Publications

  •  Thesis
  •  Journal article
  •  Conference article
  •  Workshop article
  •  Demonstration
  •  Preprint

2024

2023

  • [Conference article (peer-reviewed)] A. Azize, M. Jourdan, A. Al Marjani, and D. Basu, On the Complexity of Differentially Private Best-Arm Identification with Fixed Confidence. In Proc. NeurIPS, 2022. Primary version: Accepted in EWRL, 2023. (PDF)
  • [Conference article (peer-reviewed)] E. Cyffers, A. Bellet, and D. Basu, From Noisy Fixed-Point Iterations to Private ADMM for Centralized and Federated Learning. In Proc. ICML, 2023. Preprint: arXiv:2302.12559. (PDF)
  • [Conference article (peer-reviewed)] B. Ghosh, D. Basu, and K. S. Meel, “How Biased are Your Features?”: Computing Fairness Influence Functions with Global Sensitivity Analysis. In Proc. ACM FAccT, 2023. Preprint: arXiv:2206.00667. (PDF | Code)
  • [Conference article (peer-reviewed)] P. Karmakar, and D. Basu, Marich: A Query-efficient Distributionally-Equivalent Model Extraction Attack using Public Data. In Proc. NeurIPS, 2023. Primary version: Accepted in PPAI@AAAI, 2023. (PDF | Code)
  • [Workshop article (peer-reviewed)] A. Azize, and D. Basu, Renyi Diffrentially Private Bandits.In PPAI@AAAI, 2023. (PDF)
  • [Workshop article (peer-reviewed)] O.-A. Maillard, T. Mathieu, and D. Basu, Farm-gym: A modular reinforcement learning platform for stochastic agronomic games.In AIAFS Workshop@AAAI, 2023. (PDF)
  • [Conference article (peer-reviewed)] R. Ouhamma, D. Basu, and O.-A. Maillard, Bilinear Exponential Family of MDPs: Frequentist Regret Bound with Tractable Exploration & Planning. In Proc. AAAI, 2023. Primary version: Accepted in EWRL, 2022. (PDF)

2022

2021

  • [Conference article (peer-reviewed)] J. Wang, I. Trummer, and D. Basu, UDO: Universal Database Optimization using Reinforcement Learning. In Proc. VLDB, vol. 14, September, 2021. (PDF)
  • [Conference article (peer-reviewed)] S. Tavara, A. Schilep, and D. Basu, Federated Learning of Oligonucleotide Drug Molecule Thermodynamics with Differentially Private ADMM-based SVM. In Proc. of workshop at ECML/PKDD, September, 2021. Presented at PharML'21. (PDF)
  • [Conference article (peer-reviewed)] J. Wang, I. Trummer, and D. Basu, Demonstrating UDO: A Unified Approach for Optimizing Transaction Code, Physical Design, and System Parameters via Reinforcement Learning. In Proc. SIGMOD, June, 2021. (PDF)
  • [Journal article (peer-reviewed)] I. Ryazanov, A. T. Nylund, D. Basu, I.-M. Hassellöv, and A. Schliep, Deep Learning for Deep Waters: An Expert-in-the-Loop Machine Learning Framework for Marine Sciences. In Journal of Marine Science and Engineering, February, 2021. (PDF)
  • [Conference article (peer-reviewed)] B. Ghosh, D. Basu, and K. S. Meel, Justicia: A Stochastic SAT Approach to Formally Verify Fairness. In Proc. AAAI, February, 2021. Extended version: arXiv preprint, arXiv:2009.06516, 2020. (PDF)
  • [Conference article (peer-reviewed)] A. Dandekar, D. Basu, and S. Bressan, Differential Privacy at Risk: Bridging Randomness and Privacy Budget. In Proc. on Privacy Enhancing Technologies, January, 2021. (PDF)

    *Extended version: arXiv preprint, arXiv:2003.00973, 2020. *Older version: In Proc. AAAI Workshop on Privacy Preserving AI (PPAI), Februray, 2020.

