 0.6 0.8 1.0
Statistical parity

fitness

income & fitness

income

higher-order influence

0.74

0.05

-0.33

0.07

0.53

Fairness influence func ons (FIF) of DT_



Explaining Unfairness
Iden fica on of the source of unfairness is important to take affirma ve ac ons.
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Fairness Influence Func ons
A Model-agnos c Quan fica on of Fairness Explana ons [GBM b]

Fairness Influence Func on (FIF)S : XS→ Rmeasures the contribu on of the subset
of featuresXS ⊆ X[k] on the bias ƒ(A ,D) of the classifierA for datasetD.

Axiom: Addi vity of influence

Sum of FIFs of all subsets of non-sensi ve features is equal to the bias of the classifier.

ƒ(A ,D) =
∑

S⊆[ |X|]\;S



FairXplainer: Compu ng Fairness Influence Func ons

Key Ideas

. Sta s cal parity is equal to a scaled difference between variance of outcomes for sensi ve
groups

If pa ≜mxa Pr[ Ŷ = 1|A = a] and pa′ ≜mina′ Pr[ Ŷ = 1|A = a′],

Sta s cal Parity =
Var[ Ŷ = 1|A = a] − Var[ Ŷ = 1|A = a′])

1 − (pa + pa′)



FairXplainer: Compu ng Fairness Influence Func ons

Key Ideas

. Sta s cal parity is equal to a scaled difference between variance of outcomes for sensi ve
groups
. If we can decompose the variance in terms of the basis func ons of the classifier, we can
decompose the first and higher order variances as the variances of these decomposi ons.

If pa ≜mxa Pr[ Ŷ = 1|A = a] and pa′ ≜mina′ Pr[ Ŷ = 1|A = a′],

Sta s cal Parity =
Var[ Ŷ = 1|A = a] − Var[ Ŷ = 1|A = a′])
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(V(a)


− V(a

′)

) +
∑n

<j

2-nd order︷ ︸︸ ︷
(V(a)

j
− V(a

′)
j
) + · · · +

n-th order︷ ︸︸ ︷
(V(a)

12...n
− V(a

′)
12...n

)

1 − (pa + pa′)



Explaining Sta s cal Parity in COMPAS Dataset
Higher Order Effects are Decisive
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Explaining Sta s cal Parity in COMPAS Dataset
Local Explana ons cannot Explain Unfairness

0.0 0.1 0.2 0.3 0.4
max

a Pr[Y = 1|A = a] min
a′ Pr[Y = 1|A = a′]

age

priors count

sex

c charge degree

juv fel count

juv misd count

juv other count

race

Fe
at

ur
e

0.
42

SHAP, A =  {race}

(c) Shapley Explana ons

0.00 0.05 0.10 0.15 0.20
max

a Pr[Y = 1|A = a] min
a′ Pr[Y = 1|A = a′]

priors count

sex & c charge degree

age & c charge degree

sex & age

priors count & c charge degree

sex & priors count

juv misd count

juv other count

juv other count & c charge degree

sex & juv other count

residual effect

higher-order effect

Fe
at

ur
e

0.
17

HDMR, A =  {race}

(d) FairXplainer: First and second order effect



Explaining Sta s cal Parity in COMPAS Dataset
FairXplainer can Detect Effects of Affirma ve/Puni ve Ac ons
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Summary of FairXplainer [GBM b]

Axioma c Formula on of Global Explana ons

Observa on: Fairness, par cularly group fairness, is a global property of the classifier.

- We develop an axioma c formula on of Fairness Influence Func ons for any subset of
features.

A Model-agnos c Algorithm

Observa on: Fairness computa on is equivalent to compu ng the sensi vity of the
classifier w.r.t. different sensi ve groups

- We propose FairXplainer that Extend global sensi vity analysis techniques from
func onal analysis to classifica on for compu ng FIFs
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Where are We?

• Two facets of audi ng bias of ML algorithms:

• Fairness verifica on allows us to macro-audit an ML algorithm
• Fairness explana on allows us to detect sources of bias, and influences of
affirma ve/puni ve ac ons

• Fairness verifiers: Jus cia and FVGM improve scalability and accuracy for Boolean
representable and linear classifiers

• Fairness explana on: FairXplainer iden fies the effect of features and their interac ons on
the bias



What’s ahead?

• Verifica on beyond Boolean and linear: Study scalable verifiers with formal
guarantees for nonlinear classifiers, such as deep NN

• Elimina on of bias: Using fairness verifiers and explainers to eliminate bias fromML
algorithms

The Golden Goal: Regula ng and Audi ng Bias in ML

Developing and deploying theore cally-grounded standards for regula ng and
elimina ng bias from digital data-dependent applica ons
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Want to detect unfairness in your favourite classifier?

Use our Python library: “pip install jus cia”

Joint works with Bishwami ra Ghosh and Kuldeep Meel, Na onal Univ. of Singapore.



FairXplain: Key Ideas
Idea
Sta s cal parity can be computed using the difference between variance of outcomes for
sensi ve groups

If pa ≜mxa Pr[ Ŷ = 1|A = a] and pa′ ≜mina′ Pr[ Ŷ = 1|A = a′],

Sta s cal Parity =
Var[ Ŷ = 1|A = a] − Var[ Ŷ = 1|A = a′])
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FairXplain: Key Ideas
Idea
If we can decompose the variance in terms of the basis func ons of the classifier, we can
decompose the first and higher order variances as the variances of these decomposi ons.

ƒ{}(X{}) ≈
m+1∑

r=−1
α
r
Br(X{})

ƒ{,j}(X{,j}) ≈
m+1∑

p=−1

m+1∑

q=−1
βj
pq
Bp(X{})Bq(X{j})

ƒ{,j,k}(X{,j,k}) ≈
m+1∑

p=−1

m+1∑

q=−1

m+1∑

r=−1
γjk
pqr

Bp(X{})Bq(X{j})Br(X{j})



Fairness Verifica on with Graphical Models [GBM a]
Jus cia without Independence (Assump on): Accuracy

The schema c:
• Discre se each con nuous feature X to a set of Boolean featuresB using histogram
• Refine the CNF representa on with the discre sed features
• Learn a Bayesian network on the discre sed features
• Run Jus cia with the marginals from Bayesian network and the new CNF formula



Fairness Verifica on with Graphical Models [GBM a]
Stochas c Subset Sum for Linear Classifiers: Scalability

The schema c:
• Discre se each con nuous feature X to a set of Boolean featuresB using histogram
• Refine the CNF representa on with the discre sed features
• Learn a Bayesian network on the discre sed features
• Run Jus cia with the marginals from Bayesian network and the new CNF formula
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Figure: A cactus plot to present the scalability of different fairness verifiers on Linear Regression
(LR) classifiers and Support Vector Machine (SVM)
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