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Algorithmic Decision Making
Selecting Individuals

Figure: College Admissions

Figure: Job Recruitment
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Assumption: The success of each candidate is independent from one another.
=⇒ Individual’s contribution to DM’s utility is the estimated probability of success.
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Algorithmic Decision Making
Selecting Set of Individuals

Figure: Student Groups for Projects

Figure: Fantasy Premier League 4



Algorithmic Decision Making
Selecting Set of Individuals

Figure: Participatory Budget
Figure: Committee Selection
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A Meritocratic Decision Maker
Selecting Sets: Team Building
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Goal: The DM wants to build a team of two that can do football analytics.
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Observation: Individuals can have complementary skills or features,
and a team is more than an individual.
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Observation: Complementary features lead to higher probability of success for the team.
=⇒ Individual’s contribution to DM’s utility is dependent on the possible teams.
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Result: Average of marginal contributions of Alice, Bob, Carla and David
to all possible teams are: (1/12,0,0,−1/12).
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Questions

How to quantify ‘merit’ of an individual during a set selection?

What are the factors that influence merit?

How to maximise ‘merit’ of a set during selection?
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Our Answers [BSBD21]

How to quantify ‘merit’ of an individual during a set selection?
Quantification of ‘merit’ depends on the expected contribution of the individual
given the composition of the teams and their estimated utilities.

What are the factors that influence merit?
The utility function of the DM, the utility evaluator for the teams, and the
probability of selecting a team.

How to maximise ‘merit’ of a set during selection?
Computing a policy, i.e. a vector dictating probabilities of selection, which
maximises the total expected utility of the selected team.
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Optimal Set Selection
A Decision Theoretic Formulation

Ingredients:

Population:N ≜ {1, . . . , N} denotes the set n individuals

Population’s data: x ≜ {1, . . . , N} denotes the set of features of n individuals

Outcomes: y ∈ Y denotes outcomes due to the selected set’s performance

Utility: (a,y) denotes the utility of the selection a ⊆ N w.r.t. the outcomes y

Policy: π(a | x), denotes the probability of selecting a subset a ⊆ N given the data
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Optimal Set Selection
A Decision Theoretic Formulation

Goodness of a Selection Policy: Expected Utility

U(π,x) ≜ Eπ[ | x] = Eπ[E[ | a,x]]

=
∑︁

a⊆N
π(a | x)⏟  ⏞  

Pocy

∑︁
y∈Y

P(y | a,x) (a,y)⏟  ⏞  
Utty

.

P(y | a,x) is a predictive model used by the DM for estimating outcome probabilities.
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π(a | x)⏟  ⏞  
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Optimal Set Selection as Policy Optimisation

Given a family of parameterised policies  ≜ {π𝜃 | 𝜃 ∈ Θ}, compute the policy
maximising the expected utility

𝜃∗(x) = rgmx
𝜃∈Θ

U(π𝜃,x).
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Optimal Set Selection
A Policy Gradient Algorithm

Algorithm A Policy gradient algorithm

1: Input: a model P(y|a,x), a populationN with features x and a utility function .
2: Initialise: 𝜃0, δ > 0, learning rate η > 0
3: while ∥𝜃+1 − 𝜃 ∥ > δ do
4: Evaluate ∇𝜃U(π𝜃,x) from , x and P.
5: 𝜃+1 ← 𝜃 + η[∇𝜃U(π𝜃,x)]𝜃=𝜃

6: ++
7: end while
8: return π𝜃+1
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Expected Marginal Contribution
A Communitarian Quantifier of Merit

Expected Marginal Contribution (EMC)

Expected Marginal Contribution (EMC) quantifies the gain (or loss) in expected utility
when a policy is constrained to always pick an individual .

EMC(U, π) ≜
∑︁

a∈A
π(a)

[︀
U(a + ) − U(a)

]︀
.