2020

  • [Conference article (peer-reviewed)] E. Jorge, H. Eriksson, C. Dimitrakakis, D. Basu, and D. Grover, Inferential Induction: A Novel Framework for Bayesian Reinforcement Learning. In PMLR, Vol. 137, "I Can't Believe It's Not Better!", NeurIPS, Dec., 2020. (PDF) *Older version: Inferential Induction: Joint Bayesian Estimation of MDPs and Value Functions. In arXiv preprint arXiv:2002.03098, 2020. (PDF)
  • [Conference article (peer-reviewed)] A. Dandekar, D. Basu, P. Senellart, and S. Bressan, Confidentialité différentielle à risque: Relier les sources d’aléa et un budget de confidentialité. In Proc. on BDA, October, 2020. (PDF)
  • [Preprint] N. A. Arafat, D. Basu, and S. Bressan, ε-net Induced Lazy Witness Complex on Graphs. In arXiv preprint, arXiv:2009.13071, 2020. (PDF)
  • [Conference article (peer-reviewed)] D. Grover, D. Basu, and C. Dimitrakakis, Bayesian Reinforcement Learning via Deep, Sparse Sampling. In Proc. AISTATS, Virtual, June, 2020. (PDF)
  • [Conference article (peer-reviewed)] N. A. Arafat, D. Basu, L. Decreusefond, and S. Bressan, Construction and Random Generation of Hypergraphs with Prescribed Degree and Dimension Sequences. In Proc. DEXA, Virtual, 2020 (PDF)
  • [Workshop] A. Dandekar, D. Basu, and S. Bressan, Differential Privacy at Risk: Bridging Randomness and Privacy Budget. In Proc. AAAI Workshop on Privacy Preserving AI (PPAI), Februray, 2020. (PDF)

2019

  • [Conference article (peer-reviewed)] D. Basu, P. Senellart, and S. Bressan, BelMan: An Information Geometric Approach to Stochastic Bandits. In Proc. ECML-PKDD, September,2019. (PDF | Code)
  • [Workshop] N. A. Arafat, D. Basu, and S. Bressan, ε-net Induced Lazy Witness Complex on Graphs. In Proc. ATDA at ECML-PKDD, September, 2019. (PDF)
  • [Preprint] D. Basu, C. Dimitrakakis, and A. C. Y. Toussou, Differential Privacy For Multi-Armed Bandits: What Is It And What Is Its Cost?. In CORR, abs/1905.12298, 2019. (PDF)
  • [Preprint] A. C. Y. Toussou, D. Basu, and C. Dimitrakakis, Near Optimal Reinforcement Learning Using Bayesian Quantiles. In CORR, abs/1906.09114, 2019. (PDF)
  • [Preprint] A. C. Y. Toussou, D. Basu, and C. Dimitrakakis, Near Optimal Reinforcement Learning using Empirical Bernstein Inequalities. In CORR, abs/1906.09114, 2019. (PDF)
  • [Conference article (peer-reviewed)] N. A. Arafat, D. Basu, and S. Bressan, Topological Data Analysis with ε-Net Induced Lazy Witness Complex. In Proc. DEXA, Linz, Austria, August, 2019. (PDF)
  • [Conference article (peer-reviewed)] A. Dandekar, D. Basu, and S. Bressan, Differentially Private Non-parametric Machine Learning as a Service. In Proc. DEXA, Linz, Austria, August, 2019. (PDF)
  • [Conference article (peer-reviewed)] A. Dandekar, D. Basu, T. Kister, G. S. Poh, J. Xu, and S. Bressan, Privacy as a Service: Publishing Data and Models. In Proc. DASFAA, Thailand, April, 2019. (PDF)
  • [Preprint] A. Dandekar, D. Basu, and S. Bressan, Evaluation of Differentially Private Non-parametric Machine Learning as a Service. In DSpace@NUS, 2019. (PDF)
  • [Journal article (peer-reviewed)] D. Basu, X. Wang, Y. Hong, H. Chen, and S. Bressan, Learn-as-you-go with Megh: Efficient Live Migration of Virtual Machines. In IEEE Transactions on Parallel and Distributed Systems, January, 2019. (PDF)

2018

  • [PhD Thesis] D. Basu, Learning to Make Decisions with Incomplete Information: Reinforcement Learning, Information Geometry, and Real-Life Applications. In ScholarBank@NUS, October 2018. (PDF)
  • [Conference article (peer-reviewed)] A. Dandekar, D. Basu, and S. Bressan, Differential Privacy for Regularised Linear Regression. In Proc. DEXA, Regensburg, Germany September 2018. (PDF)
  • [Preprint] D. Basu, P. Senellart, and S. Bressan, BelMan: Bayesian Bandits on the Belief–Reward Manifold. arXiv preprint arXiv:1805.01627 2018. (PDF | Code)

2017

2016

2015

2014

2013

  • [Conference article (peer-reviewed)] S. Debchoudhury, D. Basu, K. Z. Gao, and P. N. Sugnathan, Load Information Based Priority Dependent Heuristic for Manpower Scheduling Problem in Remanufacturing. In Proc. SEMCCO, Chennai, India, December 2013. (PDF)
  • [Conference article (peer-reviewed)] D. Basu, S. Debchoudhury, K. Z. Gao, and P. N. Sugnathan, A Novel Improved Discrete ABC Algorithm for Manpower Scheduling Problem in Remanufacturing. In Proc. SEMCCO, Chennai, India, December 2013. (PDF)

Thesis

  • [PhD Thesis] D. Basu, Learning to Make Decisions with Incomplete Information: Reinforcement Learning, Information Geometry, and Real-Life Applications. In ScholarBank, NUS, October 2018. (PDF)

Journal articles

Conference articles

  • [Conference article (peer-reviewed)] M. Kallel, D. Basu, R. Akrour, and C. D'Eramo, Augmented Bayesian Policy Search. In Proc. ICLR, 2024. (PDF)
  • [Conference article (peer-reviewed)] E. Carlsson, D. Basu, F. D. Johansson, and D. Dubhashi, Pure Exploration in Bandits with Linear Constraints. In Proc. AISTATS, 2024. Primary version: Accepted in EWRL, 2023. (PDF)
  • [Conference article (peer-reviewed)] H. Eriksson, T. Tram, D. Basu, M. Alibeigi, and C. Dimitrakakis, Reinforcement Learning in the Wild with Maximum Likelihood-based Model Transfer. In Proc. AAMAS, 2024. (PDF)
  • [Conference article (peer-reviewed)] A. Azize, and D. Basu, Interactive and Concentrated Differential Privacy for Bandits. In Proc. IEEE SaTML, 2024. Primary version: Accepted in EWRL, 2023. (PDF)
  • [Conference article (peer-reviewed)] S. Agarwal, T. Mathieu, D. Basu, and O.-A. Maillard, CRIMED: Lower and Upper Bounds on Regret for Bandits with Unbounded Stochastic Corruption. In Proc. ALT, 2024. (PDF)
  • [Conference article (peer-reviewed)] A. Azize, M. Jourdan, A. Al Marjani, and D. Basu, On the Complexity of Differentially Private Best-Arm Identification with Fixed Confidence. In Proc. NeurIPS, 2022. Primary version: Accepted in EWRL, 2023. (PDF)
  • [Conference article (peer-reviewed)] P. Karmakar, and D. Basu, Marich: A Query-efficient Distributionally-Equivalent Model Extraction Attack using Public Data. In Proc. NeurIPS, 2023. Primary version: Accepted in PPAI@AAAI, 2023. (PDF | Code)