We quantify the ‘merit’ of an individual  using EMC for a given policy π, utility U, data x.
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Revisiting the Meritocratic Decision Maker
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Properties of EMC
Generalising Shapley Value

Lemma (Axioms of Fair Coalition/Division)

1) Symmetry: If U(a + ) = U(a + j) for all a ⊆ N ,

EMC(U, π) = EMCj(U, π) ∀π ∈ .

2) Linearity: For all α, β ∈ R,

EMC(αU1 + βU2, π) = αEMC(U1, π) + βEMC(U2, π) ∀π ∈ .

3) Null Players: If  ∈ N has zero contribution to every set,

EMC(U, π) = 0 ∀π ∈ .

For the egalitarian selection policy πegal(a) = 1
N( N−1∥a∥1)

, EMC(U, πegal) = Shpley(U) [Sha51].
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Meritocracy and Stability of Selected Set
Swap Stability

Definition (Swap Stability)

If for any two individuals , j ∈ N with π(a = 1) > π(aj = 1), a swap stable policy π
satisfies U(π + − j) ≥ U(π − + j)1

A policy π is swap stable if an individual  is more likely to be selected than j, the expected
utility of selecting  but not j is higher than the expected utility of selecting j but not .

Lemma (EMC Induces a Swap Stable Ordering)

EMC(U, π − − j) ≥ EMCj(U, π − − j) ⇐⇒ U(π + − j) ≥ U(π − + j).

1 U(π + − j) ≜
∑︀

a∈A π(a)U(a + − j).
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Meritocracy and Stability of Selected Set
Local Stability

Definition (Local Stability)

A policy π is locally stable if for any  ∈ N , U(π) ≥ U(π + )2.

Local stability guarantees that the expected utility of selecting  is lower than the expected
utility of π.

Lemma (Local Stability is Equivalent to Negative EMC)

For  ∈ N , U(π) ≥ U(π + ) ⇐⇒ EMC(U, π) ≤ 0.

2 U(π + ) ≜
∑︀

a∈A π(a)U(a + ).
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A deterministic policy maximising utility is both swap- and local-stable, i.e. ‘meritocratic’.
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Separable Policies
A Study Relating Policy Gradient and EMC

A parameterised policy π𝜃 is separable over the populationN if

π𝜃(a) =
N∏︁

=1

π𝜃(a)⏟  ⏞  
Probability of selecting 

∝
N∏︁

=1

g(a,𝜃)

for some function g and 𝜃 = (𝜃1, . . . ,𝜃N) .
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Separable Policies
Separable Softmax Policies

For separable softmax policies,

π𝜃(a) =
eβ𝜃⊤a∑︀

a′∈A eβ𝜃⊤a′
.

β ≥ 0 is the inverse temperature of the distribution.

Lemma

The gradient of the softmax policy π𝜃 is a linear transformation of the EMC. Specifically,

∇𝜃
U(π𝜃) = βπ𝜃(a = 1) EMC(U, π𝜃) ∀ ∈ N .
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Separable Policies
Separable Linear Policies

Separable linear policies select individual  with probability 𝜃, i.e.

π𝜃
(a) = 𝜃I{a = 1} + (1 − 𝜃)I{a = 0} .

Lemma

For separable linear policies, if π𝜃
(a = 0) > 0,

∇𝜃
U(π𝜃) =

EMC(U, π𝜃)

π𝜃
(a = 0)

∀ ∈ N .
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EMC, Shapley Value, and Policy Gradient
A Visual Comparison
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0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

S
el

ec
tio

n 
P

ro
ba

bi
lit

y 
of

 In
di

vi
du

al
 2

Selection Probability of Individual 1

Figure: Policy gradients (Linear)
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Experimental Analysis
Dataset

- Application data3: Applicants to all Norwegian university programs with features:
birth date, semester of application, gender, citizenship, country of educational
background, high school grades in form of GPA and summarised language/science
points, other points, admission decision, each applicant’s preference for a program.

- Exam data4: All students at Norwegian universities for all their taken exams
including: courses, study program, and achieved grades.