  • [Conference article (peer-reviewed)] E. Cyffers, A. Bellet, and D. Basu, From Noisy Fixed-Point Iterations to Private ADMM for Centralized and Federated Learning. In Proc. ICML, 2023. Preprint: arXiv:2302.12559. (PDF)
  • [Conference article (peer-reviewed)] B. Ghosh, D. Basu, and K. S. Meel, “How Biased are Your Features?”: Computing Fairness Influence Functions with Global Sensitivity Analysis. In Proc. ACM FAccT, 2023. Preprint: arXiv:2206.00667. (PDF | Code)
  • [Conference article (peer-reviewed)] R. Ouhamma, D. Basu, and O.-A. Maillard, Bilinear Exponential Family of MDPs: Frequentist Regret Bound with Tractable Exploration & Planning. In Proc. AAAI, 2023. Primary version: Accepted in EWRL, 2022. (PDF)
  • [Conference article (peer-reviewed)] A. Azize, and D. Basu, When Privacy Meets Partial Information: A Refined Analysis of Differentially Private Bandits. In Proc. NeurIPS, 2022. Primary version: Accepted in EWRL, 2022. (PDF)
  • [Conference article (peer-reviewed)] T. K. Buening, M. Segal, D. Basu, and C. Dimitrakakis, On Meritocracy in Optimal Set Selection. In Proc. ACM EAAMO, 2022. (PDF)
  • [Conference article (peer-reviewed)] H. Eriksson, D. Basu, M. Alibeigi, and C. Dimitrakakis, SENTINEL: Taming Uncertainty with Ensemble-based Distributional Reinforcement Learning. In Proc. UAI, 2022. (PDF)
  • [Conference article (peer-reviewed)] Y. Flet-Berliac, and D. Basu, SAAC: Safe Reinforcement Learning as an Adversarial Game of Actor-Critics. In Proc. RLDM, 2022. Extended version: arXiv preprint, arXiv:2204.09424, 2022. (PDF)
  • [Conference article (peer-reviewed)] J. Wang, D. Basu, and I. Trummer, Procrastinated Tree Search: Black-box Optimization with Delayed, Noisy, and Multi-fidelity Feedback. In Proc. AAAI, 2022. (PDF)
  • [Conference article (peer-reviewed)] B. Ghosh, D. Basu, and K. S. Meel, Algorithmic Fairness Verification with Graphical Models. In Proc. AAAI, 2022. (PDF)
  • [Conference article (peer-reviewed)] J. Wang, I. Trummer, and D. Basu, UDO: Universal Database Optimization using Reinforcement Learning. In Proc. VLDB, vol. 14, September, 2021. (PDF)
  • [Conference article (peer-reviewed)] S. Tavara, A. Schilep, and D. Basu, Federated Learning of Oligonucleotide Drug Molecule Thermodynamics with Differentially Private ADMM-based SVM. In Proc. of workshop at ECML/PKDD, September, 2021. Presented at PharML'21. (PDF)
  • [Conference article (peer-reviewed)] B. Ghosh, D. Basu, and K. S. Meel, Justicia: A Stochastic SAT Approach to Formally Verify Fairness. In Proc. AAAI, February, 2021. Extended version: arXiv preprint, arXiv:2009.06516, 2020. (PDF)
  • [Conference article (peer-reviewed)] A. Dandekar, D. Basu, and S. Bressan, Differential Privacy at Risk: Bridging Randomness and Privacy Budget. In Proc. on Privacy Enhancing Technologies, January, 2021. (PDF)

    *Extended version: arXiv preprint, arXiv:2003.00973, 2020. *Older version: In Proc. AAAI Workshop on Privacy Preserving AI (PPAI), Februray, 2020.

  • [Conference article (peer-reviewed)] E. Jorge, H. Eriksson, C. Dimitrakakis, D. Basu, and D. Grover, Inferential Induction: A Novel Framework for Bayesian Reinforcement Learning. In PMLR, Vol. 137, "I Can't Believe It's Not Better!", NeurIPS, Dec., 2020. (PDF)
  • [Conference article (peer-reviewed)] A. Dandekar, D. Basu, P. Senellart, and S. Bressan, Confidentialité différentielle à risque: Relier les sources d’aléa et un budget de confidentialité. In Proc. on BDA, October, 2020. (PDF)
  • [Conference article (peer-reviewed)] D. Grover, D. Basu, and C. Dimitrakakis, Bayesian Reinforcement Learning via Deep, Sparse Sampling. In Proc. AISTATS, Palermo, Italy, June, 2020. (PDF)
  • [Conference article (peer-reviewed)] D. Basu, P. Senellart, and S. Bressan, BelMan: An Information Geometric Approach to Stochastic Bandits. In Proc. ECML-PKDD, September,2019. (PDF | Code)
  • [Conference article (peer-reviewed)] N. A. Arafat, D. Basu, and S. Bressan, Topological Data Analysis with ε-Net Induced Lazy Witness Complex. In Proc. DEXA, Linz, Austria, August, 2019. (PDF)
  • [Conference article (peer-reviewed)] A. Dandekar, D. Basu, and S. Bressan, Differentially Private Non-parametric Machine Learning as a Service. In Proc. DEXA, Linz, Austria, August, 2019. (PDF)
  • [Conference article (peer-reviewed)] A. Dandekar, D. Basu, T. Kister, G. S. Poh, J. Xu, and S. Bressan, Privacy as a Service: Publishing Data and Models. In Proc. DASFAA, Thailand, April, 2019. (PDF)
  • [Conference article (peer-reviewed)] A. Dandekar, D. Basu, and S. Bressan, Differential Privacy for Regularised Linear Regression.. In Proc. DEXA, Regensburg, Germany September 2018. (PDF)
  • [Conference article (peer-reviewed)] Q. Liu, D. Basu, S. Goel, T. Abdessalem, and S. Bressan, How to Find the Best Rated Items on a Likert Scale and How Many Ratings Are Enough?. In Proc. DEXA, Lyon, France, August 2017. (PDF)
  • [Conference article (peer-reviewed)] D. Basu, X. Wang, Y. Hong, H. Chen, and S. Bressan, Learn-as-you-go with Megh: Efficient Live Migration of Virtual Machines. In ICDCS, Atlanta, USA, June 2017. (PDF)
  • [Conference article (peer-reviewed)] D. Basu, G. Pedrielli, W. Chen, S. H. Ng, L. H. Lee, and S. Bressan, Sequential Vessel Speed Optimization under Dynamic Weather Conditions. In MTEC, Singapore, April 2017. (PDF)
  • [Conference article (peer-reviewed)] Q. Liu, D. Basu, T. Abdessalem, and S. Bressan, Top-k Queries over Uncertain Scores. In Proc. CoopIS, Rhodes, Greece, October 2016. (PDF)
  • [Conference article (peer-reviewed)] D. Basu, Q. Lin, Z. Yuan, P. Senellart, and S. Bressan, Apprentissage par renforcement pour optimiser les bases de donnéees indépendamment du modèle de coût. In Proc. BDA, Porquerolles, France, September 2015. Conference without formal proceedings. (PDF)
  • [Conference article (peer-reviewed)] D. Basu, Q. Lin, W. Chen, H. T. Vo, Z. Yuan, P. Senellart, and S. Bressan, Cost-Model Oblivious Database Tuning with Reinforcement Learning. In Proc. DEXA, Valencia, Spain, September 2015. (PDF)
  • [Conference article (peer-reviewed)] D. Basu, S. Bhattacharyya, A. Konar, D. N. Tibarewala, A Type-2 Adaptive Neuro-Fuzzy Inference System using Differential Evolution for EEG classification. In Proc. Fuzz-IEEE, Beijing, China,July 2014. (PDF)
  • [Conference article (peer-reviewed)] D. Sardar, D. Basu, S. Bhattacharyya, A. Konar, A. Khasnobish, D. N. Tibarewala, and R. Janarthanan, Embedded Realisation of Amplitude-Phase Adaptive Filter for Bio-Potential Signals. In Proc. CIEC, Kolkata, India, February 2014. (PDF)
  • [Conference article (peer-reviewed)] D. Basu, S. Debchoudhury, K. Z. Gao, and P. N. Sugnathan, A Novel Improved Discrete ABC Algorithm for Manpower Scheduling Problem in Remanufacturing. In Proc. SEMCCO, Chennai, India, December 2013. (PDF)
  • [Conference article (peer-reviewed)] S. Debchoudhury, D. Basu, K. Z. Gao, and P. N. Sugnathan, Load Information Based Priority Dependent Heuristic for Manpower Scheduling Problem in Remanufacturing. In Proc. SEMCCO, Chennai, India, December 2013. (PDF)

Workshop Articles (Peer-reviewed)

Preprint (Archived Articles)

Demonstration

  • [Conference article (peer-reviewed)] J. Wang, I. Trummer, and D. Basu, Demonstrating UDO: A Unified Approach for Optimizing Transaction Code, Physical Design, and System Parameters via Reinforcement Learning. In Proc. SIGMOD, June, 2021. (PDF)
  • [Conference article (peer-reviewed)] A. Dandekar, D. Basu, T. Kister, G. S. Poh, J. Xu, and S. Bressan, Privacy as a Service: Publishing Data and Models. In Proc. DASFAA, Thailand, April, 2019. (PDF)