Goal: DM is interested in maximising good course results of admitted students across all
three considered disciplines/courses and demographic parity among selected students.

3 https://dbh.nsd.uib.no/dokumentasjon/tabell.action?tabellId=379
4 https://dbh.nsd.uib.no/dokumentasjon/tabell.action?tabellId=472
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Experimental Analysis
Utility Function of the DM

- Utility (Log-linear): (a,y) =
∑︀3

j=1 log
(︀∑︀

∈N a · y,j

)︀
− c · ∥a ∥ 1.3

c is the cost associated with admitting a student.

- Demographic fairness (Statistical Parity):

|π(a = 1 |  is male) − π(aj = 1 | j is female)| ≤ ϵ.

- Predictive model: DM uses a regression model for estimating P(y | x,a), i.e. the
course results y of this year’s applicants x.

3 The potential outcomes of non-admitted applicants do not contribute to the utility
21



Expected Utility and Deviation from Meritocratic Stability
Demographically Oblivious Policy
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Figure: Predicted Outcomes
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Expected Utility and Deviation from Meritocratic Stability
Demographic Fairness Constrained Policy
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Take-away: Summary of Contributions
- Problem Formulation: Optimal set selection can be reduced to a policy optimisation
problem given the utility of DM and a predictive evaluation model.

- Meritocracy in Set Selection:
-> Expected marginal contribution (EMC) is the quantifier of an individual’s ‘merit’

or contribution to DM’s expected utility.
-> EMC generalises fairness axioms of team building obtained for Shapley values.
-> A meritocratic policy should satisfy swap and local stabilities.

- Policy Optimisation and EMC:
-> Policy gradient and EMC for separable policies are proportional.
-> A deterministic utility maximising policy satisfies meritocratic stabilities but a

stochastic utility maximising policy might not.
- Case of College Admissions: Historical and egalitarian policies deviate quite a bit
from meritocracy, while linear separable poicies reach closest to meritocracy.
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Take-away: What’s Next?

- Stochastic utility maximising policies might not satisfy swap stability.
-> The proof shows that we might require individually smooth policies in the sense

that similar individuals (in terms of compatibility across optimal sets) are being
selected similarly often.
Studying the family of individually smooth policies!

- Meritocratic fairness conflicts with demographic fairness constraints [Bin20].
-> Our experiments show that constrained policy optimisation can solve this

setting and EMC for constrained policies can quantify deviation from
meritocracy.
Studying the EMC for constrained policies, and the corresponding trade-off
between meritocracy and demographic fairness.
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How to define and ensure meritocracy in optimal set selection?

Use expected marginal contribution given DM’s policy and utility function.

Our Paper: https://arxiv.org/pdf/2102.11932.pdf
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Performance Metrics
To measure violations of swap stability, we suggest to use

Devswap(π,x) =
∑︁
,j∈N

(π(a = 1 | x) − π(aj = 1 | x))+
(︀
U(π − + j,x) − U(π + − j,x)

)︀+
,

where (X)+ ≜mx{0, X}. Here, large values of Devswap(π,x) indicate large deviations
from swap stable decisions. Note that our choice of Devswap not only accounts for the
number of infringements, but also the magnitude of the deviation from swap stability. For
instance, if U(π + − j)≪ U(π − + j) while π(a = 1)≫ π(aj = 1), the measured
deviation from swap stability is accordingly large. In particular, if Devswap(π,x) = 0, the
policy π is swap stable. To measure the deviation from local stability, we use the
cumulative positive EMCs under policy π:

Devlocal(π,x) =
∑︁
∈N

(︀
EMC(U, π,x)

)︀+
.

Again, larger values of Devlocal(π,x) indicate more severe deviations from locally stable
decisions. Recall that a policy π is stable under local changes if and only if
EMC(U, π,x) ≤ 0 for all  ∈ N . Thus, if Devlocal(π,x) = 0, the policy π is stable under
local changes.
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